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Abstract. We show that for systems that allow a Young tower construction
with polynomially decaying correlations the return times to metric balls are in

the limit Poisson distributed. We also provide error terms which are powers

of logarithm of the radius. In order to get those uniform rates of convergence
the balls centres have to avoid a set whose size is estimated to be of similar

order. This result can be applied to non-uniformly hyperbolic maps and to

any invariant measure that satisfies a weak regularity condition. In particular
it shows that the return times to balls is Poissonian for SRB measures on

attractors.

1. Introduction. Poincaré’s recurrence theorem [24] established that for measure
preserving maps points return to neighbourhoods arbitrarily often almost surely.
The return time for the first return was quantified by Kac [19] in 1947 and since
then there have been efforts to describe the return statistics for shrinking neigh-
bourhoods. One looks at returns for orbit segments whose length is given by a
parameter t scaled by the size of the target set. The scaling factor is suggested by
Kac’s theorem. In [21, 20] it was shown that for ergodic maps one can achieve any
limiting statistics if one chooses the shrinking target sets suitably. For a generating
partition the natural neighbourhoods are cylinder sets and for those the limiting
distributions for entry and return times were shown under various mixing condi-
tions to be exponential with parameter 1 (see for instance [17, 13, 7, 1]). However
Kupsa constructed an example which has a limiting hitting time distribution almost
everywhere and which is not the exponential distribution with parameter 1. For
multiple returns it has been established under various mixing conditions that the
limiting distribution is Poissonian almost surely. The first such result is due to Doe-
blin [10] for the Gauss map for which he showed that at the origin multiple returns
to cylinder sets are in the limit Poisson distributed. Pitskel [23] (see also [8]) used
the moment method to prove that the return times are in the limit Poissonian for
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equilibrium states for Axiom A maps using Markov partitions. Similar results have
been shown for some non-uniformly expanding maps [18, 11], for rational maps [14]
and for φ-mixing maps [3, 2]. Using the Chen-Stein method, it was also shown for
toral automorphism (by way of harmonic analysis) [9] and for unions of cylinders
and φ-mixing measures in [16]. More results are mentioned in the review [15].

For the return times to metric balls Bρ on manifolds [6] proves the limiting
distribution to be Poissonian for the SRB measure on a one-dimensional attractor
which allows the construction of a Young tower [26, 27] with exponentially decaying
correlations. The speed of convergence turns out to be a (positive) power of the
radius ρ of the target ball. Here we prove a similar result in the case when the
correlations decay at a polynomial rate. Also the attractor is not required to be
one-dimensional. In fact, the result here applies to any invariant measure that can
be constructed using the tower construction whether it be absolutely continuous or
not. The speed of convergence in this case is a negative power of | log ρ |.

Let us note that recently Pène and Saussol [22] have obtain the limiting Poisson
distribution for return times for the SRB measure assuming some geometric reg-
ularity. They moreover give the examples of the intermittend solenoid which was
introduced in [4] and the stadium billiard both of which have polynomially decaying
correlations and are thus covered by the results of this paper. A large part of [22]
is devoted to prove the annulus condition which is implicit in our Theorem 3 be-
low. In the case of dispersive billiards with polynomially decaying correlations the
limiting Poisson distribution for return times was shown in [12] using the induced
map though no rate of convergence was provided.

The results of this paper are taken from [25] and are organised as follows: In
Section 2 we state the results where the exact conditions are given in later sections
(indicated within the theorems). In Section 3 we give the description of Young’s
tower construction which is central to the result. In Section 4 we prove the main
result Theorem 1 which proceeds in several steps which are outlined at the beginning
of the section. In Section 5 we consider the case of a diffeomorphism on a manifold
and show that very short returns i.e. those that are of order | log ρ | (where ρ is
the radius of the target ball) constitute a very small portion of the manifold whose
measure can be bounded. We use and adapt an argument from [6] Lemma 4.1.

2. Results. Let (M,T ) be a dynamical system on the compact metric space M .
For a positive parameter a define the set

Vρ(a) = {x ∈M : Bρ(x) ∩ TnBρ(x) 6= ∅ for some 1 ≤ n < a| log ρ |}, (1)

where ρ > 0. The set Vρ represents the points within M with very short return
times.

For a ball Bρ(x) ⊂M we define the counting function

Stρ,x(x) =

b t/µ(Bρ(x)) c−1∑
n=0

1Bρ(x) ◦ Tn(x).

which tracks the number of visits a trajectory of the point x ∈M makes to the ball
Bρ(x) on an orbit segment of length N = N t

ρ,x = b t/µ(Bρ(x)) c. (We often omit the
sub- and superscripts and simply use S(x).)

Let us now state our main results. Definitions and background material are
in Section 3. In the first theorem, M could be a general metric space and the
reference measure used in the tower construction need not be absolutely continuous
with respect to the Lebesgue measure.
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Theorem 1. Let (M,T ) be a dynamical system which can be modeled by a Young
tower. Suppose that the tail of the tower’s return time function decays polynomially
with degree λ > 7. Let µ be the SRB measure admitted by the system and assume
that µ is geometrically and ξ-regular. Exact assumptions are in Section 4.1.

Then there exist constants κ, κ′ ∈ (0, λ−7
4 ) and a, C, C ′ > 0 such that for ρ

sufficiently small there exists a set Xρ ⊂ M with µ(Xρ) ≤ C ′| log ρ |−κ′ such that
for all ρ-balls with centers x /∈ Xρ ∪ Vρ(a) we have∣∣∣∣P(S = k)− e−t t

k

k!

∣∣∣∣ ≤ C | log ρ |−κ for all k ∈ N0. (2)

Theorem 1 establishes the limiting statistics of returns outside the set Vρ of very
short returns. If M is a compact manifold and the map T is sufficiently regular
then one can say something about the size of Vρ. This is done in the following result
where we obtain for smooth maps on manifolds the following limiting result that at
the same time controls the size of the forbidden set.

Theorem 2. Let (M,T ) be a dynamical system satisfying the assumptions of The-
orem 1 and where T is a C2-diffeomorphism the compact manifold M and λ > 9.
Let µ be the invariant measure. For all ρ sufficiently small there exist sets Xρ,Vρ(a)
so that for x 6∈ Xρ ∪Vρ(a) the function Stρ,x counting the number of visits to the ball

Bρ(x) satisfies (2) where the constants κ ∈ (0, λ−7
4 ) and C > 0 are independent of

ρ and x.
Further there exists κ′ ∈ (0, λ−9

4 ] and C ′′ > 0 so that

µ(Xρ ∪ Vρ(a)) ≤ C ′′ | log ρ |−κ
′

for all ρ small enough (a = [ 4 (‖DT ‖L∞ + ‖DT−1 ‖L∞)]−1).

Under some more favourable conditions one can conclude that the convergence
is almost sure. For this see the remark following Proposition 5.1.

The assumptions in Theorems 1 and 2 imply that the invariant measure is abso-
lutely continuous with respect to a given reference measure on unstable leaves (see
precise assumptions) and can of course be singular with respect to the Lebesgue
measure on unstable leaves. In the classical case when the reference measure is
the Lebesgue measure on unstable leaves, then the invariant measure is the SRB
measure and we obtain the following result which generalises the main theorem
of [6] from exponentially decaying correlation to polynomially decaying correlations.
Technically, the main part of Theorem 3 is to verify the annulus condition (A4)(a).
Moreover, here we don’t require the attractor to have one-dimensional unstable
manifolds.

Theorem 3. Let (M,T ) be a dynamical system on a compact manifold M of di-
mension D where T : M → M is a C2 diffeomorphism with attractor A . Suppose
the system can be modeled by a Young tower whose return time function decays poly-
nomially with degree λ > max{9, D+2

u }, where u is the dimension of the unstable
leaves. Let µ be the SRB measure admitted by the system. Exact assumptions are
in Section 6.

For every κ < λ−7
4 there exists Ĉ > 0, and sets Zρ ⊂M with

µ(Zρ) ≤ Ĉ| log ρ |−
λ−9
4
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so that for x /∈ Zρ, the function Stρ,x counting the number of visits to the ball Bρ(x)
satisfies ∣∣∣∣P(S = k)− e−t t

k

k!

∣∣∣∣ ≤ Ĉ | log ρ |−κ for all k ∈ N0.

Throughout the paper C1, C0, . . . and α, β, . . . denote global constants while
c0, c1, . . . are locally defined constants.

3. Young tower. We shall use the tower method which was developed by L-S
Young in [26, 27] to construct invariant measures and to obtain decay rates for
correlations.

(I) Foliation, return time function and Markov partition: Let Γu be a
collection of unstable leaves γu and Γs a collection of stable leaves γs. We assume
that γu ∩ γs consists of a single point for all (γu, γs) ∈ Γu × Γs. We also assume

that the base set Λ =
(⋃

γu∈Γu γ
u
)
∩
(⋃

γs∈Γs γ
s
)

is, up to null sets with respect to

a given ‘reference measure’ m̂, the disjoint union of rectangles Λi =
(⋃

γu∈Γu γ
u
)
∩(⋃

γs∈Γsi
γs
)

, i ∈ N, where Γsi form a disjoint decomposition of Γs. The map T

contracts along the stable leaves and similarly T−1 contracts along the unstable
leaves as decribed in Assumption (A1) below.

There exists a return time function R : Λ → N constant on each Λi such that
TRΛi ⊂ Λ. We put Ri = R|Λi . Since any point x from Λi ⊂ Λ will return to Λ

after Ri iterations we can define the return transform T̂ : Λ→ Λ by

T̂ x := TRix for all x ∈ Λi and i ∈ N

For convenience we extend the return time function T̂ to all x ∈ M by putting
T̂ (x) = T j(x) where j ≥ 0 is the smallest integer so that T jx ∈ Λ.

The pairwise disjoint subsets {Λi}i∈N are assumed to satisfy the Markov property

under the return transform as follows: T̂ (γu ∩ Λi) = γ̂u ∩ Λ for some γ̂u ∈ Γu and

similarly if γs ∈ Γsi then T̂ (γs) ⊂ γ̂s for some γ̂s ∈ Γs (see [26]).
If γu, γ̂u ∈ Γu are two unstable leaves then the holonomy map Θ : γu∩Λ→ γ̂u∩Λ

is defined by Θ(x) = γ̂u ∩ γs(x) for x ∈ γu ∩ Λ, where γu(x) be the local unstable
leaf through x.

Without loss of generality we will assume that the greatest common divisor of
all of the values Ri of the return times function is equal to one. The function R
is assumed to be integrable on each unstable leaf γu with respect to a ‘reference
measure’ m̂. That is ∑

i

Rim̂γu(Λi) =

∫
Λ

Rdm̂γu <∞

for all local unstable leaves γu, where m̂γu is the conditional measure on γu. Precise
assumptions are formulated in Assumptions (A1) and (A2).

(II) Separation Time: Based on the flight time R and the partition of the base,
we define the separation time

s(x, y) = min {k ≥ 0 : T̂ kx and T̂ ky lie in distinct Λi},
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so that for x, y ∈ Λi, s(x, y) = 1 + s(T̂ x, T̂ y) and in particular s(x, y) ≥ 1. If F ⊂ Λ
then we also put

s(F ) = min
x,y∈F

s(x, y).

We extend the separation function to points outside Λ as follows. If for points x, y
there exists an integer k ≥ 0 (smallest) so that T kx, T ky ∈ Λi for some i, then
s(x, y) = s(T kx, T ky).

This definition of separation time is in accordance with [26] where the case of
polynomially decaying correlations was proven. It differs from the usage in [27]
which covers the exponentially decaying case. The separation time considered there
is Rs (ergodic sum) in our terminoloy.

(III) The Jacobian: Even though the original system (M,B, T, µ) is not neces-
sarily differentiable in the ordinary sense, one uses the Radon-Nikodym derivative of
T with respect to the ‘reference measure’ m̂ (following [26], p. 596). The derivative
exists and is well defined because every TRi |Λi and its inverse are non-singular with
respect to the conditional probability measure m̂γu on unstable leaves γu ∈ Γu. Let

JT =
d(T−1
∗ m̂γu)

dm̂γu
.

The requirements on JT will be spelled out in Assumption (A1).

(IV) The SRB measure: According to [26, 27] (M,T ) has a generalised SRB
measure µ given by

µ(S) =

∞∑
i=1

Ri−1∑
j=0

m(T−jS ∩ Λi) for sets S ⊂M.

where m is the generalised SRB measure for the uniformly expanding system (Λ, T̂ ).
If we denote by mγu the conditional measure on unstable leaves γu, then dm =

dmγudν(γu) where dν is the transversal measure. We will refer to the portions of
the tower above each Λi as beams and assume that for n ∈ N, there are only finitely
many i’s for which Ri = n, i.e. for every n there are only finitely many beams with
that height.

The map T maps each level bijectively onto the next and at the last level unstable
leaves inside the rectangles map bijectively to entire full length unstable leaves.
(Note that Ri may not be the first time Λi returns to Λ.)

4. Proof of Theorem 1. In this section we prove Theorem 1. We begin by
stating the precise assumptions necessary for the result and derive some of the
consequences that follow with minimal work. In Section 4.3 we introduce cylinder
sets. In order to approximate the metric balls we will restrict to those cylinder
set that have only short returns. We then provide several results on the behaviour
of cylinder sets under suitable applications of the return map T̂ . The succeeding
Section 4.4 contains estimates concerning the portions of the space M which have
to be omitted in order to obtain good asymptotic behaviour for the long returns.
This is the ‘forbidden set’. Section 4.5 utilizes the Poisson approximation theorem
from Section 7 to establish a splitting of the error term to the Poisson distribution
into two parts R1 and R2. The remainder of the section is devoted to estimating
these error terms one by one. In Section 4.6 we estimate the error R1 which comes
from long term interactions and uses decay of correlations. Sections 4.7 and 4.8 are
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devoted to bounding the term R2 which comes from short time (but not very short
time) interactions. This is the place where the Young tower construction comes to
play and where we have to use approximations by cylinder sets in order to make
careful distinctions between short returns and long returns to balance out different
contributions to the error term. In Section 4.9 the different error terms are brought
together and the various parameters are optimised.

4.1. Assumptions. Let (M,T ) be a dynamical system equipped with a metric d
and let µ be the SRB measure associated to the system (whose existence follows
by [26, 27] from Assumptions (A1) and (A2)). We will require the following:

(A1) Regularity of the Jacobian and the metric on the leaves

Recall that the Jacobian JT̂ measures the expansion rate of the reference measure
in the unstable direction. We assume there exists a constant C0 > 0 and α ∈ (0, 1)
such that for any x, y in Λ with s(x, y) ≥ 1

(a)

∣∣∣∣ log
JT̂x

JT̂ y

∣∣∣∣ ≤ C0 α
s(T̂ x,T̂ y) if γu(x) = γu(y);

(b) d(T̂ kx, T̂ ky) ≤ C0 α
s(x,y)−k for 0 ≤ k < s(x, y) for x, y ∈ γu;

(c) log

∞∏
k=n

JT̂ (T̂ kx)

JT̂ (T̂ ky)
≤ C0α

n if γs(x) = γs(y);

(d)
dΘ−1m̂Θγu

dm̂γu
(x) = log

∞∏
k=0

JT̂ (T̂ kx)

JT̂ (T̂ kΘx)
;

(e) d(T̂nx, T̂ny) ≤ C0α
n for n ∈ N if γs(x) = γs(y).

(A2) Polynomial Decay of the Tail
There exist constants C1 and λ > 7 such that

m̂γu(R > k) ≤ C1 k
−λ (3)

for every unstable leaf γu. With regard to Assumption (A1)(d) this condition is
satisfied for all unstable leaves if it can be verified for one γu.

(A3) Additional assumption on λ
Let ς be the dimension of the measure mγu and ς̂ the dimension of µ (that is, by

ergodicity µ = limρ→0
log µ(Bρ(x))

log ρ for µ-almost every x). We will require that

ξ = ς(λ− 1)− ς̂ > 1. (4)

(A4) Regularity of the invariant measure
Let ξ = ς(λ − 1) − ς̂ > 1 by (A3) and suppose that the positive constant ς ′ < ς is

fixed. There exist a set Eρ ⊂ M satisfying µ(Eρ) ≤ | log ρ |−λ−4
3 so that for ρ small

enough:

(a) (ξ-regularity) There exists w0 ∈ (1, ξ) and a > 0 so that

µ(Bρ+ρw(x) \Bρ−ρw(x))

µ(Bρ(x))
≤ 1

g(w)| log ρ |a
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for all x 6∈ Eρ and w > w0 where the function g(w) is so that
∑∞
n g(nβ)−1 <∞

for some 1
2 < β < 1− 3

λ−1 . We say µ is ξ-regular.

(b) (geometric regularity) There exists a ς ′ < ς, ς̂ ′′ > ς̂ satisfying (4) and C2 > 0
such that

mγu(Bρ(x)) ≤ C2 ρ
ς′ , µ(Bρ(x)) ≥ C2ρ

ς̂′′

for all Bρ(x) ⊂M for which x 6∈ Eρ and all unstable leaves γu.

For simplicity sake we will from now on write Bρ for Bρ(x).

Remark. Also let us note that sometimes the following annulus condition is used
(see e.g. [22]):

µ(Bρ+δρ(x) \Bρ−δρ(x))
µ(Bρ(x))

≤ c0
δρg

ρh
. (5)

If ξg > h then (5) implies the regularity condition (A4)(a), for if one puts δρ = ρw

then δρg

ρh
= ρgw−h and the exponent can be made positive with a w ∈ (1, ξ). The

summability condition follows from the fact that
∑∞
n=p ρ

gnβ−h = O(ρgp
β−h) decays

to zero faster than any negative power of | log ρ | as ρ → 0 considering that in
Section 4.6 p is proportional to a negative power of µ(Bρ).

4.2. Immediate consequences of the assumptions. In this section we list some
basic results which will be needed in the proof of the main results.

Lemma 4.1 (Distortion). There exists a constant C3 > 1 such that
(i) for any x and y in Λ, γu(x) = γu(y) with separation time s(x, y) ≥ q:

JT̂ qx ∈ JT̂ qy
[

1

C3
, C3

]
. (6)

(ii) For any F ⊂ F ′ ⊂ Λi∩γu (for some i) and for any q ≤ s(F ′) = infx,x′∈F ′ s(x, x
′)

1

C3

mγ̂u(T̂ qF )

mγ̂u(T̂ qF ′)
≤ mγu(F )

mγu(F ′)
≤ C3

mγ̂u(T̂ qF )

mγ̂u(T̂ qF ′)
, (7)

where γ̂u = γu(T̂ q(F )).

Proof. (i) Let x, y ∈ Λ, γu(x) = γu(y) and let q ≥ 1 be an integer less than or equal
to s(x, y). Then by the chain rule and (A3)(a)∣∣∣∣ log

JT̂ qx

JT̂ qy

∣∣∣∣ ≤ q−1∑
j=0

∣∣∣∣ log
JT̂ (T̂ jx)

JT̂ (T̂ jy)

∣∣∣∣
≤

q−1∑
j=0

C0α
s(T̂ (T̂ jx),T̂ (T̂ jx))

= C0

q−1∑
j=0

αq−(j+1)

≤ C0

1− α
.

as αs(T̂
j+1x,T̂ j+1y) ≤ αq−(j+1) which implies the statement (i) with C3 ≥ c1 = e

C0
1−α .
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(ii) This follows from part (i) since

c−1
1 mγ̂u(T̂ qF )

c1mγ̂u(T̂ qF ′)
≤ mγu(F )

mγu(F ′)
≤ c1mγ̂u(T̂ qF )

c−1
1 mγ̂u(T̂ qF ′)

.

The result now follows with C3 = c21.

According to [27](Theorem 3) the decay of correlations is polynomial: Let φ be
a Lipschitz continuous function and ψ ∈ L∞ constant on local stable leaves, that
is ψ(x) = ψ(y) if there exists a k and j < Rk so that T−jx, T−jy ∈ γs ∩ Λk for
some γs ∈ Γs. Then one has∣∣∣∣ ∫

M

φ ψ ◦ Tn dµ−
∫
M

φdµ

∫
M

ψ dµ

∣∣∣∣ ≤ ϕn‖φ ‖Lip‖ψ ‖L∞ (8)

where the decay function ϕn = O(1)
∑
k>nm(R > k) ≤ C4 n

−λ+1, for some C4 > 0
where λ > 0 is the tail decay exponent from assumption (A2). Note that in general
for functions ψ which are not constant on local stable leaves, the supremum norm
on the RHS of (8) has to be replaced by the Lipschitz norm (see [26]).

We will also need the following function of s ∈ R+:

Ω(s) :=

√ ∑
i:Ri>s

Ri m(Λi).

Since the return time R is integrable Ω(s)→ 0 as s→∞.

Lemma 4.2 (Decay of Ω). There exists a constant C5 such that for s ≥ 4

Ω(s) ≤ C5s
−θ

where θ = (λ− 1)/2.

Proof. By definition

Ω(s)2 =
∑
i:Ri>s

Rim(Λi) ≤
∞∑
k=s

m(R > k) + sm(R > s)

≤
∞∑
k=s

C1k
−λ + sC1s

−λ ≤ c1s2θ

using the tail decay, where c1 <∞. We complete the proof by setting C5 =
√
c1.

4.3. Cylinder sets. Let s be a given integer. We shall separate the beams with
return times greater than s and also portions of the base that visit those beams
during the “flight”. The beams with heights less than s will be referred to as “short”
and constitute the principal part. The “tall” beams (i.e. when the returns are > s)
will be treated like error terms and contribute to the “forbidden” set Xρ whose size
is small and estimated in Section 4.4. Let us introduce several quantities that will
be needed to deal with the long return times.
(I) For indices (i0, . . . , il) ∈ Nl+1 we define the l-cylinder (w.r.t. the map T̂ ) by

ζi0,...,il = Λi0 ∩ T̂−1Λi1 ∩ T̂−2Λi2 ∩ . . . ∩ T̂−lΛil ,
and denote by I the collection of indices (i0, . . . , il) such that the associated cylinder
ζi0,...,il is non-empty.
(II) For every Λi let’s define the subset consisting exclusively of points that only
visit short beams:

Λ̃i = {x ∈ Λi : ∀l ≤ n, R(T̂ lx) ≤ s}.
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Let us note that if the original beam Λi happens to be tall (i.e. Ri > s) then

the corresponding Λ̃i will be empty. With Λ =
⋃
i Λi and Λ̃ =

⋃
i Λ̃i we obtain in

particular Λ \ Λ̃ = {x ∈ Λ : ∃ l ∈ [0, n] s.t. R(T̂ lx) ≤ s}. Similarly we define the
restriction of a cylinder ζi0,...,il to short returns by

ζ̃i0,...,il =
{
x ∈ ζi0,...,il : R(T̂ j(x)) ≤ s ∀ j = 0, . . . , l

}
.

In other words

ζ̃i0,...,il =

{
ζi0,...,il if Ri0 , . . . , Ril ≤ s
∅ otherwise.

(9)

In particular we see that if one of the beams on the cylinder’s path is tall, i.e.
Rij > s for a j ∈ [0, l], then it must have originated inside Λi0 \ Λ̃i0 . Thus⋃
i0,...,il

ζi0,...,il \ ζ̃i0,...,il ⊂
⋃
i0

Λi0 \ Λ̃i0 and
⋃
i

Λ̃i ⊂
⋃

i0,...,il

ζ̃i0,...,il (10)

as long as l ≤ n.
(III) For given n, j and i0 ∈ N, j < Ri0 ≤ s we define the set of ‘suitable’ symbols
by

Ii0,j,n =

{
(i0, . . . , il) ∈ I :

l−1∑
k=0

Rik ≤ n+ j <

l∑
k=0

Rik

}
. (11)

Accordingly a string of symbols (i0, . . . , il) is called (n, j)-minimal if it satisfies the

property Rl ≤ n+ j < Rl+1, where Rl =
∑l−1
k=0Rik . Note that for any given values

j and n the cylinders indexed by Ii,j,n partition the beam base Λi, up to set of
measure zero, i.e.

Λi =
⊔

τ∈Ii,j,n

ζτ .

In what follows we shall often write I, instead of Ii,j,n.

If τ = (i0, . . . , il) then let τ ′ = (i0, . . . , il−1). Since ζτ = ζτ ′ ∩ T̂−lΛil ⊂ ζτ ′ , we
will write τ ⊂ τ ′ to reflect the relationship between the cylinders.

The remainder of this section is taken up by providing some essential estimates
involving the quantities introduced.

Lemma 4.3. The diameter of the cylinder set ζi0,...,il restricted to unstable leaves
is exponentially small:

|ζi0,...,il ∩ γu| ≤ C0 α
l+1. (12)

Proof. Let x and y be two points in ζi0,...,il , then by definition we have

T̂ kx, T̂ ky ∈ Λik ∩ γu for 0 ≤ k ≤ l.

It follows that s(x, y) ≥ l + 1. Therefore by Assumption (A1b):

d(x, y) ≤ C0 α
s(x,y) ≤ C0 α

l+1

and, since the points x, y were arbitrary, we conclude that

|ζi0,...,il ∩ γu| ≤ C0 α
l+1.
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Lemma 4.4. Let τ = (i0, . . . , il) be an index in Ii0,j,n and put τ ′ = (i0, . . . , il−1).
Then

mγu(T−jB ∩ ζ̃τ ′)
mγu(ζ̃τ ′)

≤ C6 µ(Bρ)

for any set B ⊂ T−nBρ and for all ζ̃τ ′ 6= ∅.

Proof. By inclusion we have

mγu(T−jB ∩ ζ̃τ ′)
mγu(ζ̃τ ′)

≤ mγu(T−(n+j)Bρ ∩ ζ̃τ ′)
mγu(ζ̃τ ′)

.

Let the number b be such that n + j − b = Rl. Recall that τ ∈ I means that it
is (n, j)-minimal, i.e. that n + j lies between Rl and Rl+1, we have 0 ≤ b < Ril .

Further Tn+j−b = T̂ l. Recall that s(ζτ ′) = l, thus we can push both the numerator

and the denominator forward by T̂ l and use distortion, Lemma 4.1 and (A1)(a), to

obtain for ζ̃τ ′ 6= ∅:

mγu(T−(n+j)Bρ ∩ ζ̃τ ′)
mγu(ζ̃τ ′)

≤ C3
mγ̂u(T−bBρ ∩ T̂ lζτ ′)

mγ̂u(T̂ lζτ ′)
(13)

since by assumption and (9) ζ̃τ ′ = ζτ ′ . Here we put again γ̂u = γu(T̂ lx) for

x ∈ ζτ ′ ∩ γu. Now T̂ l(ζτ ′ ∩ γu) = Λ ∩ γ̂u, because s(ζτ ′) = l. For the numerator we
obtain

mγ̂u(T−bBρ ∩ Λ) ≤ c1
∫
mγ̂u(T−bBρ ∩ Λ) dν(γ̂u) ≤ c1µ(T−bBρ) = c1µ(Bρ)

for some c1, and for the denominator we use that µγ̂u(Λ) ≥ c2 for some c2 > 0. The
lemma now follows with C6 = C3c1/c2.

Lemma 4.5. Consider a collection of cylinders ζτ ′ = ζi0,...,il−1
∈ Λi0 such that

i) ∃τ ⊂ τ ′ with τ ∈ Ii0,j,n,
ii) ζτ ′ ∩ T−jBρ 6= ∅.

Then there exists a constant C7 such that∑
τ ′|∃τ⊂τ ′
τ∈I

T−jBρ ∩ ζτ′ 6=∅

m(ζ̃τ ′) ≤ m(γs(T−j(Bρ+C7 αn/s) ∩ Λi0)),

where we use the notation γs(B) =
⋃
γs∈Γs:γs∩B γ

s (note that here B ⊂ Λ).

Proof. All the unions, sums and maxima in this proof are subscripted with “τ ′ | ∃τ ⊂
τ ′, τ ∈ Ii0,j,n, T−jBρ ∩ ζτ ′ 6= ∅,” unless otherwise specified. From Lemma 4.3 we
know that

|ζτ ′ ∩ γu| ≤ C0 α
s(ζτ′ ) = C0 α

l

for unstable leaves γu. Without loss of generality we can assume that ζ̃τ ′ = ζτ ′ .
Since ζτ ′ contains a cylinder τ satisfying (n, j)-minimality, we deduce from n+ j <∑l
k=0Rik ≤ (l + 1) s a lower bound on l:

l ≥ n+ j

s
− 1 ≥ n

s
− 1.

Thus

|ζτ ′ ∩ γu| ≤ C0 α
n
s−1
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and for j < Ri0 we can further say by Assumption (A1)(b) that

|T j(ζτ ′ ∩ γu)| ≤ C0 α
n
s−2

as s(T jζτ ′) = s(ζτ ′)−1 for 1 ≤ j < Ri0 . Now put C7 = c0α
−2. Since ζτ ′ ∩T−jBρ 6=

∅ and therefore T jζτ ′ ∩Bρ 6= ∅ we obtain

T jζτ ′ ⊂
⋃

γs∈Γs:γs∩T−jB
ρ+C7 α

n/s∩Λ6=∅

T jγs.

As the above estimate works for any cylinder whose subscript τ ′ satisfies “τ ′ | ∃τ ⊂
τ ′, τ ∈ Ii0,j,n, T−jBρ ∩ ζτ ′ 6= ∅,” we have⋃

ζτ ′ ⊂ γs(T−j(Bρ+C7 αn/s) ∩ Λ).

Moreover, since
⋃
ζτ ′ ⊂ Λi0 we in fact have⋃

ζτ ′ ⊂ γs(T−j(Bρ+C7 αn/s) ∩ Λi0),

and we can conclude∑
m(ζτ ′) = m

(⋃
ζτ ′

)
≤ m(γs(T−j(Bρ+C7 αn/s) ∩ Λi0)).

4.4. Measure of the forbidden set Xρ. We will need the following lemma.

Lemma 4.6. ([6] Lemma A.3) Let `0 and `1 be two finite positive measures on a
D-dimensional Riemannian manifold M . For ω ∈ (0, 1) and ρ ∈ (0, 1) define

D = {x ∈M : `1(Bρ(x)) ≥ ω`0(Bρ(x))}.

There exists an integer p(D) such that

`0(D) ≤ p(D)ω−1`1(M).

We will also need the following result on the size of the set where tall towers dom-
inate, that is where Ri is larger than s. Recall that Ω(s) = [

∑
i,Ri>s

Rim(Λi) ]
1
2 .

Lemma 4.7. For n, s ≥ 1 there exist sets Dn,s ⊂ M such that the non-principal
part contributions are estimated as∑

i

Ri−1∑
j=0

m(T−jB ∩ (Λi \ Λ̃i)) <
√
n+ 2 Ω(s)µ(Bρ)

for any B ⊂ Bρ(x) and x 6∈ Dn,s where (p(D) as above)

µ(Dn,s) ≤ p(D)
√
n+ 2 Ω(s).

Proof. We employ Lemma 4.6, with `0 = µ and `1(·) =
∑
i

∑Ri−1
j=0 m(T−j(·)∩ (Λi \

Λ̃i)). Define

Dn,s = {x ∈M : `1(Bρ(x)) ≥
√
n+ 2 Ω(s)µ(Bρ(x))};

from Lemma 4.6 we know that µ(Dn,s) ≤ p(D) (
√
n+ 2 Ω(s))−1`1(M). Since

R(T̂ lx) > s exactly if x ∈ T̂−l{R > s} we get

Λi \ Λ̃i = {x ∈ Λi : ∃ l ≤ n, such that R(T̂ lx) ≥ s } =

n⋃
l=0

T̂−l{R ≥ s} ∩ Λi.
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Since Λ̃i = ∅ for Ri > i we bound the measure `1(M) as follows

`1(M) ≤
∑
i,Ri≤s

Ri−1∑
j=0

m(Λi \ Λ̃i) +
∑
i,Ri>s

Ri−1∑
j=0

m(Λi)

≤
∑
i,Ri≤s

sm(Λi \ Λ̃i) +
∑
i,Ri>s

Rim(Λi)

≤ s
∑
i,Ri≤s

m

( n⋃
l=0

T̂−l{R > s} ∩ Λi

)
+ Ω(s)2

≤ sm

( n⋃
l=0

T̂−l{R > s}
)

+ Ω(s)2

≤ s(n+ 1)m({R > s}) + Ω(s)2

≤ (n+ 2)Ω(s)2

as sm({R > s}) ≤
∑∞
j=s+1 j m({R = j}) = Ω(s)2. Hence

µ(Dn,s) ≤ p(D)(
√
n+ 2 Ω(s))−1`1(M) = p(D)

√
n+ 2 Ω(s).

Outside the set Dn,s we have

∑
i,Ri≤s

Ri−1∑
j=0

m(T−jB ∩ (Λi \ Λ̃i)) ≤
∑
i,Ri≤s

Ri−1∑
j=0

m(T−j(Bρ) ∩ (Λi \ Λ̃i))

= `1(Bρ)

≤
√
n+ 2 Ω(s)µ(Bρ).

Let η ∈ ( 3
λ−1 , 1) and β < 1 − 3

λ−1 be according to Assumption (A4). Put

σ̂ = λ−1
2 min {η, (1− β)}− 3

2 . By assumption σ̂ > 0 and we can finally estimate the
size of the forbidden set defined by

Xρ =

p−1⋃
n=J

(
Dn,nη ∪ Dn,n1−β

)
∪ Eρ

whose parts have essentially been estimated in the previous lemma and assump-
tion (A4).

Proposition 4.1. There exist a constant C8 such that

µ(Xρ) ≤ C8| log ρ |−σ̂.

Proof. We estimate the contributions to Xρ separately in the three following para-
graphs.

(I) By Lemma 4.7 and since Ω(s) . s−
λ−1
2

µ

(p−1⋃
n=J

Dn,nη
)
≤ p(D)

p−1∑
n=J

√
n+ 2 Ω(nη) ≤ c1

∞∑
n=J

n
1
2 (nη)−

λ−1
2 ≤ c2J

η+3−ηλ
2



LIMITING DISTRIBUTION FOR BALLS 2597

as η + 1 − ηλ < 0 and J = ba | log ρ |c. The term with s = n1−β is estimated
similarly. Therefore

µ

(p−1⋃
n=J

Dn,nη
)

+ µ

(p−1⋃
n=J

Dn,n1−β

)
≤ c3| log ρ |−σ̂.

(II) By Assumption (A4) µ(Eρ) ≤ | log ρ |−λ/2.
Combining the estimates from (I) and (II) results in

µ(Xρ) ≤ µ
(p−1⋃
n=J

Dn,s
)

+ µ

(p−1⋃
n=J

Dn,n1−β

)
+ µ(Eρ) ≤ C8| log ρ |−σ̂

for some C8 as σ̂ < λ
2 .

4.5. Poisson approximation of the return times distribution. To prove The-
orem 1 we will employ the Poisson approximation theorem from Section 7. Let x be
a point in the phase space and Bρ := Bρ(x) for ρ > 0. Let Xn = 1Bρ ◦ Tn−1, then

we put N = b t/µ(Bρ) c, where t is a positive parameter. We write Sba =
∑b
n=aXn

(and S = SN1 ). Then for any 2 ≤ p ≤ N (C12 from Section 7)∣∣∣∣P(S = k)− tk

k!
e−t

∣∣∣∣ ≤ C12(N(R1 +R2) + p µ(Bρ)), (14)

where

R1 = sup
0<j<N−p

0<q<N−p−j

∣∣∣E(1Bρ1SN−jp+1 =q)− µ(Bρ)E(1SN−jp+1 =q)
∣∣∣

R2 =

p−1∑
n=1

E(1Bρ 1Bρ ◦ Tn).

Since we restrict to the complement of the set Vρ (cf. (1)) we have from now on

R2 =

p−1∑
n=J

µ(Bρ ∩ T−nBρ),

where J = b a | log ρ | c. Note that if k > N then P(S = k) = 0 and∣∣∣∣P(S = k)− tk

k!
e−t

∣∣∣∣ =
tk

k!
e−t ≤ | log ρ |−

λ−4
2 ∀k > N (15)

using the fact that µ(Bρ) . ρς
′

and for ρ sufficiently small.
We now proceed to estimate the error between the distribution of S and a Pois-

sonian for k ≤ N based on Theorem 7.1.

4.6. Estimating R1. By invariance of the measure µ we can also write

R1 = sup
0<j<N−p

0<q<N−p−j

∣∣∣µ(Bρ ∩ T−p{SN−j−p1 = q})− µ(Bρ)µ({SN−j−p1 = q})
∣∣∣ .

We now use the decay of correlations (8) to obtain an estimate for R1. Approximate
1Bρ by Lipschitz functions from above and below as follows:

φ(x) =

{
1 on Bρ

0 outside Bρ+δρ
and φ̃(x) =

{
1 on Bρ−δρ

0 outside Bρ
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with both functions linear within the annuli. The Lipschitz norms of both φ and φ̃
are equal to 1/δρ and φ̃ ≤ 1Bρ ≤ φ.

We obtain

µ(Bρ ∩ {SN−jp = q})− µ(Bρ)µ({SN−j−p1 = q})

≤
∫
M

φ (1SN−jp =q) dµ−
∫
M

1Bρ dµ

∫
M

1SN−j−p1 =q dµ

= X + Y

where

X =

(∫
M

φdµ−
∫
M

1Bρ dµ

)∫
M

1SN−j−p1 =q dµ

Y =

∫
M

φ (1SN−jp =q) dµ−
∫
M

φdµ

∫
M

1SN−j−p1 =q dµ.

The two terms X and Y are estimated separately. The first term is estimated as
follows:

X ≤
∫
M

1SN−j−p1 =q dµ

∫
M

(φ− 1Bρ) dµ ≤ µ(Bρ+δρ \Bρ).

In order to estimate the second term Y we use the decay of correlations and have
to approximate 1SN−j−p1 =q by a function which is constant on local stable leaves.

For that purpose put

Sn =
⋃
k

Rk−1⋃
j=0

⋃
γs∈Γs

γs⊂T−n−jBρ∩Λk

Tn+jγs, ∂Sn =
⋃
k

Rk−1⋃
j=0

⋃
γs∈Γs

γs∩T−n−jBρ∩Λk 6=∅

Tn+jγs

and

S N−j
p =

N−j⋃
n=p

Sn, ∂S n−j
p =

N−j⋃
n=p

∂Sn.

The set
S N−j
p (q) = {SN−jp = q} ∩S N−j

p

is then a union of local stable leaves. This follows from the fact that by construction
Tn+jy ∈ Bρ if and only if Tn+jγs(y) ⊂ Bρ for a point y ∈ T−jBρ ∩ Λk. We also

have {SN−jp = q} ⊂ S̃ N−j
p (q) where the set S̃ N−j

p (q) = S N−j
p (q) ∪ ∂S N−j

p is a
union of local stable leaves.

Denote by ψN−jp the characteristic function of S N−j
p (q) and by ψ̃N−jp the char-

acteristic function of S̃ N−j
p (q). Then ψN−jp and ψ̃N−jp are constant on local stable

leaves and satisfy

ψN−jp ≤ 1SN−jp =q ≤ ψ̃
N−j
p .

Since {y : ψN−jp (y) 6= ψ̃N−jp (y)} ⊂ ∂S N−j
p we need to estimate the measure of

∂S N−j
p .

For integers n and s let Λ̃i be as before, then by Lemma 4.7 for x 6∈ Dn,s we have∑
i

Ri−1∑
j=0

m(T−jB ∩ (Λi \ Λ̃i)) ≤
√
n+ 2 Ω(s)µ(Bρ+αl),

where B = Bρ+αl \ Bρ−αl . For points y ∈ Λ \ Λ̃ we let l be so that Rl(y) ≤ n <

Rl+1(y) then we get l ≥ n/s ≥ nβ where we choose s(n) =
⌊
n1−β ⌋ and β < 1 so
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that
∑∞
n g(nβ)−1 < ∞ in accordance with Assumption (A4). By the contraction

property diam(Tnγs(y)) ≤ Asαn/s ≤ An
1−β

αn
β

for all y ∈ Λ \ Λ̃, where the factor
As accounts for the lack of control on the contraction between returns to the base
Λ. If β > 1

2 then diam(Tnγs(y)) ≤ 2αn
β

for all n large enough. Consequently⋃
γs⊂Λ\Λ̃
Tnγs⊂Bρ

Tnγs ⊂ Bρ+2αl \Bρ−2αl

and therefore

µ(∂S N−j
p ) ≤ µ

(
N−j⋃
n=p

T−n
(
Bρ+2αl \Bρ−2αl

))

≤
N−j∑
n=p

µ(Bρ+2αl \Bρ−2αl)

≤
∞∑
n=p

µ(Bρ)
1

g(w)| log ρ |a

≤ c1µ(Bρ)
1

| log ρ |a

where we used w(n) = nβ logα
log ρ . If we split p = p′ + p′′ then we can estimate as

follows:

Y =

∣∣∣∣∫
M

φ T−p
′
(1
SN−j−p

′
p′′ =q

) dµ−
∫
M

φdµ

∫
M

1SN−j−p1 =q dµ

∣∣∣∣
≤ ϕp′‖φ‖Lip‖1S̃N−j−p′

p′′
‖L∞

+2

∞∑
n=p′′

∑
i

Ri−1∑
k=0

m(T−k(Bρ+αl \Bρ−αl) ∩ (Λi \ Λ̃i)) + 2µ(∂S N−j
p′′ )

where the triple sum on the RHS is by Lemma 4.7 bounded by

2

∞∑
n=p′′

√
n+ 2 Ω(s)µ(Bρ+αl) ≤ c2µ(Bρ)

∞∑
n=p′′

n
1
2−(1−β)λ−1

2 ≤ c3µ(Bρ)p
3
2−(1−β)λ−1

2

assuming 3
2 − (1 − β)λ−1

2 < 0 where in the last estimate we put p′ = p/2. Since

β > 1
2 this requires λ > 7. Now let δρ = ρw where w ∈ (1, ξ) is chosen in accordance

with Assumption (A4) (this is possible since ξ = ς(λ− 2) > 1). Hence

µ(Bρ ∩ T−p{SN−j−p1 = q})− µ(Bρ)µ({SN−j−p1 = q})

≤ ϕp/2/δρ+ µ(Bρ \Bρ−δρ) + c3µ(Bρ)
(
p

3
2−(1−β)λ−1

2 + | log ρ |−a
)

≤ ϕp/2ρ−w + c4 µ(Bρ)
(
p

3
2−(1−β)λ−1

2 + | log ρ |−a
)

In the same way we obtain a lower estimate. Since Dn,n1−β ⊂ Xρ for n =
J, J + 1, . . . we conclude that for x 6∈ Xρ one has:

R1 ≤ ϕp/2ρ−w + c4 µ(Bρ)
(
p

3
2−(1−β)λ−1

2 + | log ρ |−a
)
. (16)

Remark. If the contraction in the stable direction is known to be monotone be-
tween returns to the base, then the factor As above won’t be needed and the lower
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bound for β would thus be 0 and not 1
2 . In that case λ in Theorem 1 would be

required to be greater than 4 and thus we obtain a convergence rate (in all three
theorems) given by any κ less than λ−4

2 .

4.7. Estimating the individual terms of R2 (for n fixed). We will estimate
the measure of each of the summands comprising R2 individually with the help of
the Young tower. Fix n and for the sake of simplicity we will denote Bρ ∩ T−nBρ
by Bn. Then

µ(Bρ ∩ T−nBρ) = µ(Bn) =

∞∑
i=1

Ri−1∑
j=0

m(T−jBn ∩ Λi). (17)

With s = bnη c let Λ̃i be as in Section 4.3 (II), then

µ(Bn) =
∑
i

Ri−1∑
j=0

m(T−jBn ∩ Λ̃i) +
∑
i

Ri−1∑
j=0

m(T−jBn ∩ (Λi \ Λ̃i))

≤
∑
i

Ri−1∑
j=0

m(T−jBn ∩ Λ̃i) +
√
n+ 2 Ω(s)µ(Bρ) (18)

using Lemma 4.7 for the second term on the RHS to the complement of the set
Dn,s. Since (ζ̃ as in Section 4.3)

m(T−jBn ∩ ζ̃τ ) ≤
∑

τ ′ | ∃ τ⊂τ ′
m(T−jBn ∩ ζ̃τ ′) =

∑
τ ′ | ∃ τ⊂τ ′, τ∈I
T−jBρ ∩ ζτ′ 6=∅

m(T−jBn ∩ ζ̃τ ′)

we get, since by (10)
⋃
i Λ̃i ⊂

⋃
τ∈I ζ̃τ , for each of the summands in the principal

term on the RHS of (18)

mγu(T−jBn ∩ Λ̃i) ≤
∑

τ∈Ii,j,n

mγu(T−jBn ∩ ζ̃τ )

≤
∑

τ ′ | ∃ τ⊂τ ′,τ∈I
T−jBρ ∩ ζτ′ 6=∅

mγu(T−jBn ∩ ζ̃τ ′)

=
∑

τ ′ | ∃ τ⊂τ ′,τ∈I
T−jBρ ∩ ζτ′ 6=∅

mγu(T−jBn ∩ ζ̃τ ′)
mγu(ζ̃τ ′)

mγu(ζ̃τ ′)

≤ C6 µ(Bρ)
∑

τ ′ | ∃ τ⊂τ ′,τ∈I
T−jBρ ∩ ζτ′ 6=∅

mγu(ζ̃τ ′)

where we used Lemma 4.4 in the last step. From Lemma 4.5 we obtain a bound for
the sum of measures of the cylinders, whence∑

τ∈I
m(T−jBn ∩ ζ̃τ ) ≤ C6 µ(Bρ)m(γs(T−j(Bρ+C7 αn/s) ∩ Λi))

using the product structure of the measure m. Note that since Bρ+C7 αn/s(x) ⊂
B2ρ(x) ∪B2C7αn/s(x) we obtain on unstable leaves by Assumption (A1)(b) that

mγu(γs(T−j(Bρ+C7 αn/s)∩Λ)) ≤ mγu(B2ρ)+mγu(B2C7αn/s) ≤ (2ρ)ς
′
+(2C7α

n/s)ς
′
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using the geometric regularity (A4)(b) provided that the radius 2C7 α
n/s is small

enough. Since n ≥ J and s depends on n we can guarantee the above radius to be
sufficiently small provided that ρ is small enough. Therefore

m(γs(T−j(Bρ+C7 αn/s) ∩ Λi)) ≤ c1
(

(2ρ)ς
′
+ (2C7α

n/s)ς
′
)

for some c1. Thus the first term (principal term) on the RHS of (18) can be bounded
as follows∑

i

Ri−1∑
j=0

m(T−jBn ∩ Λ̃i) ≤
∑
i

Ri−1∑
j=0

∑
τ∈I

m(T−jBn ∩ ζ̃τ )

≤
∑
i

Ri−1∑
j=0

C6 µ(Bρ)m(γs(T−j(Bρ+C7 αn/s) ∩ Λi))

≤ C ′6 µ(Bρ)
(
ρς
′
+ (αn/s)ς

′
)

(19)

for a constant C ′6.

4.8. Estimating R2. Combining inequalities (18) and (19) results in

µ(Bρ ∩ T−nBρ) = µ(Bn) ≤ C ′6 µ(Bρ)
(
ρς
′
+ (αn/s)ς

′
)

+ Ω(s)
√
n+ 2µ(Bρ),

provided that n ≥ J and the center x of the ball Bρ lies outside the set Dn,s.
As before let s = bnηc where η ∈ ( 3

λ−1 , 1). Summing up the Bn terms over
n = J, . . . , p − 1, we see that outside the set of forbidden ball centers Vρ ∪ Xρ we

get with α̃ = ας
′

R2 =

p−1∑
n=J

µ(Bρ ∩ T−nBρ) ≤ µ(Bρ)

p−1∑
n=J

(
C ′6

(
ρς
′
+ α̃n/s

)
+ 2
√
nΩ(s)

)
. (20)

For ρ small and by Lemma 4.2 Ω(s) ≤ C5s
−θ where θ = λ−1

2 we obtain

R2 ≤ c1µ(Bρ)

(
p ρς

′
+

p−1∑
n=J

α̃n
1−η

+

∞∑
n=J

n
1
2−ηθ

)
≤ c2µ(Bρ)

(
p ρς

′
+ α̃

1
2J

1−η
+ J

3
2−ηθ

)
since

∑∞
n=J α̃

n1−η ≤ c3 α̃
1
2J

1−η
for some c3 (and ρ small enough). As α̃

1
2J

1−η ≤ J−σ,
σ = ηθ − 3

2 , for ρ small, we get

R2 ≤ C9 µ(Bρ)
(
p ρς

′
+ J−σ

)
for some C9. Note that the above it true provided ρ is sufficiently small and the
center x of the ball Bρ is not in Xρ ∪ Vρ.

4.9. Estimate of the total error. Now we want to bound all of the error com-
ponents from inequality (14) with terms of the order of J−σ or a negative power of
| log ρ |, where σ = η λ−1

2 −
3
2 <

λ−4
2 . To that end we choose the length of the gap p

to be

p =
⌊
J−σρ−ς

′
⌋
,
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and estimate the three error terms on the RHS of (14) separately.
(I) The last summand is immediately estimated as

pµ(Bρ) ≤ p c1ρς
′
≤ J−σ.

(II) For the term involving R1 we obtain

NR1 ≤
t

µ(Bρ)

(
ϕp/2ρ

−w + c2 µ(Bρ)
(
p

3
2−(1−β)λ−1

2 + | log ρ |−a
))

.

Let w < ξ and ς ′ < ς, ς̂ ′′ > ς̂ so that ς ′(λ− 1)− ς̂ ′′ − w > 0. Since µ(Bρ) ≥ ρς̂
′′

for
ρ small enough we get for the first term on the RHS for ρ small:

ϕp/2ρ
−w

µ(Bρ)
≤ c3

p1−λ

µ(Bρ) ρw
≤ c4 ρς

′(λ−1)−ς̂′′−w Jσ(λ−1) ≤ J−σ

and so (with some c5, c6) since by Assumption (A4)(a) 3
2 − (1 − β)λ−1

2 < 0 we
conclude

NR1 ≤ c5
(
J−2σ + | log ρ |−a

)
≤ c6| log ρ |−min{a,σ}.

(III) Utilizing the estimate from Section 4.8 and using the fact that N = bt/µ(Bρ)c
yield

NR2 ≤ t C9

(
p ρς

′
+ J−σ

)
≤ c7t| log ρ |−σ

for some c7.
Combining the results of estimates (I), (II) and (III) above we obtain for ρ

sufficiently small the RHS of (14) as follows (x 6∈ Xρ)

N(R1 +R2) + pµ(Bρ) ≤
c6

| log ρ |min{a,σ} +
c7t

| log ρ |σ
+

1

Jσ
≤ c8(1 + t)

| log ρ |κ
.

for some c8, where κ = min{σ, a} is positive. This now concludes the proof of
Theorem 1 as it shows that for ρ small enough and for any x /∈ Xρ we have for
k ≤ N ∣∣∣∣P(S = k)− tk

k!
e−t

∣∣∣∣ ≤ C(1 + t2)| log ρ |−κ.

By (15) this estimate also extends to k > N . By Proposition 4.1 the size of the

forbidden set is then µ(Xρ) = O(| log ρ |−κ′) where κ′ = σ̂. The proof of Theorem 1
is thus complete.

Remark. In the case when a ≥ σ and β > 1
2 arbitrarily close to 1

2 then κ = κ′ =
λ−7

4 .

5. Very short returns and proof of Theorem 2. In this section we prove
Theorem 2 which is a direct consequence of Theorem 1 and Proposition 5.1 below,
which estimates the measure of the set with short return times. We first state the
precise assumptions. Again we use the Young tower construction.

5.1. Assumptions. Let (M,T ) be a dynamical system equipped with a metric d.
Assume that the map T : M → M is a C2-diffeomorphism. As at the start of the
paper the set Vρ ⊂M is given by

Vρ = {x ∈M : Bρ(x) ∩ TnBρ(x) 6= ∅ for some 1 ≤ n < J},
where J = b a | log ρ | c and a = (4 logA)−1 with

A = ‖DT ‖L∞ + ‖DT−1 ‖L∞
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(A ≥ 2). Suppose the system can be modeled by a Young tower possessing a
reference measure m and that the greatest common divisor of the return times Ri
is equal to one. Let µ be the SRB measure associated to the system. We require
the following in Proposition 5.1:

(B1) Regularity of the Jacobian and the metric on the Tower
The same as Assumption (A1)

(B2) Polynomial Decay of the Tail
There exist constants C1 and λ > 9 such that

m̂γu(R > k) ≤ C1 k
−λ

for unstable leaves γu.

(B3) Geometric regularity of the measure
Let ς be the dimension of the measure µ. Suppose that the positive constant
ς ′ < ς is fixed. There exists a constant C2 > 0 and a set Eρ ⊂ M satisfying

µ(Eρ) ≤ C2| log ρ |−λ/2 such that

mγu(Bρ(x)) ≤ C2 ρ
ς′

for all x 6∈ Eρ and ρ small.
Note that in Proposition 5.1 we don’t require the measure to be ξ-regular.

5.2. Estimate on the measure of Vρ. Before we prove the main result of this
section we shall present a lemma which will be needed in the proof of Proposition 5.1.

Lemma 5.1. Let Ĉ1 > 0 be a constant and α̂ ∈ (0, 1). Then for all sufficiently
small ρ

4An+bρ+Ab+jĈ1α̂
| log ρ |3/4 ≤ e−| log ρ |1/4 .

for any n ≤ J and b, j ≤ J 1
4 (J = b a | log ρ | c).

Proof. By assumption

An+bρ ≤ A2Jρ ≤ 2−1A2a| log ρ |ρ = 2−1ρ1−2a logA = 2−1ρ1/2

and also

Ab+jα̂| log ρ |
3
4 ≤ A1a| log ρ |

1
4 α̂| log ρ |

3
4 ≤ (2Ĉ1)−1e−| log ρ |

1
4 .

Since ρ
1
2 = e−

1
2 | log ρ | the statement of the lemma follows for ρ small enough.

Now we can show that the set of centres where small balls have very short returns
is small. To be precise we have the following result:

Proposition 5.1. There exist constants C10 > 0 such that for all ρ small enough

µ(Vρ) ≤
C10

| log ρ |λ−9
4

.

Proof. We largely follow the proof of Lemma 4.1 of [6]. Let us note that since T is
a diffeomorphism one has

Bρ(x) ∩ TnBρ(x) 6= ∅ ⇐⇒ Bρ(x) ∩ T−nBρ(x) 6= ∅.
We partition Vρ into level sets Nρ(n) as follows

Vρ = {x ∈M : Bρ(x) ∩ T−nBρ(x) 6= ∅ for some 1 ≤ n < J} =

J−1⋃
n=1

Nρ(n)
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where

Nρ(n) = {x ∈M : Bρ(x) ∩ T−nBρ(x) 6= ∅}.
The above union is split into two collections V1

ρ and V2
ρ , where

V1
ρ =

b bJ c⋃
n=1

Nρ(n) and V2
ρ =

J⋃
n=d bJ e

Nρ(n).

and where the constant b ∈ (0, 1) will be chosen below. In order to find the measure
of the total set we will estimate the measures of the two parts separately.

(I) Estimate of V2
ρ

We will derive a uniform estimate for the measure of the level sets Nρ(n) when
n > bJ

µ(Nρ(n)) =

∞∑
i=1

Ri−1∑
j=0

m(T−(n+j)Nρ(n) ∩ Λi)

=
∑
i

Ri−1∑
j=0

m(T−(n+j)Nρ(n) ∩ Λ̃i) +
∑
i

Ri−1∑
j=0

m(T−(n+j)Nρ(n) ∩ (Λi \ Λ̃i)) (21)

as µ(Nρ(n)) = µ(T−nNρ(n)) and where here we put s = J
1
4 which means

Λ̃i = {x ∈ Λi : ∀l ≤ n, R(T̂ lx) ≤ J 1
4 }.

On the RHS the first term is the principal term, and the other two terms will be
treated as error terms. Let us first estimate the error term. Note that like in
the proof of Lemma 4.7 and assumption (B2) the second sum on the RHS can be
bounded by∑

i

Ri−1∑
j=0

m(T−(n+j)Nρ(n) ∩ (Λi \ Λ̃i)) ≤
∑
i

Ri−1∑
j=0

m(Λi \ Λ̃i)

≤
∑
i

Rim(Λi \ Λ̃i)

≤ J
1
4 (n+ 1)m(R > J

1
4 )

≤ c1nJ
−λ−1

4 .

As for the first sum (principal term) on the RHS in (21), we can decompose the

beam base Λ̃i into cylinder sets, as in Section 4.3, with the index set I defined just
as in (11)

Λ̃i ⊂
⊔

τ∈Ii,j,n

ζ̃τ .

Then

m(T−(n+j)Nρ(n)∩Λ̃i) ≤
∑
τ∈I

m(T−(n+j)Nρ(n)∩ζ̃τ ) ≤
∑

τ ′|∃τ∈I
τ⊂τ ′

m(T−(n+j)Nρ(n)∩ζ̃τ ′).

Incorporating the above estimates and decomposition into (21), we obtain (c2 =
c1 + C2

5 )

µ(Nρ(n)) ≤
∑
i

Ri−1∑
j=0

∑
τ ′|∃τ∈I

m(T−(n+j)Nρ(n) ∩ ζ̃τ ′) + c2nJ
−λ−1

4 . (22)
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We will consider each of the measures m(T−(n+j)Nρ(n) ∩ ζ̃τ ′) separately. Let τ =
(i0, . . . , il) ∈ Ii0,j,n and τ ′ = (i0, . . . , il−1) as in Section 4.3. By distortion of the

Jacobian, Lemma 4.1, we obtain for ζ̃τ ′ 6= ∅ (which implies ζ̃τ ′ = ζτ ′):

mγu(T−(n+j)Nρ(n) ∩ ζ̃τ ′) =
mγu(T−(n+j)Nρ(n) ∩ ζ̃τ ′)

mγu(ζ̃τ ′)
mγu(ζ̃τ ′)

≤ C3
mγ̂u(T̂ l(T−(n+j)Nρ(n) ∩ ζ̃τ ′))

mγ̂u(Λ)
mγu(ζ̃τ ′), (23)

where, as before, γ̂u = γu(T̂ lx) for x ∈ ζτ ′ ∩γu. For the last line compare with (13).
We estimate the numerator by finding a bound for the diameter of the set. Let the
points x and z in T−nNρ(n) be such that T−jx, T−jz ∈ T−(n+j)Nρ(n) ∩ ζ̃τ ′ ∩ γu
for an unstable leaf γu. From the (n, j)-minimality of τ (Rl ≤ n + j < Rl+1) we
know that

T̂ l = Tn+j−b, where b = n+ j −Rl < Ril ,

therefore
d(T̂ lT−jx, T̂ lT−jz) = d(Tn−bx, Tn−bz).

Incorporating the definition of the constant A

d(Tn−bx, Tn−bz) ≤ Ab d(Tnx, Tnz).

Note that Tnx, Tnz ∈ Nρ(n) and so

d(Tnx, Tnz) ≤ d(Tnx, x) + d(x, z) + d(z, Tnz) ≤ 4Anρ+ d(x, z).

Further,
d(x, z) ≤ Aj d(T−jx, T−jz).

Now, T−jx, T−jz are both elements of ζτ ′ and s(ζτ ′) = l. Thus

s(T−jx, T−jz) ≥ s(ζτ ′) = l.

We derive the lower bound on l from (n, j)-minimality which yields

n ≤ n+ j < Rl+1 ≤ (l + 1)J1/4 =⇒ l > nJ−1/4 − 1.

Then employing (A1)(b) and keeping in mind that n > bJ

d(T−jx, T−jz) ≤ C0 α
s(T−jx,T−jz)

≤ (C0/α)αnJ
−1/4

≤ (C0/α)αbJJ−1/4

≤ (C0/α) α̂| log ρ | 3/4 ,

where α̂ = α2−3/4 a3/4 b < 1. Therefore

d(T̂ lT−jx, T̂ lT−jz) = d(Tn−bx, Tn−bz)

≤ Ab d(Tnx, Tnz)

≤ Ab (4Anρ+ d(x, z))

≤ 4An+bρ+Ab+j d(T−jx, T−jz)

≤ 4An+bρ+Ab+j (C0/α) α̂| log ρ |3/4 ,

and by Lemma 5.1 (Ĉ1 = C0/α) since bJ < n ≤ J and b, j < Ril < J
1
4 ≤ J :

d(T̂ lT−jx, T̂ lT−jz) ≤ e−| log ρ |1/4 .



2606 NICOLAI T. A. HAYDN AND KASIA WASILEWSKA

Taking the supremum over all points x and z yields

| T̂ l(T−(n+j)Nρ(n) ∩ ζτ ′ ∩ γu) | ≤ e−| log ρ |1/4 .

By assumption (B3) on the relationship between the measure and the metric

mγ̂u(T̂ l(T−(n+j)Nρ(n) ∩ ζτ ′)) ≤ C2e
−ς′| log ρ |1/4

for ς ′ < ς, which implies by the product structure of m that

m(T̂ l(T−(n+j)Nρ(n) ∩ ζτ ′)) ≤ c3e−ς
′| log ρ |1/4 .

Incorporating the estimate into (23) yields

m(T−(n+j)Nρ(n) ∩ ζ̃τ ′) ≤ c4 e−ς
′| log ρ |1/4m(ζ̃τ ′),

where c4 ≤ 2c2C3

m(Λ) . Substituting this into estimate (22) we see that (n ≤ J)

µ(Nρ(n)) ≤ c4 e−ς
′| log ρ |1/4

∑
i

Ri−1∑
j=0

∑
τ ′|∃τ∈I

T−(n+j)Nρ(n)∩ζτ′ 6=∅

m(ζ̃τ ′) + c2J
−λ−5

4 .

Next we have to bound the triple sum on the RHS. As we showed before all of the
ζ̃τ ′ with τ ′ | ∃τ ∈ I are disjoint and are all subsets of Λ̃i, therefore∑

i

Ri−1∑
j=0

∑
τ ′|∃τ∈I

T−(n+j)Nρ(n)∩ζτ′ 6=∅

m(ζ̃τ ′) ≤
∑
i

Ri−1∑
j=0

m(Λ̃i) ≤ µ(M) = 1

Hence for n = d bJ e , . . . , J we obtain

µ(Nρ(n)) ≤ c4 e−ς
′| log ρ |1/4 + c2J

−λ−5
4 ≤ c5J−

λ−5
4

for some c5 and ρ small enough, and consequently

µ(V2
ρ) ≤

J∑
n=d bJ e

µ(Nρ(n)) ≤
J∑

n=d bJ e

c5J
−λ−5

4 ≤ c6 | log ρ |−
λ−9
4 (24)

for some constant c6 (and ρ small enough) as J = ba| log ρ |c.

(II) Estimate of V1
ρ

Here we consider the case 1 ≤ n ≤ b bJ c. Following [6] we put

sp = 2p
An 2p − 1

An − 1
.

By [6] Lemma B.3 one has Nρ(n) ⊂ Nspρ(2pn) for any p ≥ 1, and in particular for
p(n) = b lg bJ − lg n c+ 1. Therefore

b bJ c⋃
n=1

Nρ(n) ⊂
b bJ c⋃
n=1

Nsp(n)ρ(2
p(n)n).

Now define
n′ = n2p(n) and ρ′ = sp(n)ρ.

A direct computation shows that 1 ≤ n ≤ b bJ c implies d bJ e ≤ n′ ≤ 2bJ and so

V1
ρ =

b bJ c⋃
n=1

Nρ(n) ⊂
b bJ c⋃
n=1

Nsp(n)ρ(2
p(n)n) ⊂

2bJ⋃
n′=d bJ e

Nρ′(n′).
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Therefore to estimate the measure of V1
ρ it suffices to find a bound for Nρ′(n′)

when n′ ≥ bJ . This is accomplished by using an argument analogous to the first
part of the proof. We replace all the n with n′ and ρ with ρ′. The cutoff J1/4 =
(b a | log ρ | c)1/4 remains unchanged. We get for b < 1/3

µ(Nρ′(n′)) ≤ c4 e−ς
′| log ρ′ |1/4 + c2n

′J−
λ−1
4 ≤ c7J−

λ−5
4

and thus obtain an estimate similar to (24):

µ(V1
ρ) ≤

2bJ∑
n′=d bJ e

µ(Nρ′(n′)) ≤
J∑

n′=d bJ e

c7J
−λ−5

4 ≤ c8| log ρ |−
λ−9
4 .

(III) Final estimate

Overall we obtain for all ρ sufficiently small

µ(Vρ) ≤ µ(V1
ρ) + µ(V2

ρ) ≤ C10 | log ρ |−
λ−9
4 ,

where C10 = c6 + c8.

Remark. If condition (5) is satisfied for some g ≥ h and if λ > 13 then P(Stρ,x = k)

converges almost surely to e−t t
k

k! as ρ→ 0.

Let ρj = e−j
α

, j = 1, 2, . . . , for some α ∈ (0, 1) so that αλ−9
4 > 1. Then by

Proposition 5.1 ∑
j

µ(Vρj ) ≤ C10

∑
j

j−α
λ−9
4 <∞

and by the Borel-Cantelli lemma, µ-almost every x lies in at most finitely many of
the sets Vρj . For any small ρ > 0 there is a j so that ρ ∈ [ρj , ρj−1). Then∣∣∣P(Stρ,x = k)− P(Stρj ,x = k)

∣∣∣ ≤ N t
ρj ,xµ(Bρ(x) \Bρj (x)) ≤ c1

µ(Bρj−1
(x) \Bρj (x))

µ(Bρj (x))

and using (5) with g ≥ h we conclude that∣∣∣P(Stρ,x = k)− P(Stρj ,x = k)
∣∣∣ ≤ c2ρg−hj jg(1−α) → 0

as ρ→ 0 (and thus j →∞) where we used that ρj − ρj−1 = ρjO(j−(1−α)). Hence

P(Stρ,x = k) converges for µ-almost every x to the limit e−t t
k

k! as ρ→ 0.

6. Recurrence under an absolutely continuous measure. Here we consider
measures that are absolutely continuous with respect to Lebesgue measure on the
unstable leaves.

Let d be the metric on M and T : M →M a C2-diffeomorphism with attractor
A . We assume that the system can be modeled by a Young tower possessing a
reference measure m̂, and that the greatest common divisor of the return times Ri
is equal to one. Let µ be the SRB measure on the attractor, that is µγu is absolutely
continuous with respect to Lebesgue ` on the unstable leaves γu where its density
function f is regular and bounded on unstable leaves γu: µγu(F ) =

∫
F
f d` for F

on an unstable leaf γu. By [27] 1
c ≤ f(x) ≤ c for a.e. x ∈ A and some c > 1. We

require Assumptions (A1), (A2) and (A3) to be satisfied with λ larger than 9. Note
that the attractor A ⊂M is given by

A =

∞⋃
i=1

Ri−1⋃
j=0

T jΛi.
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6.1. Regularity of the SRB measure µ. Let us note that by [6] Lemma B.2
there exists a ς > 0 and a set U ′ρ ⊂ M such that µ(U ′ρ) ≤ c1Ω(| log ρ |) for some c1
and so that µ(Bρ(x)) ≤ ρς for all ρ ∈ (0, 1] and all x 6∈ U ′ρ. Hence µ is geometrically
regular for ς.

The following proposition shows that the SRB measure µ is ξ-regular for any
ξ > 2

u (D + 1)− 1 where u ≥ 1 is the dimension of the unstable manifolds and D is
the dimension of M .

Proposition 6.1. Let u be the dimension of the unstable leaves and let w0 >
D + 2− u. Then for every a < λ−2

2 and w > w0 there exists a constant C11 and a
set U ′′ρ (w) ⊂M satisfying µ(U ′′ρ ) = O(((w − w0)| log ρ |)−a) such that

µ(Bρ+ρw(x) \Bρ(x)) ≤ C11µ(Bρ(x))((w − w0)| log ρ |)−a

for every ρ > 0 and for every x 6∈ U ′′ρ .

Proof. Put A = Bρ+ρw(x) \ Bρ(x). For s, l > 0 we let as in Section 4.3 Λ̃i = {x ∈
Λi : R(T̂ kx) ≤ s ∀k ≤ l}. Then as in (18) we use Lemma 4.7 to obtain for x 6∈ Dsl,s:

µ(A) ≤
∑
i

Ri−1∑
j=0

m(T−jA ∩ Λ̃i) + 2
√
slΩ(s)µ(Bρ)

≤
∑
i

Ri−1∑
j=0

∑
τ∈Ii,j,n

m(T−jA ∩ ζ̃τ ) + 2
√
slΩ(s)µ(Bρ)

≤
∑
i

Ri−1∑
j=0

∑
τ ′ | ∃ τ⊂τ ′

τ∈I
T−jA∩ ζτ′ 6=∅

m(T−jA ∩ ζ̃τ ′) + 2
√
slΩ(s)µ(Bρ)

≤ C ′3
∑
i

Ri−1∑
j=0

∑
τ ′ | ∃ τ⊂τ ′

τ∈I
T−jA∩ ζτ′ 6=∅

∫
mγ̂u(T̂ l(T−jA ∩ ζ̃τ ′))mγu(ζ̃τ ′) dν(γu)

+2
√
slΩ(s)µ(Bρ),

where |ζ̃τ ′ | ≤ αl. Here we proceeded as in (19) and put γ̂u = γu(T̂ lx) for some
x ∈ ζτ ′ ∩ γu. As before, the second term on the RHS estimates the contributions
from terms m(T−jA ∩ (Λi \ Λ̃i)) and from the tall beams where Ri > s.

Since the map T is C2 on M we get that ζ̃τ ′ ∩ γu are on nearly flat segment
of an unstable leaf γu, which allows us to estimate the measure of the intersection
A ∩ ζ̃τ ′ ∩ γu. Since the density of mγu is regular and bounded on γu we obtain

mγu(A ∩ ζ̃τ ′) ≤ c1ρu−1δρ = c1ρ
u−1+w

as δρ = ρw is the thickness of the annulus A. Here u denotes the dimension of the
unstable manifolds and distances are measured inside the unstable leaf. Moreover,
as T̂ l is one-to-one on ζ̃τ ′ , and as the map T expands distances on M by at most a
factor A at each iteration (i.e. the Jacobian is bounded by (Asl)u) we conclude that

mγ̂u(T̂ l(T−jA∩ ζ̃τ ′)) ≤ mγu(T̂ lT−jA∩Λ) ≤ c2(Asl)umγu(A∩ ζ̃τ ′) ≤ c3Anuρu−1+w,

where we put n = sl.
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Since T̂ lζ̃τ ′ = Λ if ζ̃τ ′ 6= ∅ (see Section 4.3 (II)) we obtain

µ(A) ≤ Anuρu−1+w
∑
i

Ri−1∑
j=0

∑
τ ′ | ∃ τ⊂τ ′

τ∈I
T−jA∩ ζτ′ 6=∅

m(ζ̃τ ′) + 2
√
nΩ(s)µ(Bρ)

≤ c4A
nuρu−1+w(ρ+ ρw + α

n
s )u + 2

√
nΩ(s)µ(Bρ)

Let w0 > D + 2 − u and define k(w) = w−w0

2u logA for w > w0. Then put s =⌈
k(w)| log ρ |η̃

⌉
and l =

⌊
| log ρ |1−η̃

⌋
, where η̃ ∈ (0, 1). Thus n = sl ≤ 2k(w)| log ρ |

and we obtain Anuρu−1+w = ρ−2uk(w) logA+u−1+w < ρD+1. We have ρD+1 ≤
µ(Bρ(x)) for all x 6∈ Û ′′ρ where Û ′′ρ ⊂ M is a small set whose measure is by [6]
Lemma A.1 bounded by O(ρ) for some constant C11. This implies

µ(A) ≤ c5µ(Bρ)
(
ρς
′
+ ας

′l +
√
n Ω(s)

)
≤ c6µ(Bρ)

(
ρς
′
+ ας

′| log ρ |1−η̃ + (k(w)| log ρ |)−η̃
λ−1
2 (k(w)| log ρ |) 1

2

)
≤ C11

(w − w0)a| log ρ |a
µ(Bρ)

for a constant C11 and for all ρ small enough. Since we can choose η̃ arbitrarily
close to 1, we obtain any exponent a < λ−2

2 . This applies for points x 6∈ U ′′ρ ,

where the measure of the forbidden set U ′′ρ = Û ′′ρ ∪ Dsl,s is bounded by O(1)((w −
w0)| log ρ |)−a.

6.2. Proof of Theorem 3. To prove this result we combine Theorems 1 and 2.
Let J = b a | log ρ | c as before, and take a = [4 log(‖DT ‖L∞ + ‖DT−1 ‖L∞)]−1.
Clearly the dimension ς of the measure mγu is equal to the dimension u and the
dimension ς̂ is less or equal to u. Thus ξ = ς(λ− 1)− ς̂ ≥ u(λ− 2).

Since by assumption D+2
u < λ we obtain D+ 2−u < ξ and therefore by the pre-

vious sub-section µ is geometric regular and ξ-regular provided one restricts to the
set M \Uρ, where Uρ(w) = U ′ρ ∪U ′′ρ (w) and µ(Uρ) ≤ c1((w−w0)| log ρ |)−a for some

c1 and any a < λ−2
2 . Let g(w) = C11(w − w0)−a, then g(w) satisfies the summa-

bility condition in Assumption (A4) for any β > 1
a >

2
λ−2 , and so (A4) is satisfied

outside the set Eρ =
⋃∞
n=J Uρ(nβ) whose measure is bounded by O(| log ρ |−a). The

measure of the very short return set

Vρ = {x ∈ A : Bρ(x) ∩ TnBρ(x) 6= ∅ for some 1 ≤ n < J}

has been estimated in Proposition 5.1.
With the forbidden set Zρ = Xρ ∪ Vρ ∪ Eρ whose size is bounded by

µ(Zρ) ≤ C ′′ | log ρ |−
λ−9
4

we get that for any point x ∈ A \ Zρ the function S counting the number of visits
to the ball Bρ(x) can be approximated by a Poissonian, that is∣∣∣∣P(S = k)− e−t t

k

k!

∣∣∣∣ ≤ C | log ρ |−κ for all k ∈ N0,

for any κ < λ−7
4 by the remark following the proof of Theorem 1. Now we set

Ĉ = max(C,C ′′).
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7. Poisson approximation theorem. This section contains the abstract Poisson
approximation theorem which establishes the distance between sums of {0, 1}-valued
dependent random variables Xn and a random variable that is Poisson distributed.
It is used in Section 4.5 in the proof of Theorem 1 and compares the number of
occurrences in a finite time interval with the number of occurrences in the same
interval for a Bernoulli process {X̃n : n}.
Theorem 7.1. [6] Let (Xn)n∈N be a stationary {0, 1}-valued process and t a positive

parameter. Let Sba =
∑b
n=aXn and define S := SN1 for convenience’s sake where

N = b t/ε c and ε = P(X1 = 1). Additionally, let ν be the Poisson distribution
measure with mean t > 0. Finally, assume that ε < t

2 . Then there exists a constant
C12 such that for any E ⊂ N0, and 2 ≤ p < N we have

|P(S ∈ E)− ν(E) | ≤ C12#{E ∩ [0, N ]} (N(R1 +R2) + pε)

where,

R1 = sup
0<j<N−p

0<q<N−p−j

{|P(X1 = 1 ∧ SN−jp+1 = q)− εP(SN−jp+1 = q) |}

R2 =

p∑
n=2

P(X1 = 1 ∧Xn = 1).

Proof. Let (X̃n)n∈N be a sequence of independent, identically distributed random

variables taking values in {0, 1}, constructed so that P(X̃1 = 1) = ε. Further assume

that the X̃n’s are independent of the Xn’s. Let S̃ =
∑N
n=1 X̃n. Then

|P(S ∈ E)− ν(E) | ≤ |P(S ∈ E)− P(S̃ ∈ E) |+ |P(S̃ ∈ E)− ν(E) |

≤
∑

k∈E∩[0,N ]

|P(S = k)− P(S̃ = k) |+
∞∑
k=0

∣∣∣∣P(S̃ = k)− tk

k!
e−t

∣∣∣∣
Thanks to [5] we can bound the second sum using the estimate

∞∑
k=0

∣∣∣∣P(S̃ = k)− tk

k!
e−t

∣∣∣∣ ≤ 2t2

N
. (25)

For summands of the remaining term we utilize the proof of Theorem 2.1 from [6]
according to which for every k ≤ N ,

|P(S = k)− P(S̃ = k) | ≤ 2N(R1 +R2 + pε2) + 4pε.

As N ≤ t/ε this becomes

|P(S = k)− P(S̃ = k) | ≤ 6 t (N(R1 +R2) + pε). (26)

Combining (25) and (26) yields

|P(S ∈ E)− ν(E) | ≤
∑

k∈E∩[0,N ]

|P(S = k)− P(S̃ = k) | +
2t2

N

≤
∑

k∈E∩[0,N ]

6 t (N(R1 +R2) + pε) +
2t2

t/ε− 1

≤ 6 t#{E ∩ [0, N ]} (N(R1 +R2) + pε) + 4 tε

≤ C12#{E ∩ [0, N ]} (N(R1 +R2) + pε)

for some C12 <∞.
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