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Abstract. We develop a new framework that allows to prove that the limiting
distribution of return times for a large class of mixing dynamical systems are
Poisson distributed. We demonstrate our technique in several settings and
obtain more general results than previously has been proven. We also obtain
error estimates. For φ-mixing maps we obtain a close to exhausting description
of return times. For (φ, f)-mixing maps it is shown how the separation function
affects error estimates for the limiting distribution. As examples of (φ, f)-
mixing we prove that for piecewise invertible maps and for rational maps return
times are in the limit Poisson distributed.

1. Introduction. We study the distribution of return times for transformations
to small set. Let T be a transformation on the space Ω and let µ be a probability
measure on Ω. Denote by χA the characteristic function of a (measurable) set A
and define the ‘random variable’

ξA =
[t/µ(χA)]∑

j=1

χA ◦ T j .

The value of ξA measures the number of times a given point returns to A within
the normalised time t (the normalisation is with respect to the µ-measure of the
‘return-set’ A). If µ is the measure of maximal entropy for the shift transformation
on a subshift of finite type, then it was shown by Pitskel [21] that the return times
are in the limit Poisson distributed for cylinder sets and µ-almost every x. For
equilibrium states of Hölder continuous functions, Hirata ([14], [15]) has similar
results for the zeroth return time r = 0 using the transfer operator restricted to
the complement of ε-balls in the shiftspace. Wang, Tang and Wang [24] have a
result for non-homogeneous Markov chains which uses Pitskel’s method which was
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also used by Denker [10]. All those results don’t give rates of convergence. Also
note the review paper by Z Coelho [8] for some other results on the return times
distribution and the review paper by Abadi and Galves [3].

For cylinder sets, Galves and Schmitt [11] have obtained rates of convergence
for the zeroth order return times (r = 0). Hirata, Saussol and Vaienti [16] have
developed a general scheme to prove that return times are in the limit Poisson
distributed and applied it to a family of interval maps with a parabolic point at
the origin (where the map is like x + x1+α for some α ∈ (0, 1)).

Here we develop a mechanism which allows to prove the Poisson distribution of
return times and to obtain error estimates as the set A shrinks to a single point.

In the second section we prove a theorem that gives general conditions under
which a sum of mutually dependent 0, 1-valued random variables converges to the
Poisson distribution and provides error terms. This quantifies a previous theorem
of Sevast’yanov who originally in [22] has a version of Corollary 2 without error
terms (that was the result used by B Pitskel in [21]). Theorem 1 plays a centre
part in this paper to obtain the limiting distribution of entry and re-entry times of
dynamical systems. (The 0, 1-valued random variables will count returns to a given
set.) The main feature of the theorem is the distinction between ‘short’ returns
and ‘long’ returns and the tradeoff between the size of the set of points that have
short returns and the speed of mixing that is implied by long returns.

The distribution of return times is tied to the mixing properties of the invariant
measure considered. For that purpose we introduce in the third secion the (φ, f)-
mixing property. This property is more general that the widely used φ-mixing
property and is reminiscent of Philipp and Stout’s [20] ‘retarded strong mixing
property’. In this way one can obtain distribution results on return times of some
well studied dynamical systems that are not φ-mixing, e.g. rational maps, parabolic
maps, piecewise expanding maps in higher dimension . . . .

In section four we look more closely at the return times patterns and and single
out those that contain at least one short return. In order to get a good distribution
it is necessary to avoid very short return times that are of the order of the length
of the cylinders considered. The remaining return time patterns that contain only
short returns of moderate length form a ‘rare’ set and is shown to be in general
small. In the remainder of the section we then derive general propositions that
will be used in the last sections to obtain distribution results for various mixing
systems.

In section five we apply our results to φ-mixing systems where φ is algebraically
or exponentially decaying. Similar results have been obtained by M Abadi [1] for
α-mixing maps using the Chen-Stein method. His error estimates are better in
terms of the parameter t but not as good in the dependency on the order of returns
as ours are. The error terms we obtain involve the measure of a cylinder set whose
length is determined by the ‘shortest repeat time function’ τ . All our results come
in three flavours: for entry times, for return times and then we restrict to sets that
have only points without ‘very short’ returns. The latter one we call restricted
return times (see section 3.3) and has the advantage that the error terms are not
constraint by the shortest repeat time function.

Finally, in section six we apply our method to maps that are genuinely (φ, f)-
mixing (i.e. not φ-mixing): piecewise expanding maps in higher dimensions and
rational maps.
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In the following c1, c2, . . . are constants that are locally used while C1, C2, . . .
indicate constants that whose values apply throughout the text.

2. Factorial moments and mixing. In this section we prove a technical result,
Theorem 1 where we provide general conditions under which distribution of a finite
set of 0, 1-valued random variables is close to Poisson, where the parameter for the
approximating Poisson distribution is the expected value of the counting function
ζ below. We give an explicit expression for the error term: It is determined by
the independence of the given random variables (see condition (5) below) and the
sparcity of short term correlations (conditions (3) and (4) below).

For (φ, f)-mixing maps we show in section 4 how the dynamical properties are
used to satisfy the conditions (1)–(5) of Theorem 1. There we have to make a
distinction between short returns and long returns. For long returns we obtain
strong mixing properties, while the short returns (sets Kr and Ir) can only be
estimated in a rough manner (section 4.1).

In the sections that follow we then use these results to obtain the speed of con-
vergence for the limiting distributions for φ-mixing systems, some non-Markovian
systems and equilibrium states for rational maps with critical points.

In the following Gr is a subset of Zr.

Theorem 1. Let {ηv : v = 1, . . . , N}, be 0, 1-valued random variables and µ a
probability measure. Put ζ =

∑N
v=1 ηv, and for 	v ∈ Gr = {	v ∈ Zr : 1 ≤ v1 < v2 <

· · · < vr ≤ N} let b�v = µ(η�v), where η�v =
∏r

s=1 ηvs
(if r = 1 then bv = µ(ηv)).

Assume that there exist sets Rr ⊂ Gr (r ≥ 1) and t > 0, α ≥ 0 so that (the
numbers r′, r′′ satisfy |r′ − r|, |r′′ − r| ≤ 2) the following five assumptions are sat-
isfied:

max
1≤v≤N

bv ≤ ε (1)∣∣∣∣∣
N∑

v=1

bv − t

∣∣∣∣∣ ≤ ε (2)

∑
�v∈Rr

b�v ≤ ε

r′∑
s=0

(
r′

s

)
εr′−s (αt)s

s!
(3)

∑
�v∈Rr

bv1 · · · bvr
≤ ε

r′′∑
s=0

(
r′′

s

)
εr′′−s (αt)s

s!
(4)

∣∣∣∣bv1 · · · bvr

b�v
− 1

∣∣∣∣ ≤ αrε ∀ 	v ∈ Gr \ Rr, (5)

for some ε > 0 (ε < 1).
Then, for every α′ > α there exists a constant C1 independent of ε so that for all

t > 0 and r for which r2ε/t is small if k ≥ 1 and εt is small if k = 0 (for smallness
see equation (7)):∣∣∣∣µ(N k) − tke−t

k!

∣∣∣∣ ≤
{

C1
(k+t)2

k! ε(α′t)k−1eα′t if k ≥ 1
C1e

α′t+1ε(t + 1) if k = 0

For all values of k and t one has the (weaker) bound∣∣∣∣µ(N k) − tke−t

k!

∣∣∣∣ ≤ C1εe
2α′tt.
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where N k = {y : ζ(y) = k} is the k-levelset of ζ.

The sets Rr are sometimes called rare sets.
Proof. Throughout the proof we shall assume that r′ = r′′ = r. If r′′, r′ �= r then
there are obvious modifications below that let us arrive at the same conclusion
(except the constant C1 will be somewhat larger).

If we put Ur = r!
∑

�v∈Gr
bn
�v then

|Ur − tr| ≤ I + II + III + IV + V,

where by assumption (3)

I =

∣∣∣∣∣∣Ur − r!
∑

�v �∈Rr

b�v

∣∣∣∣∣∣ = r!
∑

�v∈Rr

b�v ≤ r!ε
r∑

s=0

(
r
s

)
εr−s (αt)s

s!

and by assumption (4)

II =

∣∣∣∣∣∣Vr − r!
∑

�v �∈Rr

∏
i

bvi

∣∣∣∣∣∣ ≤ r!ε
r∑

s=0

(
r
s

)
εr−s (αt)s

s!
,

where we put Vr = r!
∑

�v∈Gr

∏
i bvi

. Moreover by assumption (2)

III =

∣∣∣∣∣
(

N∑
k=0

bk

)r

− tr

∣∣∣∣∣ ≤ rε(t + ε)r−1 ≤ ε

r∑
x=0

(αε)r+s (αt)s

s!

(
r
s

)
.

To estimate the term IV we factor out as follows(
N∑

k=0

bk

)r

= r!
∑

�v∈Gr

∏
i

bvi
+

r−1∑
k=1

∑
�v∈Hk

r

∏
i

bvi
,

where Hk
r consists of all those unordered multi-indices 	v = (v1, . . . , vr), 0 ≤ vj ≤ N ,

which have exactly r − k distinct entries. We wish now to estimate the sum over
each set Hk

r by the sum over the set Gr−k of ordered (r − k)-tuples. To generate
all of the possible unordered r-tuples 	v in Hk

r , let 	w ∈ Gr−k. There are (r − k)!
possible arrangements of the entries of 	w. There are r!

(r−k)!k! possibilities to fit any
of these arrangements into the r slots of a vector 	v and there are (r − k)k many
ways to fill the remaining k empty slots with any of the r − k distinct entries of 	w.
Hence, by assumption (1)

∑
�v∈Hk

r

∏
i

bvi
≤ r!

(r − k)!k!
(r − k)k(max

i
bi)k(r − k)!

∑
�v∈Gr−k

∏
i

bvi

≤ r!
(r − k)!k!

(r − k)kεkVr−k.

With the estimate:

Vr =

(
N∑

k=0

bk

)r

−
r−1∑
k=1

∑
�v∈Hk

r

∏
i

bvi
≤

(
N∑

k=0

bk

)r

≤ (t + ε)r,
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we obtain

IV =

∣∣∣∣∣
(

N∑
k=0

bk

)r

− Vr

∣∣∣∣∣ ≤
r−1∑
k=1

r!
(r − k)!k!

(r − k)kεkVr−k

≤
r−1∑
k=1

r!(r − k)k

(r − k)!k!
rkεk(t + ε)r−k.

To estimate the term V we proceed as follows using assumption (5) in the first
inequality:

V =

∣∣∣∣∣∣r!
∑

�v �∈Rr

∏
i

bvi
− r!

∑
�v �∈Rr

b�v

∣∣∣∣∣∣
≤ r!αrε

∑
�v �∈Rr

∏
i

bvi

≤ αrεVr

≤ εαr(t + ε)r

≤ r!ε
r∑

s=0

(αε)r−s (αt)s

s!
.

Hence

|Ur − tr| ≤ 4r!ε
r∑

s=0

(
r
s

)
εr−s (αt)s

s!
+

r−1∑
k=1

r!(r − k)k

(r − k)!k!
εk(t + ε)r−k.

Let f(z) =
∑∞

k=0 zkµ(N k) be the generating function which we develop at z = 1
into a powerseries:

f(z) =
∞∑

r=0

f (r)(1)
r!

(z − 1)r =
∞∑

r=0

(z − 1)r

r!
µ(ζ(r)),

where ζ(r) = ζ(ζ − 1) · · · (ζ − r + 1) is the rth factorial moment of ζ. For x ∈ N k,
k ≥ r, one has that ζ(r)(x) = k(k − 1) · · · (k − r + 1). For 	v ∈ Gr let us put
C�v = {x : η�v = 1} and let us observe that for any given r we have:
(i) if x ∈ N k for some k < r then x �∈ C�v, for all 	v ∈ Gr,

(ii) if x ∈ N k for k ≥ r then there are
(

k
r

)
distinct 	v ∈ Gr so that x ∈ C�v.

Since C�v =
⋃∞

k=r C�v ∩N k (disjoint union) we get

∑
�v∈Gr

µ(C�v) =
∞∑

k=r

∑
�v∈Gr

µ(C�v ∩Nk)

=
∞∑

k=r

k!
(k − r)!r!

µ(N k)

=
1
r!

µ(ζ(r))

and therefore
Ur = µ(ζ(r)) = f (r)(1).
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The (error) function is

ϕ(z) = f(z) − et(z−1) =
∞∑

r=0

(z − 1)r

r!

(
f (r)(1) − tr

)
.

We split ϕ into the sum ϕ = ϕ1 + ϕ2 where ϕ2 is the generating function for(∑N
k=0 bk

)r

− Vr and is estimated as follows (we put � = r − k):

|ϕ2(z)| ≤
∞∑

r=1

|z − 1|r
r!

r−1∑
k=1

r!
(r − k)!k!

(r − k)kεk(t + ε)r−k

≤
∞∑

�=1

∞∑
k=1

�k

�!k!
|z − 1|�+kεk(t + ε)�

≤
∞∑

�=1

|z − 1|�(t + ε)�

�!

(
e|z−1|�ε − 1

)

=
(
ee|z−1|ε|z−1|(t+ε) − e|z−1|(t+ε)

)
.

The function ϕ1 = ϕ − ϕ2 is (as α ≥ 1)

|ϕ1(z)| ≤
∞∑

r=0

|z − 1|r
r!

c1r!ε
r∑

k=0

(
r
k

)
(αε)r−k (αt)k

k!

= c1εF (|z − 1|αt, |z − 1|αε)

where we used the identity

F (x, y) =
∞∑

r=0

r∑
s=0

(
r
s

)
yr−s xs

s!
=

1
1 − y

e
x

1−y .

In particular we see that ϕ1 is for every value of t analytic for |z − 1| < α/ε and
moreover ϕ, ϕ1 and ϕ2 are for every value of t analytic for |z − 1| < α/ε. Let
α′ > α. For α|z − 1|ε ≤ 1 − α

α′ we get (c2 > c1)

|ϕ1(z)| ≤ c2εe
α′|z−1|(t+ε)

and

|ϕ2(z)| ≤ e|z−1|(t+ε)
(
e(e|z−1|ε−1)|z−1|(t+ε) − 1

)
≤ 4e|z−1|(t+ε)|z − 1|2ε(t + ε),

provided |z − 1|2ε(t + ε) ≤ 1. A Cauchy estimate now yields (R > 0):

|ϕ(k)(0)| ≤ k!
Rk

(
2c2εe

α′(R+1)(t+ε) + 2e(R+1)(t+ε)(R + 1)2ε(t + ε)
)

,

provided, of course, that (R +1)εα < 1− α
α′ and (R +1)2ε(t+ ε) ≤ 1. Hence, since

µ(N k) =
f (k)(0)

k!
=

tk

k!
e−t +

ϕ(k)(0)
k!

,

we get ∣∣∣∣µ(N k) − tk

k!
e−t

∣∣∣∣ ≤ ϕ(k)(0)
k!

≤ c3
(R + 1)2

Rk
eα′(R+1)tε(t + 1). (6)
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One can now obtain different estimates by choosing different values for R (subject
to the constraint mentioned above). If R = 1 then we simply obtain∣∣∣∣µ(N k) − tk

k!
e−t

∣∣∣∣ ≤ c4εe
2α′t(t + 1)

for some constant c4. A better choice of R can be obtained if for instance(
k

α′t + 1
+ 1

)2

εα(t + 1) < 1 − α

α′ (7)

in which case the optimal value is R = k
α′t+1 . Then (c5 > 0)

∣∣∣∣µ(N k) − tk

k!
e−t

∣∣∣∣ ≤ c5
(k + t)2

kk
ek+α′tε(α′t + 1)k−1.

Using Stirling’s formula one obtains the estimate given in the statement of the
theorem. If k = 0 then in equation (6) we let R → 0 and obtain∣∣µ(N 0) − e−t

∣∣ ≤ ϕ(k)(0) ≤ c3e
α′tε(t + 1).

�

Remarks. (i) The error estimate becomes meaningless if t of the order (or larger
than) | log k2ε| because the principal term is then smaller than the error term.

(ii) If in property (5) the left hand side is equal to zero for all 	v then the statement
of the theorem would is trivially satisfied (since then µ(N k) = tke−t

k! for all k).
(iii) In property (5) the error only has to go to zero for ‘most’ of the multi-indices

	v. For the remaining multi-indices (rare set) we don’t require anything except that
there are not too many of them (that is conditions (3) and (4). In our setting the
rare set will typically consist of return time patterns 	v which contain a return which
is ‘too short’.

(iv) The error term ε is allowed to depend on t which is a parameter in the
theorem.

The following corollary is a simplified version of Theorem 1.

Corollary 2. Let {ηv : v = 1, . . . , N} be an array of random 0, 1-valued variables
and µ a probability measure. Put ζ =

∑N
v=1 ηv, and let b�v = µ(η�v) for 	v ∈ Gr

(where η�v =
∏r

s=1 ηvs
). Assume that there are there is Rr ⊂ Gr (r ≥ 1) and t > 0

so that

max
1≤v≤N

bv ≤ ε∣∣∣∣∣
N∑

v=1

bv − t

∣∣∣∣∣ ≤ ε

∑
�v∈Rr

(b�v + bv1 · · · bvr
) ≤ ε

∣∣∣∣bv1 · · · bvr

b�v
− 1

∣∣∣∣ ≤ ε ∀ 	v ∈ Gr \ Rr.
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Then there exists a constant C1 independent of t so that for all k for which
(k2 + 1)ε/t is small1:∣∣∣∣µ(N k) − tke−t

k!

∣∣∣∣ ≤
{

C1εe
t (k+t)2

k! (t + 1)k−1 if k ≥ 1
C1εe

t(t + 1) if k = 0

For all values of k and t one has the (weaker) bound∣∣∣∣µ(N k) − tke−t

k!

∣∣∣∣ ≤ C1εe
2tt.

where N k = {y : ζ(y) = k} is the k-levelset of ζ.

3. Properties of (φ, f)-mixing measures. In this section we introduce the class
of systems for which we develop our framework for obtaining distribution results
on return times. The definition below generalises the ‘retarded strong mixing con-
dition’ (see e.g. [20]). We consider mixing dynamical systems in which the function
φ determines the rate of mixing while the separation function f specifies a lower
bound for the size of the ‘gap’ m that is necessary to get the mixing property.

Let T be a map on a space Ω and µ a probability measure on Ω. Moreover let
A be a measurable partition of Ω and denote by An =

∨n−1
j=0 T−jA its n-th join

which also is a measurable partition of Ω for every n ≥ 1. The atoms of An are
called n-cylinders. Let us put A∗ =

⋃
n An for the collection of all cylinders in Ω

and put |A| for the length of an n-cylinder A ∈ A∗, i.e. |A| = n if A ∈ An.
We shall assume that A is generating, i.e. that the atoms of A∞ are single points

in Ω.

Definition 3. Assume
(i) f : A∗ → N0 (N0 = {0, 1, 2, . . . }) so that f(A) ≥ f(B) if |A| ≥ |B|, A,B ∈ A∗.
If U is a union of n-cylinders Uj (some n) then f(U) = maxj f(Uj).
(ii) φ : N0 → R+ is non-increasing.

We say that the dynamical system (T, µ) is (φ, f)-mixing if∣∣µ(U ∩ T−m−nV ) − µ(U)µ(V )
∣∣ ≤ φ(m)µ(U)µ(V )

for all m ≥ f(U), measurable V (in the σ-algebra generated by A∗) and U which
are unions of cylinders of the same length n, for all n.

In section 4 where we consider the distribution of entry and return times we consider
separation functions f that depend only on the length of the cylinders, that is
f(A) = f(n) for A ∈ An, n = 1, 2, . . . . In section 5 we discuss the entry and return
times distribution for φ-mixing maps. This is the special case in which f = 0

In section 6 we then consider two cases in which the separation function is
not constant: in 6.1 we discuss the return times for multidimensional piecewise
continuous maps and in 6.2 we give uniform convergence results for the return
times of rational maps where the separation function f(n) is linear in n.

For r ≥ 1 and (large) N denote by Gr(N) the r-vectors 	v = (v1, . . . , vr) for which
1 ≤ v1 < v2 < · · · < vr ≤ N . (The set Gr(N) is the intersection of a cone in Zr

with a ball of radius N .) Let t be a positive parameter, put N = [t/µ(W )] (the
normalised time) and W ⊂ Ω. Then the entries vj of the vector 	v ∈ Gr(N) are the

1for smallness see equation (7) with α′ = 1
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times at which all the points in C�v =
⋂r

j=1 T−vj W hit the set W during the time
interval [1, N ].

The following simple lemmas will be needed later on.

Lemma 4. Let (T, µ) be (φ, f)-mixing, let r > 1 be an integer and let Wj ⊂ Ω, be
unions of nj-cylinders, j = 1, . . . , r.

Then for all ‘hitting vectors’ 	v ∈ Gr(N) with return times vj+1−vj ≥ f(Wj)+nj

(j = 1, . . . , r − 1) one has∣∣∣∣∣∣
µ

(⋂r
j=1 T−vj Wj

)
∏r

j=1 µ(Wj)
− 1

∣∣∣∣∣∣ ≤ (1 + φ(d(	v, 	n)))r − 1,

and d(	v, 	n) = mink(vk+1 − vk − nk).

Proof. Put for k = 1, 2, . . . , r:

Dk =
r⋂

j=k

T−(vj−vk)Wj .

In particular we have
⋂r

j=1 T−vj Wj = T−v1D1 and of course µ
(⋂r

j=1 T−vj Wj

)
=

µ(D1). Also note that

Dk = Wk ∩ T−(vk+1−vk)Dk+1

and Dr = Wr. Hence by assumption we obtain

|µ(Dk) − µ(Wk)µ(Dk+1)| ≤ φ(vk+1 − vk − nk)µ(Dk+1)µ(Wk).

Repeated application of the triangle inequality yields∣∣∣∣∣∣µ

 r⋂

j=1

T−vj Wj


 −

r∏
j=1

µ(Wj)

∣∣∣∣∣∣ ≤ ((1 + φ(d(	v, 	n)))r − 1)
r∏

j=1

µ(Wj),

where we used the estimates

µ(Dk) ≤ µ(Wk)µ(Dk+1) (1 + φ(vk+1 − vk − nk))

≤ µ(Wr)
r−1∏
j=k

(1 + φ(vj+1 − vj − nj))µ(Wj)

≤ (1 + φ(d(	v, 	n)))r−k−1
r∏

j=k

µ(Wj)

since by assumption that vk+1 − vk − nk ≥ f(Wk). �

The following exponential estimate has previously been shown for φ-mixing mea-
sures in [11] and for α-mixing measures in [2] and is an immediate consequence of
Lemma 4.

Lemma 5. There exists a 0 < γ < 1 so that for all A ∈ A∗:

µ(A) ≤ γ|A|.

This lemma has the following result as a simple consequence:

Lemma 6. The measure µ has positive metric entropy.
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4. Return times. This section contains the technical results that are used in
sections 5 and 6 to obtain the return times distributions. Here we determine the
dynamical situations under which the conditions of Theorem 1 are satisfied. The
main feature of Theorem 1 is the distinction between short return times and long
return times. The parameters δ (in 4.1) and δn (in 4.2 and 4.3) divide the return
time patterns (Gr) into those patterns which have short returns (Rr, R̃r) and the
remaining ones that only consist of long returns. In subsection 4.1 we show that the
‘short return times patterns’ overall occur infrequently. (In Proposition 10 Lemmas
7 and 8 serve to satisfy conditions (3) and (4) of Theorem 1.) In subsections
4.2 and 4.3 we then estimate the quantities in the conditions (1)–(5) in terms of
dynamical variables in four different settings: entry times (Proposition 9), return
times (Proposition 10), restricted entry times (Proposition 11) and restricted return
times (Proposition 12).

The short returns will fall into two categories, namely those that contain very
short returns (Ir) and those where all the shortest returns are of some moderate
length (Kr, K̃r). For that purpose we shall from now on restrict to the situation
where all the sets Wj are identical and equal to some W (the return set). For a
‘hitting vector’ 	v ∈ Gr(N) (N a large integer) we put C�v =

⋂r
j=1 T−vj W . Let

δ ≥ f(W ) and define the rare set

Rr(N) = {	v ∈ Gr(N) : min(vj+1 − vj) < δ}.
For some 1 ≤ δ′ ≤ δ we have the principal part of the rare set given by

Kr(N) = {	v ∈ Rr(N) : δ′ ≤ min(vj+1 − vj)}
The set Kr(N) will be estimated in rather general terms below, but the remaining
portion

Ir(N) = Rr(N) \ Kr(N) = {	v ∈ Rr(N) : min(vj+1 − vj) < δ′}
typically has to be disposed of by employing some ad hoc argument exploiting
particularities of the map T .

For the return times statistics we shall use a slightly different rare set, namely

R̃r(N) = {	v ∈ Gr+1(N) : min
j

(vj+1 − vj) < δ and v1 = 0}.

Note that R̃ tracks the returns of points whose origin is in W (v1 = 0 implies that
x ∈ W ). Correspondingly the principal part is

K̃r(N) = {	v ∈ R̃r(N) : δ′ ≤ min
j

(vj+1 − vj)}.

4.1. Short return times Kr and K̃r.

Lemma 7. Assume (T, µ) is (φ, f)-mixing. Then for every union W of n-cylinders
one has (for some C2 > 0)
(i) (Entry time version)

∑
�v∈Kr

µ(C�v) ≤ C2tµ(V )
r−2∑
s=0

(
r − 2

s

)
(βt)s

s!
(βδµ(V ))r−s,
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(ii) (Return time version)

∑
�v∈K̃r

µ(C�v) ≤ C2µ(W )
r−1∑
s=0

(
r − 1

s

)
(2βt)s

s!
(2βδµ(V ))r−s,

where β > 1 + φ(mink(vk+1 − vk) − δ′′) and the set V is a union of atoms in Aδ′′

such that W ⊂ V and δ′′ is so that f(V ) ≤ δ′ − δ′′.

Proof. As in the hypothesis let W be a union of n-cylinders so that f(W ) ≤ δ.
(i) Let us first prove the first statement of the lemma. Put Ks

r for those 	v ∈ Kr

where vi+1 − vi ≥ δ for exactly s indices i1, i2, . . . , is (obviously one always has
s ≤ r − 2 and is ≤ r − 1).
I. Let us now assume that s ≥ 1 and let i1, i2, . . . , is be the indices for which
vik+1 − vik

≥ δ for k = 1, . . . , s. All the other differences are ≥ δ′ and smaller than
δ. Let V be a union of δ′′-cylinders so that V ⊂ W . By assumption assumption V
can be chosen so that f(V ) ≤ δ′ − δ′′. Put Wi1 = Wi2 = · · · = Wis

= Wr = W and
Wj = V for all indices j not equal to any of the ik or r.

By our choice of δ′′ we have achieved that vik+1−vik
≥ δ ≥ f(W ) and vj+1−vj ≥

f(V ) for j �= ik, k = 1, . . . , s. This allows us to apply Lemma 4 as follows:

µ

(
r⋂

i=1

T−viW

)
≤ µ

(
r⋂

i=1

T−viWi

)

≤ (1 + φ(d(	v, 	n)))r
r∏

i=1

µ(Wi)

≤ βr−1µ(V )r−s−1µ(W )s+1,

β = 1 + φ(d(	v, 	n)), where the components of 	n = (n1, . . . , nr) are given by nik
= n

for k = 1, . . . , s and nj = δ′′ for j �= ik, k = 1, . . . , s.
To estimate the cardinality of Ks

r let us note that the number of possibilities of
vi1 < vi2 · · · < vis

< vis+1 (entrance times for long returns) is bounded above by
1

(s+1)! (t/µ(W ))s+1 (this is the upper bound for the number of possibilities to obtain
s − 1 intervals contained in the interval [1, t/µ(W )]), and each of the remaining
r − s − 1 (short) return times assume no more than δ different values. Since the

indices i1, . . . , is can be picked in
(

r
s

)
many ways, we obtain:

|Ks
r | ≤

(
r
s

)
δr−s−1

(s + 1)!

(
t

µ(W )

)s+1

.

The above estimates combined yield∑
�v∈Ks

r

µ(C�v) ≤ βr−1

(
r
s

)
ts+1

(s + 1)!
(δµ(V ))r−s−1,

II. If s = 0 then all returns are short, i.e. vj+1 − vj < δ for all j. This implies
|K0

r | ≤ δr−1t/µ(W ) and (using Lemma 4 with W1 = W2 = · · · = Wr−1 = V and
Wr = W )

µ

(
r+1⋂
i=1

T−viW

)
≤ βr−1µ(V )r−1µ(W ),

	v ∈ K0
r .
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III. Summing over s yields

∑
�v∈Kr

µ(C�v) =
r−2∑
s=0

∑
�v∈Ks

r

µ(C�v)

≤ 1
βδ

r−2∑
s=0

(
r
s

)
(βt)s+1

(s + 1)!
(βδµ(V ))r−s−1

≤ C2tµ(V )
r−2∑
s=0

(
r − 2

s

)
(βt)s

s!
(βδµ(V ))r−s,

with some C2 and a slightly larger β to absorb a factor r(r− 1), which comes from
the inequality (

r
s

)
≤ r

(
r − 1

s

)
≤ r(r − 1)

(
r − 2

s

)
for s ≤ r − 2. This concludes the proof of the first statement.

(ii) The second inequality is proven is the same way with the obvious modifica-
tions due to the first component of the hitting vector 	v. We split K̃r into a disjoint
union of sets K̃s

r , s = 0, . . . , r − 1, each of which has exactly s ‘long’ intervales (i.e.
≥ δ) and r − s short intervals. For s = 0, . . . , r − 1:

|K̃s
r | ≤

(
r + 1

s

)
δr−s

(s + 1)!

(
t

µ(W )

)s

,

and µ(C�v) ≤ βrµ(V )r−sµ(W )s+1, for 	v ∈ K̃s
r . As in part (i) this then yields the

estimate for return times. �

Denote by

Ir(N) = {	v ∈ Rr(N) : min(vj+1 − vj) < δ′}
(δ′ > 0) the portion of very short returns within the rare set.

Lemma 8. Let W be a measurable set in Ω. Then

|Rr|µ(W )r

|R̃r|µ(W )r

}
≤ δ

µ(W )tr−1

(r − 2)!

for every r.

Proof. For every vector 	v in Rr note that the shortest return time min(vj+1 − vj)
is at most δ, the position of the ‘shortest’ return time has r−1 possibilities and the
remaining r−1 hitting times have at most 1

(r−1)! (t/µ(W ))r−1 many arrangements.
This leaves us with the upper bound

|Rr| ≤ δ(r − 1)
1

(r − 1)!

(
t

µ(W )

)r−1

.

The bound on the cardinality of R̃r is proven in the same way. �

Remark. Let us note that the term δµ(W )tr−1/(r− 2)! is bounded by the highest
order term (s = r − 1) in the expression δµ(W )

∑r
s=0 δµ(W )r−sts/s! which occurs

in formula (4) of Theorem 1.
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4.2. Entry and return times for (φ, f)-mixing maps. In the following t will
always be a positive parameter and we shall denote by χU the characteristic function
of a set U . Let An be an n-cylinder and define the 0, 1-valued random variable
ηn

v = χAn
◦ T v for v = 0, 1, . . . , N , where N = [t/µ(An)] (unless we say otherwise).

In the context of studying the distribution of entry times we shall use the values
bn
v = µ(ηn

v ) in the following Proposition 9. For 	v ∈ Gr(N) (	v = (v1, v2, . . . , vr)) we
put

ηn
�v = ηn

v1
ηn

v2
· · · ηn

vr
= (χAn

◦ T v1)(χAn
◦ T v2) · · · (χAn

◦ T vr )

for the characteristic function of C�v =
⋂r

j=1 T−vj An and define the values

bn
�v = µ(C�v).

For a given non-decreasing sequences of integers δ′n ≤ δn, n = 1, 2, . . . , we define
the rare set Rr(N) as the disjoint union of Kr(N) and Ir(N) where

Kr(N) =
{

	v ∈ Gr(N) : δ′n ≤ min
j

(vj+1 − vj) < δn

}

Ir(N) =
{

	v ∈ Gr(N) : min
j

(vj+1 − vj) < δ′n

}
Notice that in the following Proposition 9 and 10 in the third inequality the sum is
taken only over Kr, the principal part of the rare set. In Proposition 12 however we
consider the full rare set. Later on we shall use Corollary 16 (which uses Proposition
12) to get bounds on the set of very short returns Ir.

Proposition 9. Let µ be a (φ, f)-mixing probability measure.
Then there exists a constant C3 so that for every cylinder An ∈ An for which

f(An) ≤ δn − n and t > 0 one has

max
1≤v≤N

bn
v = µ(An)∣∣∣∣∣

N∑
v=1

bn
v − t

∣∣∣∣∣ ≤ µ(An)

∑
�v∈Kr

bn
�v ≤ C3δnµ(Vn)

r∑
s=0

(3δnµ(Vn))r−s (3t)s

s!

∑
�v∈Rr

bn
v1

· · · bn
vr

≤ δn
µ(An)tr−1

(r − 2)!∣∣∣∣bn
v1

· · · bn
vr

bn
�v

− 1
∣∣∣∣ ≤ C3rφ(δn),

where Vn a union of δ′′-cylinders such that An ⊂ Vn and f(Vn) ≤ δ′n − δ′′.

We omit the proof which consists in checking the conditions using Lemma 7 (ii) and
Lemma 8. This is technically more straightforward than the proof for Proposition
10 which we will show in detail below.

Proposition 9 has the following companion which will be used to get results on the
distribution of return times and their error terms.

As before let µ be a T -invariant probability measure on Ω. For an n-cylinder
An we then define the restricted probability measure µn on An by µn(B) = µ(B ∩
An)/µ(An) for measurable B.
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With t a positive parameter and N = [t/µ(An)] we define (for every n) the
0, 1-valued random variable ηn

v = χAn
◦ T v and consider now the values

bn
v = µn(ηn

v ),
bn
�v = µn(ηn

�v ),

where 	v ∈ Gr(N) and, as above, ηn
�v is the characteristic function of C�v =

⋂r
j=1 T−vj An.

For a given non-decreasing sequences of integers δ′n ≤ δn we define the set K̃r of
short (but not too short) returns by

K̃r(N) =
{

	v ∈ Gr+1(N) : δ′n ≤ min
(

min
j

(vj+1 − vj), v1

)
< δn

}
.

Proposition 10. Let µ be a (φ, f)-mixing probability measure where φ(v) is sum-
mable.

Then there exists a constant C4 so that for every cylinder An ∈ An for which
f(An) ≤ δn − n and t > 0 one has:

max
δ′

n≤v≤N
bn
v ≤ C4µ(Vn)∣∣∣∣∣∣

N∑
v=δ′

n

bn
v − t

∣∣∣∣∣∣ ≤ C4(f(An) + n)µ(Vn)

∑
�v∈K̃r

bn
�v ≤ C4µ(An)

r−1∑
s=0

(
r − 1

s

)
(3δnµ(Vn))r−s (3t)s

s!

∑
�v∈K̃r

bn
v1

· · · bn
vr

≤ C4δnµ(Vn)
r−1∑
k=0

(δnC4µ(Vn))r−1−k tk

k!∣∣∣∣bn
v1

· · · bn
vr

bn
�v

− 1
∣∣∣∣ ≤ 2rφ(δn) ∀ 	v �∈ R̃r

where Vn a union of δ′′-cylinders such that An ⊂ Vn and f(Vn) ≤ δ′n − δ′′.

Proof. (i) To estimate

bn
v = µn(T−vAn) =

µ(An ∩ T−vAn)
µ(An)

,

we consider two cases: (a) v ≥ f(An) + n and (b) δ′n ≤ v < f(An) + n. In the first
case, v ≥ f(An) + n, we use the (φ, f)-mixing property according to which

|µ(An ∩ T−vAn) − µ(An)2| ≤ φ(v − n)µ(An)2

and consequently
|bn

v − µ(An)| ≤ φ(v − n)µ(An). (8)

Hence (c1 > 0):

bn
v = µn(T−vAn) ≤ µ(An)(1 + φ(v − n)) ≤ c1µ(An).

In the second case, δ′n ≤ v < f(An) + n, we use the set Vn chosen according to the
hypothesis (An ⊂ Vn) and conclude in a similar way that

|bn
v − µ(Vn)| ≤ φ(v − δ′′)µ(Vn).
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and therefore bn
v ≤ c1µ(Vn).

(ii) Summability of the function φ gives us the second inequality:∣∣∣∣∣∣
N∑

v=δ′
n

bn
v − t

∣∣∣∣∣∣ ≤ (f(An) + n)(c1µ(Vn) + µ(An)) + µ(An)
N∑

v=f(An)+n

φ(v − n)

≤ (1 + c1)(f(An) + n)µ(Vn) + µ(An)
∞∑

v=0

φ(v)

≤ c2(f(An) + n)µ(Vn).

(iii) To obtain the third inequality we apply Lemma 7 (ii) with the parameters
δ′ = δ′n, δ = δn, W = An, V = Vn and K̃r as defined above:

∑
�v∈K̃r

bn
�v ≤ C2µ(An)

r−1∑
s=0

(
r − 1

s

)
(3δnµ(Vn))r−s (3t)s

s!

for all large enough n so that β = 1+φ(δn−n) ≤ 3/2, where Vn is as in hypothesis.
(iv) If vj ≥ δn then

bn
vj

≤ (1 + φ(vj − n))µ(An) ≤ (1 + φ(v1 − n))µ(An) ≤ c3µ(An),

and otherwise (δ′nvj < δn) we use the estimate bn
vj

≤ c1µ(Vn) from part (i). If the
first s of the entries of 	v are less that f(An)+n then we obtain similarly to Lemma
8 for s ≥ 1: ∑

�v∈K̃r; v1,...,vs<δn

bn
v1

bn
v2

· · · bn
vr

≤ δs
ncs

1µ(Vn)sµ(An)r−s|Gr−s|

≤ (δnc1µ(Vn))s tr−s

(r − s)!
.

If s = 0 (no entry of 	v is less than f(An) + n) then
∑

�v∈Rr;v1≥δn

bn
v1

· · · bn
vr

≤ |Rr|µ(Un)r ≤ δn
µ(Un)tr−1

(r − 2)!
.

Summing over s = 0, . . . , r yields (where k = r − s)

∑
�v∈K̃r

bn
v1

bn
v2

· · · bn
vr

≤
r∑

s=1

(δnc1µ(Vn))s tr−s

(r − s)!
+ δn

µ(Un)tr−1

(r − 2)!

≤ 2δnc1µ(Vn)
r−1∑
k=0

(δnc1µ(Vn))r−1−k tk

k!
.

(v) To verify the last of the inequalities we restrict to 	v �∈ R̃r, that is vj+1 − vj ≥
δn ≥ f(An) + n for all j and v1 ≥ δn. Thus

bn
�v = µn(C�v) =

µ(An ∩ C�v)
µ(An)

,

and by Lemma 4 we get

|µ(An ∩ C�v) − µ(An)r+1| ≤ ((1 + φ(δn − n))r − 1) µ(An)r+1

≤ rc4φ(δn − n)µ(An)r+1,
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(for some c4 > 0) and

|bn
�v − µ(An)r| ≤ rc4φ(δn − n)µ(An)r.

In order to compare bn
�v to the product bn

v1
· · · bn

vr
let us note that by equation (8)

one has for j = 1, 2, . . . , r:

|bn
vj

− µ(An)| ≤ φ(vj − n)µ(An) ≤ φ(v1 − n)µ(An),

and in particular bn
vj

≤ c3µ(An). Thus

|bn
v1

· · · bn
vr

− µ(An)r| ≤ r

(
max

j

∣∣∣bn
vj

− µ(An)
∣∣∣) (

max
(
bn
v1

, . . . , bn
vr

, µ(An)
))r−1

≤ rφ(v1 − n)cr−1
3 µ(An)r

≤ rcr
3φ(δn − n)µ(An)r,

for all large enough n. By the triangle inequality

|bn
�v − bn

v1
· · · bn

vr
| ≤ r(c4 + cr

3)φ(δn − n)µ(An)r,

and therefore, with a slightly larger value for c3,∣∣∣∣ bn
�v

bn
v1

· · · bn
vr

− 1
∣∣∣∣ ≤ cr

3φ(δn).

Let us note that since we only consider large enough n, the number c3 > 1 can be
chosen arbitrarily close to 1. In particular we can assume that c3 < 2.

The proof is finished if we put C4 = max(1, 2c1, c2, 3, C2). �

4.3. Restricted entry and return times for (φ, f)-mixing maps. Near pe-
riodic orbits, the Poisson statistics doesn’t apply to the return times, because of
the presence of persistently short returns. Pitskel [21], Hirata [14] and Abadi [1]
all have given examples that show that the near periodic points the first return
time is not exponentially distributed. The following results will provide us with
the asymptotics of long returns to the neighbourhoods of any point and in partic-
ular also with the asymptotics of the first return time for periodic points. This is
achieved by deleting points that return ‘too soon’ (of the order of the length of the
cylinder) and adjusting the normalising factor for the time-interval accordingly.

We will set up the functions η̂n
v to only counts returns when the return interval

is at least of length n and to ignore all shorter ones. Let An ∈ An be an arbitrary
cylinder of length n, define

Un = (T−nAn)\
n−1⋃
j=1

T−(n−j)An

and put N̂ = [t/µ(Un)] (this is a ‘non-standard’ rescaling). In this way we achieve
that τ(Un) ≥ n. We next define the functions η̂n

v by

η̂n
v = (χAn

◦ T v)
v∏

j=1

(1 − χAn
◦ T v−j) v = 1, 2, . . . , n − 1,

η̂n
v = (χAn

◦ T v)
n−1∏
j=1

(1 − χAn
◦ T v−j) v = n, n + 1, . . . , N̂

Note that η̂n
v = χUn

◦ T v−n for n ≤ v < N̂ .
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Proposition 9 has the following companion which will be used to get results on
the distribution of return times and their error terms. We omit the proof which is
similar.

Proposition 11. Let µ be a (φ, f)-mixing probability measure.
Then there exists a constant C5 so that for every cylinder An ∈ An for which

f(An) ≤ δn − n and t > 0 one has

max
1≤v≤N̂

b̂n
v ≤ µ(An)∣∣∣∣∣∣

N̂∑
v=1

b̂n
v − t

∣∣∣∣∣∣ ≤ C5nµ(An)

∑
�v∈Rr

b̂n
�v ≤ C5δnµ(Vn)

r∑
s=0

(3δnµ(Vn))r−s (3t)s

s!

∑
�v∈Rr

b̂n
v1

· · · b̂n
vr

≤ C5δn
µ(An)tr−1

(r − 2)!∣∣∣∣∣ b̂
n
v1

· · · b̂n
vr

b̂n
�v

− 1

∣∣∣∣∣ ≤ C5rφ(δn),

where Vn a union of δ′′-cylinders such that An ⊂ Vn and f(Vn) ≤ n − δ′′.

As before we define the restricted probability measure µn on An by µn(B) = µ(B∩
An)/µ(An) (for B measurable).

In the following proposition, which is the analog of Proposition 10 for the re-
stricted returns on an adjusted time-interval, we use the values b̂n

v = µn(η̂n
v ) and

b̂n
�v = µn(η̂�v), where η̂�v = η̂v1 · · · η̂vr

for 	v ∈ Gr(N̂). The rare set is as above with
the obvious modification of replacing N by N̂ . We omit the proof of the following
propositon since it mirrors the proof of Proposition 10.

Proposition 12. Let µ be a (φ, f)-mixing probability measure where φ(v) is sum-
mable.

Then there exists a constant C6 so that for every An ∈ An for which f(An) ≤
δn − 2n and t > 0:

max
1≤v≤N̂

b̂n
v ≤ C6µ(Vn)∣∣∣∣∣∣

N̂∑
v=1

b̂n
v − t

∣∣∣∣∣∣ ≤ C6(f(An) + n)µ(Vn)

∑
�v∈Rr

b̂n
�v ≤ C6δnµ(An)

r+1∑
s=0

(3δnµ(An))r+1−s (3t)s

s!

∑
�v∈Rr

b̂n
v1

· · · b̂n
vr

≤ C6δnµ(Vn)
r−1∑
k=0

(δnC6µ(Vn))r−1−k tk

k!∣∣∣∣∣ b̂
n
v1

· · · b̂n
vr

b̂n
�v

− 1

∣∣∣∣∣ ≤ 2rφ(δn),

where Vn a union of δ′′-cylinders such that An ⊂ Vn and f(Vn) ≤ n − δ′′.
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Remark 1. In Proposition 12 the (φ, f)-mixing requirement can be weakened. It
is sufficient that µ is (φ, f)-mixing on An and Vn:∣∣µ(U ∩ T−m−nQ) − µ(U)µ(Q)

∣∣ ≤ φ(m)µ(U)µ(Q)

for all measurable Q and m ≥ f(U), where U = An, Vn.

Remark 2. In the special case when f = 0 then Vn = An.

5. Statistics of φ-mixing maps. In this section we discuss classical φ-mixing
maps. An invariant probability measure µ for the map T is called φ-mixing if it is
(φ, f)-mixing for a (given) partition A where f is the constant 0. In various settings
[11, 18] it has been shown that the measure of n-cylinders fall off geometrically, i.e.
there is a constant c1 > 0 so that µ(A) ≤ e−nc1 for all n and A ∈ An. Since the rate
of convergence of the entry and return times to the Poisson distribution depends on
the decay rate of φ we shall prove in the first section some more general statement.

In the following An denotes an n-cylinder set and χAn
its characteristic function.

Let µ be an invariant probability measure. For a given positive parameter value t
we then define the counting function

ζn =
N∑

k=1

χAn
◦ T k

whose value is the number of times a point hits the set An on the time interval
[1, N ], where N = [t/µ(An)]. If we denote by

N r
n = {x ∈ Ω : ζn(x) = r}

the levelset of the counting function ζn, then µ(N r
n) is the probability that a ran-

domly chosen point hits An exactly r times on the time interval [1, N ]. Of particular
interest is when r = 0, in this case N 0

n = {x ∈ Ω : τAn
(x) > t/µ(An)}.

We will examine two types of φ-mixing systems, namely those in which φ decays
polynomially and equilibrium states on Axiom A systems for Hölder continuous
functions which are φ mixing where φ decays exponentially fast. We say the measure
µ is polynomially φ-mixing with power p > 0 if lim supv→∞ vpφ(v) < ∞.

Strongly hyperbolic maps that satisfy Axiom A and have very regular behaviour
(as the shadowing property and finite Markov partitions of arbitrarily small diam-
eter) mix exponentially fast (i.e. φ decays exponentially). Such systems are usually
studied using a symbolic description by a subshift of finite type. A good refer-
ence is the classical book by Bowen [7]. We shall study the entry and return time
distribution for equilibrium states for Hölder continuous potentials.

Let W ⊂ Ω and define the return time function

τW (x) = min{k ≥ 1 : T kx ∈ W}.
τW measures the first entry time for points outside W and (for the first return time
for points in W ). This function is finite almost everywhere with respect to ergodic
measures and satisfies by a theorem of Kac the identity

∫
W

τW (x) dµ(x) = 1 for
any ergodic probability measure µ and measurable W . Let us define the shortest
return time function:

τ(A) = min
x∈A

τA(x)

which measures the shortest return time within the set A (see [15, 16]). By definition
A ∩ T−kA = ∅ for k = 1, 2, . . . , τ(A) − 1.
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5.1. Polynomially φ-mixing maps. We shall prove limiting results for the entry
time and return times to cylinder set. If µ is a T -invariant probability on Ω, then
its restriction to an n-cylinder An is given by µn(B) = µ(B ∩ An)/µ(An) (for all
measurable B).

Theorem 13. Let µ be a φ-mixing probability measure for the transformation T :
Ω → Ω so that lim supv→∞ φ(v)vp < ∞ for some positive p.

Then there exists constants C7, C
′
7 so that for all An ∈ An and all t, r for which

(r+t+1)2

t+1 nµ(Am)
p

p+1 ≤ C ′
7 one has:

∣∣∣∣µ(N r
n) − tr

r!
e−t

∣∣∣∣ ≤ nq∗
C7µ(Am)

p
1+p

{
(r+t)2

r! (4t + 1)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

,

where m is such that m ≤ τ(Am) and An ⊂ Am ∈ Am and where
(i) q∗ = 0 if µ∗ = µ for the distribution of entry times,
(ii) q∗ = 1 if µ∗ = µn for the distribution of return times where we also require that∑

v φ(v) < ∞.

Proof. We want to verify the conditions of Theorem 1 using Proposition 9. Notice
that Am ∩ T−jAm = ∅ for j = 1, . . . , m − 1, and if we put δ′n = m then the set Vn

as defined in the hypothesis of Proposition 9 is equal to Am as f = 0.
Assume that φ decays polynomially with power p, i.e. φ(v) ≤ c1v

−p for some c1,
and put δn = µ(Am)−

1
1+p . Then

δnµ(Am) ≤ µ(Am)
p

1+p

and
φ(δn) ≤ c1

δp
n
≤ c1µ(Am)

p
1+p .

(i) Entry times: With εn = C3c2µ(Am)
p

1+p (c2 = max(7, c1)) Proposition 9
ensures that the conditions (1)–(5) of Theorem 1 are satisfied with α = 3. Then
we choose α′ = 4.

(ii) Return times: If we put εn = C4nc2µ(Am)
p

1+p then Proposition 10 ensures
that the conditions (1)–(5) of Theorem 1 are satisfied with α = 3 (α′ = 4).

Put C7 = C1c2 max(C3, C4) and C ′
7 = 1/12c2, where we use equation (7) and

εn = nc2µ(Am)
p

1+p to get the constraints on t and r. �

Remarks. (I) The smallness of r2

t µ(An)
p

1+p (and tµ(An)
p

1+p if r = 0) in the
theorem is given by equation (7) for the appropriate εn.
(II) Theorem 13 covers the special case when φ is summable (see in particular [11]),
i.e.

∑
v φ(v) < ∞, which implies that φ(v) ≤ c1/v (for v > 0). Lemma 13 thus

can be applied to the case when p = 1 (p∗ = 1/2) and gives us the following error
terms: ∣∣∣∣µ(N r

n) − tr

r!
e−t

∣∣∣∣ ≤ C7µ(Am)1/2

{
(r+t)2

r! (4t)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

.

�

5.2. Mappings that satisfy Axiom A. In the following we are looking at strongly
hyperbolic maps that satisfy Axiom A.
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Theorem 14. Let T : Ω → Ω be a topological mixing Axiom A map on the basic
set Ω and µ the (invariant) equilibrium state for a Hölder continuous (with respect
to the sequence topology inherited from the Markov partition) potential f .

Then there exists constants C8, C
′
8 so that for all An ∈ An (A finite) and all t, r

for which (r+t+1)2

t+1 n2µ(Am) ≤ C ′
8 one has:

∣∣∣∣µ∗(N r
n) − tr

r!
e−t

∣∣∣∣ ≤ C8n
q∗+1µ(Am)

{
(r+t)2

r! (4t + 1)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

,

where m is such that m ≤ τ(Am), An ⊂ Am ∈ Am, and
(i) q∗ = 0, µ∗ = µ for entry times;
(ii) q∗ = 1, µ∗ = µn for re-entry times.

Proof. We proceed as in the proof of Theorem 13 and use the fact that Axiom
A maps are φ-mixing where φ(k) = c1ϑ

k for some positive ϑ < 1 and a constant
c1. By the Gibbs property [7] of µ there exists constants c2, c3 > 0 (c2 < htop)
so that µ(Am) ≥ c3e

−mc2 ≥ c3e
−nc2 for all m and n. Put δn = qn, where q =

1 + c2
| log ϑ| + log c3

c1
. Then (as Vn = Am)

δnµ(Am) ≤ qnµ(Am)

and

φ(δn − n) ≤ ϑ(q−1)n ≤ c3e
−c2n ≤ µ(Am)

for all large enough n.
(i) Entry times: If we choose εn = 3C3qnµ(Am) then the conditions of Theorem

1 (α′ = 4) are satisfied by Proposition 9 for α = 3 . This proves the first statement
of the theorem.

(ii) Return times: With the choice εn = 3C4qn
2µ(Am) the conditions of Theorem

1 (α′ = 4) are satisfied by Proposition 10 with α = 3.
Now put C8 = 3C1q max(C3, C4). The constraints on t and r are given by

equation (7) and εn = 3qn2µ(Am), which imply that C ′
8 = 1/36q. �

The same asymptotics and similar error terms are valid for any φ-mixing measure
for which φ is exponentially fast decreasing. In the case of an Axiom A system, the
Gibbs property was used to get an exponential lower for the measure of cylinder.
Systems that are not Markov will in general not have this property.

5.3. The distribution of restricted entry and return times. The first result
we prove is on the distribution and error terms for the restricted return times.

For an n-cylinder An let the counting functions η̂n
v , v = 0, 1, . . . , N be defined

as in Proposition 12, where N̂ = [t/µ(Un)], Un = (T−nAn) \ ⋃n−1
j=1 T−(n−j)An and

t is a positive parameter. Since f = 0 we have in the setting of Proposition 12
that Vn = An. Consider the restricted counting function ζ̂n =

∑N̂
v=1 η̂n

v and its
r-levelsets N̂ r

n = {x ∈ Ω : ζ̂n(x) = r}.
Theorem 15. Let µ be a probability measure on Ω which is φ-mixing and invariant
with respect to a map T and a partition A. Assume that φ is summable.

Then there exists a constant C9, C
′
9 so that for all An ∈ An and all t, r for which

(r+t+1)2

t+1 nq∗+1µ(Am)p∗ ≤ C ′
9 one has (µ∗ = µ for entry times and µ∗ = µn for
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return times):∣∣∣∣µ∗(N̂ r
n) − tr

r!
e−t

∣∣∣∣ ≤ C9n
q∗+1µ(An)p∗

{
(r+t)2

r! (4t)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

,

where
(i) (q∗, p∗) = (0, p

p+1 ) if φ decays polynomially with power p,
(ii) (q∗, p∗) = (1, 1) for an Axiom A system and a Hölder potential.

Proof. Let us first note that Vn = An since f = 0 and τ(Un) ≥ n.
(i) If φ decays polynomially with power p we put δn = µ(An)−

1
1+p and therefore

obtain δnµ(An) ≤ µ(An)
p

1+p and φ(δn) ≤ c1µ(An)
p

1+p for some c1. With εn =
nC5c2µ(An)p∗

(q∗ +1 = 1, c2 = max(7, c1)) and α = 3, Proposition 12 implies that
the conditions (1)–(5) of Theorem 1 are met. Put C9 = C1c2C5 and C ′

9 = 1/12c2.
(ii) If µ is an equilibrium state on an Axiom A system for a Hölder continuous

potential, then φ(k) = c3ϑ
k (0 < ϑ < 1) and by the Gibbs property [7] µ(An) ≥

c5e
−nc4 (c4, c5 > 0) for all n. With δn = qn, where q = 1+ c4

| log ϑ| +log c5
c3

we obtain
(as Vn = An) that δnµ(An) ≤ qnµ(An) and φ(δn − n) ≤ µ(An) for all n. With
εn = 3C6qn

2µ(An), α = 3 the conditions of Theorem 1 are satisfied by Proposition
12. Put C9 = C1c2C6 and C ′

9 = 1/36q. �

Let us now look at the distribution of the first return time τAn
which is the case

r = 0. We obtain the following result in which the numbers q∗ and p∗ are as in
Theorem 15.

Corollary 16. Let µ be a probability measure on Ω which is φ-mixing and invariant
with respect to a map T and a partition A. Assume that φ is summable.

Then there exists a constant C10 so that for all An ∈ An and t ≥ nµ(Un) for
which nq∗+1µ(Am)p∗

(t + 1) ≤ C ′
9:∣∣∣∣µn

({
x ∈ An : τUn

(x) ≥ t

µ(Un)

})
− e−t

∣∣∣∣ ≤ C10(t + 1)e4tnq∗+1µ(An)p∗
.

Remark. In the case (q∗, p∗) = (1, 1) the same asymptotics and similar error terms
are valid for any φ-mixing measure for which φ is exponentially fast decreasing and
where the measure satisfies a Gibbs property (which applies to Axiom A systems).
Systems that are not Markov will in general not have this property as for instance
the piecewise expanding maps we consider in section 6.

5.4. Convergence in measure for entry and return times for φ-mixing
maps. For x ∈ Ω let us denote by An(x) the (not necessarily unique) n-cylinder
that contains the point x. Since by Lemma 6 µ has positive entropy we have by
[23]2

lim inf
n→∞

τ(An(x))
n

≥ 1

µ-almost everywhere for every ergodic T -invariant probability measure µ. In other
words, let ε > 0 then for almost every point x ∈ Ω there exists finite number Nε(x)
so that τ(An(x)) ≥ (1 − ε)n ∀ n ≥ Nε(x). Therefore, if we put

Jn,ε = {x ∈ Ω : τ(An(x)) ≥ (1 − ε)n},
2See also [5] for another proof of this fact. It is interesting to remark that the shortest return

time function also has been used to define a dimension-like characteristic for a wide class of
invariant sets, see for example [4, 19, 6, 12, 17].
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then µ(J c
n,ε) → 0 as n → ∞ for every positive ε. Let us recall (Lemma 5) that for

φ-mixing maps (be they Axiom A or be it that φ decays polynomially) the measure
of cylinders decays exponentially. We thus immediately obtain the following result
in which we can choose any ε ∈ (0, 1).

Corollary 17. Let µ be a φ-mixing probability measure.
Then there exist σ < 1, C11, C

′
11 and a sequence of sets Jn ⊂ Ω for which

µ(Jn) → 1 so that for all x ∈ Jn and all t, r for which (r+t+1)2

t+1 n2σn ≤ C ′
11 one has∣∣∣∣µ∗(N r

n) − tr

r!
e−t

∣∣∣∣ ≤ C11σ
n

{
(r+t)2

r! (4t)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

,

where µ∗ is either µ or the measure µn restricted to An(x).

The value of σ < 1 is so that n2µ(A[(1−ε)n](x))p∗ ≤ const.σn for all n.

Remarks: (I) Good distribution results always require that one avoids short return
times. For instance Abadi [1] uses a similar setting in which he puts ε = 1

2 .

(II) Also note that if in Corollary 17 we consider the restricted return times (i.e. use
N̂ r

n instead of N r
n) then the resulting error estimates are true uniformly in x ∈ Ω.

6. Maps that are (φ, f)-mixing but not φ-mixing. In this section we discuss
some systems that exhibit mixing behaviour similar to that of the previous section
but without the uniformity present there. Now, f is not necessarily equal to 0 (or
a constant).

6.1. Piecewise continuous maps. In this section we use results on some systems
that have been studied by various people and in particular by Paccaut [18] in his
PhD thesis. Let M be a compact manifold, T : M → M a piecewise continuous
and invertible transformation which one-to-one on the atoms of a partition A.
(I) We assume that the partition is sufficiently regular, i.e. A is generating, every
atom in A∗ has only finitely many components, and for every open U ⊂ M there
is a k so that M = T k(U \ ∂A).
(II) The positive potential function g : M → R+ satisfies the following bounded
distortion property

0 < lim sup
n→∞

1
n

log max
A∈An

sup
x,y∈A

∣∣∣∣g(y)
g(x)

− 1
∣∣∣∣ < 1,

(IV) The function also satisfies P (g, T |∂A) < P (g, T ) (P is the pressure function).
(V) On the boundary we have the following3:

lim sup
q→∞

1
q

log S(q) ≤ P (g, T )) − log ϑ,

where
S(q) =

∑
n

ϑn
∑

A∈An, Ā∩∂T qAq �=∅
sup
A

gn

(gn = g · g ◦ T · g ◦ T 2 · · · g ◦ Tn−1 is the n-th Birkhoff product of g).

3For one-dimensional maps Paccaut showed that this condition (V) is implied by the previous
four conditions (I)–(IV).
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Then it has been proven by Paccaut [18] that there exists a unique (T -invariant)
equilibrium state µ for g and 0 < ρ < 1 so that

|µ(G(H ◦ T k) − µ(G)µ(H)| ≤ c1ρ
k‖G‖ϑ‖H‖L1 , (9)

(c1 is some constant) for all L1-functions H and G in the function space Vϑ which
consists of all functions χ whose ϑ-variation

varϑ =
∞∑

k=1

ϑk
∑

A∈Ak

sup
A

gk oscA f

are bounded (ϑ < 1), where oscA f = supx,y∈A |f(x) − f(y)|.
Let L be the transfer operator with the weight function g. Then L has a unique

positive eigenfunction h and a unique eigenfunctional ν which, if properly nor-
malised, give the equilibrium state µ = hν.

Now let An be an n-cylinder and let us estimate the ϑ-variation of its characteris-
tic function χAn

. One has oscU χAn
≤ 1 for every cylinder U ∈ Ak, k = 1, . . . , n−1

and oscU χAn
= 0 for every k-cylinder when k ≥ n. Hence

varϑ χAn
≤

n−1∑
k=1

ϑk sup
Ak

gk ≤
n−1∑
k=1

ϑk|g|∞ ≤ κn

for some constant κ > 1, where the k-cylinders Ak are so that An ⊂ Ak. If An has
positive measure then we define

f(An) =
[
2
log(µ(An)κn)

log ρ

]
.

One sees that for A ⊂ B, |A| ≥ |B|, A,B ∈ A∗ then f(A) ≥ f(B). Hence f defines
a separation function on A∗ and we have by equation (9)

|µ(An ∩ T−k−nV ) − µ(An)µ(V )| ≤ c1ρ
k/2µ(An)µ(V ),

for all measurable V ⊂ M and k ≥ f(An). In other words, µ is (φ, f)-mixing with
f and φ(k) = ρk/2. Clearly φ is summable. If µ satisfies a Gibbs inequality then
f(A) ≤ c2|A| for some c2 and all A ∈ A∗.

Theorem 18. Let T be a piecewise invertible maps as above and µ an equilibrium
state.

There exists a constant C12 so that for all An ∈ An and for all r, t for which
(r+t+1)2

t+1 nq∗+1ε(Am) ≤ 1/16:∣∣∣∣µ∗(N r
n) − tr

r!
e−t

∣∣∣∣ ≤ C12n
q∗

ε(Am)

{
(r+t)2

r! (4t)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

(entry times: q∗ = 0, µ∗ = µ; return times: q∗ = 1, µ∗ = µn), where
(1) m is such that m ≤ τ(Am) and An ⊂ Am ∈ Am,
(2) Vn a union of δ′′-cylinders such that Am ⊂ Vn and f(Vn) ≤ m − δ′′,
(3) ε(An) = max((n + f(An)µ(Vn), ρ(n+f(An))/2).

Proof. Let Vn be as in the hypothesis and put

δn = max
(

n + f(An),
log µ(Vn)
2 log ρ

)
.

Then φ(δn) = ρδn/2 ≤ µ(Vn).
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(i) Entry times: If we choose εn = ε(An) and α = 3 the conditions of Theorem
1 (α′ = 4) are satisfied by Proposition 9.

(ii) Return times: With the choice εn = nε(An) and α = 3 the conditions of
Theorem 1 (α′ = 4) are satisfied by Proposition 10. �

Let h = lim supn→∞
log |An|

n denote the topological entropy of T . Let 0 < σ′ ≤ e−3h

and put J c
n =

⋃
A∈An,µ(A)≤σ′n A. Then

µ(J c
n) ≤ σ′n|An| ≤ e−hn

for all large enough n. For x ∈ Jn one has µ(An(x)) ≥ σ′n which allows us to
estimate the separation function: f(An) ≤ 2n log σ′κ

log ρ (one can now read off the
value of c2 above).

Let us now examine the distribution of first return times. In order to apply
Proposition 12 we put δ′′ =

[
n log ρ

log ρσ′2κ2

]
. Thus δn = n log ρσ′2κ2

log ρ and consequently
we can use Theorem 1 with the error term

ε(An(x)) ≤ n
log ρσ′2κ2

log ρ
µ(Aδ′′(x)) ≤ µ(An(x))p,

where p ≥ log σ/ log σ′. Let N̂ r
n be the level sets of the function ζ̂n which counts the

restricted returns to the set An(x) up to time t/µ(Un(x)), where Un = (T−nAn)\⋃n−1
j=1 T j−nAn. To emphasise the dependency on x let us denote the conditional

measure on An(x) by µAn(x). We thus obtain:

Theorem 19. For some C13, all x ∈ Jn, n large enough and all t, r for which
(r+t+1)2

t+1 nµ(An(x))p < (4C13)−1 one has:∣∣∣∣µAn(x)(N̂ r
n) − tr

r!
e−t

∣∣∣∣ ≤ C13nµ(An(x))p

{
(r+t)2

r! (4t)r−1e4t if r ≥ 1
e4t(t + 1) if r = 0

.

The distribution of the first return time is given by the case r = 0.

Corollary 20. For x ∈ Jn, µ(Jn) ≥ 1 − e−hn, and all n large enough and t ≥
nµ(Un(x)) for which n2(t + 1)µ(An(x))p < 1/4C13 is small:∣∣∣∣µAn(x)

({
y ∈ An(x) : τUn(x)(y) ≥ t

µ(Un(x))

})
− e−t

∣∣∣∣ ≤ C13(t + 1)e4tµ(An(x))p,

6.2. Rational Maps. Let T be a rational map of degree at least 2 and J its Julia
set. Assume that we executed appropriate branch cuts on the Riemann sphere so
that we can define univalent inverse branches Sn of Tn on J for all n ≥ 1. Put
An = {ϕ(J) : ϕ ∈ Sn} (n-cylinders). Note that the diameters of the elements in
An go to zero as n → ∞. Moreover, An is not the join of a partition, yet they have
all the properties we require.

Let f be a Hölder continuous function on J so that P (f) > sup f (P (f) is the
pressure of f), let µ be its unique equilibrium state on J and ζn =

∑N
j=1 χAn

◦T−j

the ‘counting function’ which measures the number of times a given point returns
to the n-cylinder An within the normalised time N = [t/µ(An)]. Although µ is not
a Gibbs measure we showed in [13] that for almost every x

µ(N r
n) → tr

r!
e−t,
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as n → ∞, where N r
n = {y ∈ Ω : ζn(y) = r} are the r-levelsets of ζn. We are now

able to considerably sharpen the result on the convergence and give explicit error
bounds as well as provide the limiting distribution for the return times.

Theorem 21. Let T be a rational map of degree ≥ 2 and µ be an equilibrium state
for Hölder continuous f (with P (f) > sup f).

Then there exists a ρ̃ ∈ (0, 1) and C14 so that on a set of measure larger than
1 − ρ̃n one has (entry times: q∗ = 0, µ∗ = µ; return times: q∗ = 1, µ∗ = µn):∣∣∣∣µ∗(N r

n) − tr

r!
e−t

∣∣∣∣ ≤ C14n
q∗

ρ̃n

{
(r+t)2

r! (3t)r−1e3t if r ≥ 1
e3t(t + 1) if r = 0

,

for all t, r for which (r+t+1)2

t+1 nρ̃n < (4C14)−1.

The univalent inverse branches Sn of Tn (with appropriate branch cuts) split into
two categories, namely the uniformly exponentially contracting inverse branches S′

n

and the remaining S′′
n = Sn \ S′

n for which do not contract uniformly. In [13] we
showed the following result:

Lemma 22. There exists a C15, σ < 1 and κ > 1 so that∣∣µ(W ∩ T−k−nV ) − µ(W )µ(V )
∣∣ ≤ C15σ

kκnµ(V )µ(W ),

where W =
⋃

j Aϕj
for finitely many ϕj ∈ S′

n, k, n > 0 and Q measurable.

If in the last lemma we would not have to restrict to the cylinder sets of contracting
branches in S′

n then (T, µ) would be (φ, f)-mixing, with decay function φ(k) = σk/2

and separation function f(A) = q|A|, A ∈ A∗, where q is an integer so that σqκ <
1. However the contributions from the non-contracting branches can still be well
controlled and allows us to proceed in a way that nearly identical to the (φ, f)-
mixing case with f(A) = q|A|. The following lemma is the equivalent of Lemma
4.

Lemma 23. ([13] Lemma 9) Let η ∈ (0, 1), r > 1 an integer. Then there exists
a constant C16 and a q > 0 so that for all 	v = (v1, v2, . . . , vr) ∈ Gr satisfying
minj(vj+1 − vj) ≥ (1 + q)n:∣∣∣∣∣µ(

⋂r
j=1 T−vj Wj)∏r
j=1 µ(Wj)

− 1

∣∣∣∣∣ ≤ C16η
n,

for all sets W1, . . . ,Wr each of which is a union of atoms in An and for all n ≥ 1.

Let us define the rare set and its components Ir and Kr. For p > 0 let us put
Ir(N) = {	v ∈ Gr(N) : minj(vj+1 − vj) ≤ pn}, where the value of p will be
determined in the next paragraph. The set Kr(N) is then given by all 	v ∈ Gr(N)
for which pn < minj(vj+1 − vj) ≤ (1 + q)n, where q is as in Lemma 23. In the
terminology of the previous section we use ν1 = [pn] + 1 and ν2 = (1 + q)n.

Let 0 < p < 1 be so that dp√ρ ≤ 1 where ρ = esup f−P (f). In the next lemma we
show that those cylinders A ∈ An that return ‘too soon’ to themselves constitute
a small set. Define

J c
n =

⋃
A∈An

[pn]⋃
m=1

A ∩ T−mA,

and then put Jn for its complement.
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Lemma 24.

µ(J c
n) ≤ nρn/2

Proof. Let and τϕ denote the first return time to the set Aϕ, ϕ ∈ Sn and define

Um = {y ∈ J : τϕ(y) = m}
and obtain

Um ∩ Aϕ ⊆ Aϕ ∩ T−mAϕ ⊆
m⋃

k=0

Uk ∩ Aϕ.

With V = TmUm ∩ Aϕ we have V = Aϕ ∩ TmAϕ. Let us write ϕ = ψ1ϕ1,
where ψ1 ∈ Sm and ϕ1 = Tmϕ ∈ Sn−m (with suitable branch cuts). We proceed
inductively and obtain

ϕ = ψkψk−1 · · ·ψ1ϕk,

where n = mk + �, 0 ≤ � < m, ψj ∈ Sm and ϕk = Tmkϕ ∈ S�. Let us note that
TmjV = Aϕj ∩ Aϕj+1 for j = 1, . . . , k, where ϕj = T jmϕ = ψj+1 · · ·ψ1ϕk. Since
µ(Aψk···ψ1ϕk) ≤ ρn+m we can now estimate∑

ϕ∈Sn

µ(Um ∩ Aϕ) ≤
∑

ψ1,··· ,ψk∈Sm

µ(Aψk···ψ1ϕk)

≤ |Sm|ρn+m,

where there are at most |Sm| choices for ψ1 and then for every j = 1, . . . , k − 1 the
ψj+1 ∈ Sm must satisfy T jmV ⊂ Aψj+1 ∩ Aψj . For every ψj we get a unique ψj+1

since the sets ψ(J ∩ int(Ωm)), ψ ∈ Sm are disjoint. Hence the last inequality, where
we also used the fact that µ(Aϕ̃) ≤ |ϕ̃|∞ ≤ ρn+m for ϕ̃ ∈ Sn+m.

Since by assumption dp√ρ ≤ 1 we get∑
ϕ∈Sn

µ(Um ∩ Aϕ) ≤ dmρn+m ≤ (dpρ1/2)nρn/2ρm ≤ ρn/2,

and therefore

µ(J c
n) ≤

[pn]∑
m=0

∑
ϕ∈Sn

µ(Um ∩ Aϕ) ≤ nρn/2,

which goes to zero as n goes to infinity. �

For 	v ∈ Gr(N) let us put C�v =
⋂r

j=1 T−vj Aϕ, ϕ ∈ An, N = t/µ(Aϕ). Let us put
bn
�v = µ(C�v). If we put Ir = {	v ∈ Gr : minj(vj+1 − vj) < pn}, then the last lemma

showed us that for all x ∈ Jn one has∑
�v∈Ir

bn
�v = 0.

Proof of Theorem 21. We are going to check on the conditions of Theorem 1.
First for the entry times. We assume that x ∈ Jn which impliesthat Rr = Kr.
(i), (ii) By invariance of the measure bn

v = µ(Aϕ) for all v.
(iii) The assumption of Lemma 7 (i) is satisfied if we choose δ′ = pn and δ = (1+q)n.
According to Lemma 23 our separation function f is given by f(k) = (1 + q)k = δ.
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Hence δ′′ = [pn/(1 + q)]. With this choice, V is a δ′′-cylinder whose measure is
µ(V ) ≤ ρpn/(1+q). This yields

∑
�v∈Kr

bn
�v ≤ 2(1 + C13)(1 + q)nρpn/(1+q)

r∑
s=0

(2(1 + q)nρpn/(1+q))r−s (2t)s

s!

≤ c1ρ̃
n

r∑
s=0

ρ̃n(r−s) (2t)s

s!
.

for some ρ̃ ∈ (ρp/(1+q), 1) and some c1 ≥ 1.
(iv) By Lemma 8 one has for every r:∑

�v∈Kr

bn
v1

· · · bn
vr

≤ µ(Aϕ)tr−1

(r − 2)!
.

(v) This is shown in Lemma 23.
Naturally µ(Aϕ) ≤ ρ̃n. Hence, if we put εn = c1ρ̃

n and α = 2 then we obtain
the result follows from Theorem 1 (α′ = 3). The proof of the result for the return
times proceeds in a similar way with the obvious modifications (mainly in (v)). �
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