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Abstract
We show that for planar dispersing billiards the distribution of return times is,
in the limit, Poisson for metric balls almost everywhere w.r.t. the SRB (Sinai–
Ruelle–Bowen) measure. Since the Poincaré return map is piecewise smooth
but becomes singular at the boundaries of the partition elements, recent results
on the limiting distribution of return times cannot be applied, as they require
the maps to have bounded second derivatives everywhere. We first prove the
Poisson limiting distribution assuming exponentially decaying correlations. For
the case where the correlations decay polynomially, we induce on a subset on
which the induced map has exponentially decaying correlations. We then prove
a general theorem according to which the limiting return times statistics of the
original map and the induced map are the same.

Keywords: rare events, point processes, billiards
Mathematics Subject Classification: 37A50, 37D50, 60G70, 60G55

1. Introduction

The purpose of this work is to study the statistical laws governing the occurrence of rare events
for billiards. The starting point is the analysis of stationary stochastic processes X0, X1, . . .

generated by the dynamics of the billiards considered. A billiard map (T , X, µ) is a measure
preserving transformation T : X → X of a phase space X which preserves a volume measure
µ. The stationary stochastic processes that we consider will be generated by the time series
{φ ◦T j } generated by an observable φ : X → R which is maximized at a unique point ζ ∈ X.
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The rare events will be the exceedances of a high threshold u, meaning the occurrences of the
event Xj > u, for some j ∈ N0, which correspond to the entrance of the orbit, at time j ∈ N0,
into a small region of the phase space, namely into a small neighbourhood of the point ζ .

We will consider rare event point processes (REPPs), which keep a record of the number
of exceedances (or entrances into certain small balls around ζ ) in a certain normalized time
interval and show that for certain planar billiards, these REPP converge typically to a Poisson
process. We postpone the formal definition of the REPP to section 2.1, but in order to illustrate
our main results in a more intuitive way, we introduce the random variable

Nn(t) = #

{
i = 0, . . . ,

⌊
t

P(X0 > un)

⌋
: Xi > un

}
, (1)

which counts the number of exceedances among the first �t/P(X0 > un)� random variables of
the process, where P is a probability on the space of realizations of the stochastic process that
makes it stationary and (un)n∈N is a sequence chosen such that un → uF := ess sup |X0| and
hence P(X0 > un) → 0. The probability P is given by the invariant measure µ and we will
use these interchangeably.

Recently Chazottes and Collet [6] showed that for any two-dimensional dynamical system
(T , X, µ) modelled by a Young tower which has bounded derivative and exponential tails (and
hence exponential decay of correlations for Hölder observations), then for µ-a.e. point ζ ∈ X,
if Br(ζ ) is a ball of radius r about ζ , then

µ


x ∈ X :

⌊
t

µBr (ζ )

⌋
∑
j=0

1Br (ζ )(T
jx) = k


→ e−t t

k

k!

as r → 0. Our result implies this Poisson law for shrinking balls about generic points for
a broad class of billiard systems. This was then extended to polynomial decay for tails and
correlations in [17,25]. Both results also gave rates of convergence: the error is a positive power
of the diameter in the exponential case and a negative power of the logarithm of the diameter in
the polynomial case. Unfortunately, those results rely on the boundedness of the derivative of
T (i.e. |DT |∞ < C < ∞) and therefore do not apply to exponentially or polynomially mixing
Sinai dispersing billiards since those have unbounded derivatives.

Our goal is to show that for planar Sinai dispersing billiards (with finite or infinite horizon)
and also for certain billiard systems with polynomial decay of correlations, the REPP, typically,
converges in distribution to a standard Poisson process, where the thresholds un converge to
the maximum value attainable (and the corresponding neighbourhoods shrink to ζ ) in a scaled
way. This means that, with such a scaling, the REPP convergence to a standard Poisson occurs
for a.e. point ζ chosen in the phase space, with respect to the invariant measure, which, in the
setting of billiards, is equivalent to the Lebesgue measure.

Note that there are two perspectives from which to look at rare events in a dynamical
setting: one consists in looking at the exceedances as extreme values for the random variables
Xj , for j ∈ N0, in which case one uses tools of extreme value theory; the other consists
in looking at rare events as hits on or returns to small sets for the orbits in the phase space,
a phenomenon which is tied to that of recurrence. Motivated by the work of Collet [9],
in [11, 12] the authors established formally a connection between the existence of extreme
value laws (EVL) for X0, X1, . . ., i.e., the existence of a distributional limit for the maximum
of the first n variables of the process, and the existence of hitting times statistics (HTS), i.e., the
existence of a distributional limit for the normalized hitting time for shrinking neighbourhoods
of the point ζ . In this way, these two perspectives were shown to be linked and essentially one
can look at them just as two sides of the same coin.
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(a) A Bunimovich stadium. (b) Flower like stadia.

Figure 1. Some polynomially mixing billiards.

Our proofs are based upon extreme value theory and some remarkable ideas of Collet [9].
These techniques are especially powerful in the setting of billiards, which have strong
hyperbolic properties and preserve a volume measure. We first give proofs for Sinai dispersing
billiards, and then show how recent work of Chernov and Zhang [8] and Markarian [23] allows
us to extend these results to billiards with polynomial decay by inducing on a subset for which
the return map has good hyperbolic properties.

To illustrate the kinds of billiards to which we can apply our results we refer the reader
to Chernov and Zhang [8], where examples of polynomially mixing billiards can be found.
In particular, we mention: semi-dispersing billiards in rectangles with internal scatters,
Bunimovich stadia, Bunimovich flower-like regions and skewed stadia (see figure 1). As
a consequence of the convergence of the REPP to the Poisson process, stated in theorems 2.4
and 2.5 below, we can assert in more general terms that for stationary stochastic processes
X0, X1, . . ., as mentioned above, arising from the dynamics of Sinai dispersing billiards (with
finite or infinite horizon), of the Bunimovich stadia or of Bunimovich flower-like billiards,
then for a.e. ζ chosen in the phase space, we have that, for all t > 0 and k ∈ N0,

lim
n→∞ P(Nn(t) = k) = e−t t

k!
. (2)

We mention that after this paper was submitted, in [24], Pène and Saussol, using recurrence
rates to cope with the short returns, generalized the main result of Chazottes and Collet, given
in [6], which, in particular, also allowed them to obtain the same limit in (2) for billiards with
polynomial decay of correlations such as the Bunimovich stadia. For another generalization
of the Chazottes–Collet result, see also [17, 25]. Also, see [26] for related results under
exponential decay of correlations.

2. The setting and a statement of results

Let (T , X, µ) be an ergodic transformation of a probability space. We suppose that X is
embedded in a Riemannian manifold of dimension d. Suppose that the time series X0, X1, . . .

arises from such a system simply through evaluation of a given observable ϕ : X → R∪{±∞}
along the orbits of the system, or, in other words, the time evolution given by successive
iterations by T :

Xn = ϕ ◦ T n, for each n ∈ N. (3)

Clearly, X0, X1, . . . defined in this way is not an independent sequence. However, the
T -invariance of µ guarantees that this stochastic process is stationary.
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We suppose that the r.v. ϕ : X → R ∪ {±∞} achieves a global maximum at ζ ∈ X (we
allow ϕ(ζ ) = +∞). We assume that ϕ and µ are sufficiently regular that, for u sufficiently
close to uF := ϕ(ζ ), the event

U(u) := {x ∈ X : ϕ(x) > u} = {X0 > u}
corresponds to a topological ball centred at ζ . Moreover, the quantity µ(U(u)), as a function
of u, varies continuously on a neighbourhood of uF .

We are interested in studying the extremal behaviour of the stochastic process X0, X1, . . .

which is tied to the occurrence of exceedances of high levels u. The occurrence of an
exceedance of level u at time j ∈ N0 means that the event {Xj > u} occurs, where u is
close to uF . Observe that a realization of the stochastic process X0, X1, . . . is achieved if we
pick, at random and according to the measure µ, a point x ∈ X, compute its orbit and evaluate
ϕ along it. Then saying that an exceedance occurs at time j means that the orbit of the point
x hits the ball U(u) at time j , i.e., T j (x) ∈ U(u).

For more details on the choice of the observables such that the above properties hold and
the link between extreme values and hitting/returns to small sets endures, we suggest that the
readers look at [14, section 4.1]. However, for definiteness we mention that a possible choice
for ϕ in this setting, where the invariant measure µ will be equivalent to the Lebesgue measure,
is the following: consider some point ζ ∈ X and take

ϕ(x) = − log(dist(x, ζ )), (4)

where dist(·, ·) denotes the usual Euclidean metric in X.
For technical reasons, due to the techniques prevailing in extreme value theory, we will

consider sequences (un)n∈N such that

lim
n→∞ nµ(X0 > un) = τ, (5)

for some τ > 0. The motivation for using such normalizing sequences comes from
the case when X0, X1, . . . are independent and identically distributed (i.i.d.). Let Mn =
max{X0, . . . , Xn−1}. In this i.i.d. setting, it is clear that P(Mn � u) = (F (u))n, where F is
the d.f. of X0, i.e., F(x) := P(X0 � x). Hence, condition (5) implies that

P(Mn � un) = (1 − P(X0 > un))
n ∼

(
1 − τ

n

)n

→ e−τ ,

as n → ∞. This means that the waiting times between exceedances of un are approximately
exponentially distributed.

For example, if ϕ is given as in (4) and if µ has a density with respect to the
Lebesgue measure m where ρ(ζ ) := dµ

dm
(ζ ), then the scaling constants can be chosen as

un = (1/d) log n + ρ(ζ ).

2.1. Rare event point processes

Before we give the formal definition for REPP, we introduce some formalism. Let S denote
the semi-ring of subsets of R

+
0 whose elements are intervals of the type [a, b), for a, b ∈ R

+
0 .

Let R denote the ring generated by S. Recall that if J ∈ R, there are k ∈ N and k intervals
I1, . . . , Ik ∈ S such that J = ∪k

i=1Ij . In order to fix notation, let aj , bj ∈ R
+
0 be such

that Ij = [aj , bj ) ∈ S. For I = [a, b) ∈ S and α ∈ R, we define αI := [αa, αb)

and I + α := [a + α, b + α). Similarly, for J ∈ R define αJ := αI1 ∪ · · · ∪ αIk and
J + α := (I1 + α) ∪ · · · ∪ (Ik + α).

Definition 2.1. For stationary stochastic processes X0, X1, . . . and sequences (un)n∈N

satisfying (5), we define the REPP by counting the number of exceedances (or hits of U(un))
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during the (rescaled) time period vnJ ∈ R, where J ∈ R, and vn := 1/µ(X0 > un) is,
according to Kac’s theorem, the expected waiting time before the occurrence of one exceedance.
To be more precise, for every J ∈ R, set

Nn(J ) :=
∑

j∈vnJ∩N0

1{Xj >un}.

Our main result states that the REPP Nn converges in distribution to a standard Poisson
process. For the sake of completeness, we give next the meaning of convergence in distribution
of point processes and also the definition of a standard Poisson process. (See [20] for more
details.)

Definition 2.2. Suppose that (Nn)n∈N is a sequence of point processes defined on S and N

is another point process defined on S. Then, we say that Nn converges in distribution to N

if the sequence of vector random variables (Nn(J1), . . . , Nn(Jk)) converges in distribution to
(N(J1), . . . , N(Jk)), for every k ∈ N and all J1, . . . , Jk ∈ S such that N(∂Ji) = 0 a.s., for
i = 1, . . . , k.

Definition 2.3. Let T1, T2, . . . be an i.i.d. sequence of random variables with common
exponential distribution of mean 1. Given this sequence of r.v., for J ∈ R, set

N(J ) = #


i ∈ N :

i∑
j=1

Tj ∈ J


 .

We say that N defined this way is a standard Poisson process.

To simplify the notation, whenever J = [0, t) for some t > 0 then we will write

Nn(t) := Nn([0, t))) and N(t) := N([0, t)).

Note that Nn(t) just defined is consistent with (1).

Remark 2.3.1. The random variable N(J ) has distribution

P(N(J ) = k) = e−m(J ) m(J )k

k!
.

where m(J ) is the Lebesgue measure of J .

Remark 2.3.2. In the literature, the study of rare events is often tied to the existence of EVLs
or the existence of HTS and return times statistics (RTS). The existence of EVL has to do
with the existence of distributional limits for Mn = max{X0, . . . , Xn−1}. On the other hand,
the existence of exponential HTS means the existence of a distributional limit for the elapsed
time until the orbit hits certain balls around ζ , when properly normalized. When the orbit
starts in the target ball around ζ and consequently we look at the first return (rather than hit)
and its limit distribution, then we say that we have RTS, instead. Since no exceedances of un

up to time n means that there are no entrances into a certain ball around ζ , the existence of
EVLs is equivalent to the existence of HTS (see [11,12]). Moreover, in [16] it was proved that
an integral formula relates the distributions of HTS and RTS, which in particular yields the
standard exponential distribution as its unique fixed point. We note also that certain extreme
value statistics lift from base transformations to suspension flows [19].

Remark 2.3.3. Observe that the definition that we give here of the REPP is related to the EVL
approach. In fact, the REPP defined here can be identified as the exceedance point process
defined in [11, section 3]. One can define germane point processes that were referred to as
hitting times point processes, again in [11, section 3]. We note that by [11, theorems 3 and
4], the convergence of the REPP to a Poisson process can be reformulated in terms of the
convergence of the hitting times point processes to the Poisson process, as well.
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Remark 2.3.4. The convergence of the REPP to the Poisson process is stronger than the
existence of an EVL for X0, X1, . . .. In particular, not only can we recover the distributional
limit for the maxima by observing that {Mn � un} = {Nn(n/vn) = 0}, but also we can
obtain the distributional limit of the order statistics. Namely, if X1,n � X2,n � . . . � Xn,n

denote the order statistics of the first n random variables of the process, then {Xn−k,n � un} =
{Nn(n/vn) � k}.

Leadbetter [21] introduced some conditions on the dependence structure of general
stationary stochastic processes, called D(un) and D′(un), which can be used to prove the
convergence of REPP to the Poisson process (see [22, section 5]). However, condition D(un),
which imposes some sort of uniform mixing, is often too strong to be verified in a dynamical
setting. Recently, Freitas et al [11] gave an alternative condition, named D3(un), which
together with the original D′(un) was enough to prove the convergence of the REPP Nn in
distribution to the standard Poisson process that we denote by N . This is precisely the statement
of [11, theorem 5]. The great advantage of this weaker condition D3(un) is that it is much
easier to check in a dynamical setting.

We will show that the stochastic processes arising from the billiard systems considered
satisfy both the conditions D3(un) and D′(un). Hence, we give next the precise formulation
of the two conditions.

For every A ∈ R we define

M(A) := max{Xi : i ∈ A ∩ Z}.
In the particular case where A = [0, n) we simply write, as before, Mn = M([0, n)). Also
note that {M(A) � un} = {Nn(v

−1
n A) = 0}.

Condition (D3(un)). We say that D3(un) holds for the sequence X0, X1, . . . if there exists
γ (n, t) nonincreasing in t for each n, and nγ (n, tn) → 0 as n → ∞ for some sequence
tn = o(n) (which means that tn/n → 0 as n → ∞) such that

|P ({X0 > un} ∩ {M(A + t) � un}) − P(X0 > un)P(M(A) � un)| � γ (n, t),

for all A ∈ R and t ∈ N.

This last condition is reminiscent of the α-mixing property that is often used for describing
rates of mixing with respect to partitions. In some sense the partition here is given by a
neighbourhood ({X > un} of ζ and its complement. The increment t here plays the role
of the ‘gap’ which is needed to obtain a speed of mixing, where the events {X0 > un} and
{M(A + t) � un} become increasingly independent as t → ∞. Here however, the rate of
mixing γ is not uniform in n for a given value of t , but its dependence on n is sufficiently weak
as to still allow for good limiting statistics. It is specially adapted to the problem of counting
exceedances. Using the decay of correlations of the billiard systems considered, we will verify
it for the stochastic processes arising from such systems.

Condition (D′(un)). We say that D′(un) holds for the sequence X0, X1, X2, . . . if

lim
k→∞

lim sup
n→∞

n

�n/k�∑
j=1

P(X0 > un, Xj > un) = 0. (6)

While D3(un) is a condition on the long range dependence structure of the stochastic
process X0, X1, . . ., D′(un) is instead a condition on the short range dependence structure
which inhibits the appearance of clusters of exceedances. In other words, if we break the
first n random variables into blocks of size �n/k�, then D′(un) restricts the existence of more
than one exceedance in each block, which means that the exceedances should appear scattered
through the time line.
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2.2. Planar dispersing billiards.

Let 	 = {	i, i = 1, . . . , k} be a family of pairwise disjoint, simply connected C3 curves with
strictly positive curvature on the two-dimensional torus T

2. The billiard flow Bt is the dynam-
ical system generated by the motion of a point particle in Q = T

2/(∪k
i=1( interior 	i)) with

constant unit velocity insideQ and with elastic reflections at ∂Q = ∪k
i=1	i , where elastic means

‘angle of incidence equals angle of reflection’. If each 	i is a circle, then this system is called a
periodic Lorentz gas, a well-studied model in physics [3]. The billiard flow is Hamiltonian and
preserves a probability measure (which is the Liouville measure) µ̃ given by dµ̃ = CQ dq dt

where CQ is a normalizing constant and the q ∈ Q, t ∈ R, are Euclidean coordinates.
We first consider the billiard map T : ∂Q → ∂Q. Let r be a one-dimensional

coordinatization of 	 corresponding to length and let n(r) be the outward normal to 	 at
the point r . For each r ∈ 	 we consider the tangent space at r consisting of unit vectors v

such that (n(r), v) � 0. We identify each such unit vector v with an angle θ ∈ [−π/2, π/2].
The boundary M is then parametrized by M := ∂Q = 	 × [−π/2, π/2], so M consists
of the points (r, θ). T : M → M is the Poincaré map that gives the position and angle
T (r, θ) = (r1, θ1) after a point (r, θ) flows under Bt and collides again with M , according
to the rule ‘angle of incidence equals angle of reflection’. Thus if (r, θ) is the time of flight
before collision, then T (r, θ) = Bh(r,θ)(r, θ). The billiard map preserves a probability measure
dµ = cM cos θ dr dθ equivalent to the two-dimensional Lebesgue measure dm = dr dθ with
density ρ(x) = cM cos θ where x = (r, θ) and cM is a normalizing constant, to ensure that the
invariant measure is a probability measure, i.e. has total mass 1.

We define the time of flight, h : ∂Q → R, by h(x, r) = min{t > 0 : Bt(x, r) ∈ ∂Q}, i.e.
the flow time that it takes for a point on the boundary of Q to return to the boundary. Under
the assumption of a finite horizon condition, namely, that the time of flight h(r, θ) is uniformly
bounded above, Young [27] proved that the billiard map has exponential decay of correlations
for Hölder observations. The strategy relied on building a Gibbs–Markov structure, that is
now usually called a Young tower, with a corresponding induced map bearing nice hyperbolic
properties. Then the idea was to pass the good statistical properties of the induced map to the
original system, in which the tail of the inducing time ended up playing a prominent role—in
particular, in the determination of the system’s mixing rates. This settled a long-standing
question about the rate of decay of correlations in such systems. Chernov [7] extended this
result to planar dispersing billiards with piecewise C3 smooth boundaries and where the flight
time h(x, r) can become singular along countable numbers of smooth curves. Chernov also
proved exponential decay for dispersing billiards with corner points (a class of billiards that
we do not discuss in this paper). Good references for background results for this section are
the papers [4, 5, 7, 27].

Our first theorem is as follows.

Theorem 2.4. Let T : M → M be a planar dispersing billiard map. Consider that the
stochastic process X0, X1, . . . is given as in (3) for observables ϕ of the type considered above.
Then for µ-a.e. ζ , conditions D3(un) and D′(un) hold for X0, X1, . . . and sequences (un)n∈N

satisfying (5). Consequently, the REPP Nn given in definition 2.1 converges in distribution to
the standard Poisson process.

Remark 2.4.1. Observe that the convergence of the REPP Nn to the Poisson process N implies
that Nn(t) converges in distribution to N(t) for all t > 0. In particular, for each t > 0 and
each integer k ∈ N0,

lim
n→∞ µ(Nn(t) = k) = µ(N(t) = k) = e−t t

k

k!
,

which is exactly the statement of (2).
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The strategy for proving theorem 2.4 is to show the validity of conditions D3(un) and
D′(un) for various dynamical systems modelled by Young towers, in particular dispersing
planar billiards. The proof of D′(un) has been given in Gupta et al [15] but we reproduce it for
completeness in section 3.1. The proof of D3(un) is similar to the proof for a related condition
D2(un) (useful in establishing the existence of EVL) given in [15].

2.3. Billiards with polynomial mixing rates

In [27], Young introduced a Gibbs–Markov structure (which became known as a Young tower)
which she used to study dispersing billiards with exponential decay of correlations. Later
on, Markarian [23] developed an elegant technique for using inducing to establish polynomial
upper bounds for rates of decay of correlation in certain billiard systems. Young [28] had
used coupling to establish polynomial decay for certain non-uniformly expanding maps and
Markarian’s ideas built upon this work.

Markarian’s idea was to find a subset M ⊂ X on which the first-return map F : M → M

has strong hyperbolic behaviour, and in particular admits a Young tower with exponential tails.
His approach was subsequently extended by Chernov and Zhang [8] to many billiard systems
exhibiting polynomial decay.

Notation: Given a finite measure µ on X and a measurable set A ⊂ X (µ(A) > 0), we denote
by µA the corresponding conditional measure on A, i.e. µA(B) = µ(A∩B)/µ(A) for B ⊂ X

measurable.
The first-hitting-time function going to M is given by

rM(x) := min{j � 1 : T j (x) ∈ M} (7)

and measures the time until the orbit of a point x ∈ X enters M . The induced map F : M �
is then given by F = T rM and its invariant measure is the normalized measure µM . If the tails
for the return time decay polynomially, that is if µ(x ∈ X : rM(x) > n) = O(n−a) for some
constant a > 0, then, as shown by Markarian [23],∣∣∣∣

∫
φ ψ ◦ T n dµ −

∫
φ dµ

∫
ψ dµ

∣∣∣∣ � Cn−a‖φ‖Lip‖ψ‖Lip (8)

for some constant C. This allows us to extend our results above on Poisson limit laws to the
setting of billiards with polynomial mixing rates, by first inducing on M and then realizing
T : X → X as a first-return-time tower over (F, M, µM).

Theorem 2.5. Suppose that (T , X, µ) is a billiard system with SRB measure µ and M ⊂ X is
a subset such that the first-return map F : M → M admits the structure of a Young tower with
exponential tails. Suppose further that the function rM , defined in (7), is integrable with respect
to µ. Consider now that the stochastic process X0, X1, . . . is given as in (3) for observables ϕ

of the type considered above. Then for µ-a.e. ζ , the REPP Nn given in definition 2.1 converges
in distribution to the standard Poisson process.

The idea for proving theorem 2.5 is to use the same strategy as was used for dispersing
billiards to show that for the first-return-time map F : M → M and for the stochastic processes
that it gives rise to, we have convergence of the point processes Nn to the standard Poisson
process, µ-a.e. Then we use an idea introduced in [2], which essentially says that the original
system T shares the same property of the first-return-time map F , meaning that for stochastic
processes arising from the dynamics of T we also have that the point processes Nn converge
to the standard Poisson process, for µ-a.e. ζ . Unfortunately, the original statement of [2]
only allows to conclude that if the first-return-time map F has exponential HTS/RTS for balls
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around µ-a.e. ζ , then the original system T also has the same property. However, as remarked
in [2], a small adjustment to the argument used there allows one to prove the stronger statement
that the same holds for the convergence of point processes to the standard Poisson process.
For completeness, we state here such a result and prove it in section 4.

In order to distinguish objects of the induced system F from the corresponding objects of
the original system, we will use the symbol ·̂ over these objects. In particular we will write
µ̂ := µM . Let ζ ∈ M and ϕ be an observable as above, which achieves a global maximum
at ζ .

This new induced system gives rise to a new set of random variables

X̂n = ϕ ◦ Fn.

We can thus consider N̂n(J ) for J ∈ S and v̂ = 1/µ̂(X̂0 > un) defined analogously to
Nn(J ) in definition 2.1 for the original system.

Proposition 2.6. Suppose that (T , X, µ) is a dynamical system with µ absolutely continuous
with respect to the Lebesgue measure, and that M ⊂ X is a measurable set with µ(M) > 0,
and let F : M → M denote the first-return induced map. Assume that N̂n converges in
distribution (w.r.t. µ̂) to a standard Poisson process N , for µ̂-a.e. ζ ∈ M . Then for the original
map (T , X, µ) we can say that Nn converges in distribution (w.r.t. the measure µ) to a standard
Poisson process for µ-a.e. point ζ ∈ M .

We remark that the statement of [2], which said that the limit distribution for HTS/RTS
for the induced map F was equal, at µ-a.e. point ζ , to the respective HTS/RTS distributional
limit for the original system T , was extended in [18] by removing the µ-a.e. point ζ restriction.
In an ongoing work concerning an extremal dichotomy for intermittent maps, the first-named
author with A C M Freitas, M Todd and S Vaienti have proved an extension of the [18] result
to include the convergence of point processes, which implies proposition 2.6.

3. Condition D3(un) for Young towers with exponential tails

We will make an assumption on the invariant measure µ, which is automatically satisfied for
planar billiard maps. We assume the following.

Assumption A : For µ-a.e. ζ ∈ M there exists q̄ := q̄(ζ ) > 0 such that if Ar,ε(ζ ) = {y ∈
M : r � d(ζ, y) � r + ε} is a shell of inner radius r and outer radius r + ε about the point ζ

and if r is sufficiently small, 0 < ε  r < 1, then µ(Ar,ε(ζ )) � εq̄ .

Assumption A is satisfied by planar dispersing billiards with finite and infinite horizons
as the invariant measure is equivalent to the Lebesgue one. This is proved in [5, appendix 2]
where it is shown that q̄ may be taken as 1 in the case of a finite horizon and 4/5 in the case
of an infinite horizon.

The Young tower assumption implies that there exists a subset � ⊂ M such that � has a
hyperbolic product structure and that (P1)–(P4) of [27] hold. We refer the reader to Young’s
paper [27] and the book by Baladi [1] for details. A similar axiomatic construction of a tower
is given by Chernov [7], which is a good reference for background on dispersing billiard maps
and flows.

By taking T to be a local diffeomorphism, we allow the map T or its derivative to have
discontinuities or singularities.

Next we describe briefly the structure of a Young tower with exponential return time
tails for a local diffeomorphism T : M → M of a Riemannian manifold M equipped with
Lebesgue measure m. There is a set � with a hyperbolic product structure as in Young [27]
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and we assume that there is an L 1(m) return time function R : �0 → N. Moreover assume
that there is a countable partition �0,i of �0 such that R is constant on each partition element
�0,i . We put Ri := R|�0,i

. Now the Young tower is defined by

� =
⋃

i∈N,0�l�Ri−1

{(x, l) : x ∈ �0,i}

and the tower map F : � → � by

F(x, l) =
{
(x, l + 1) if x ∈ �0,i , l < Ri − 1
(T Ri x, 0) if x ∈ �0,i , l = Ri − 1

.

We will refer to �0 := ∪i (�0,i , 0) as the base of the tower � and define �i := �0,i .
Similarly we call �l = {(x, l) : l < R(x)} the lth level of the tower. Define the return
map f = T R : �0 → �0 by f (x) = T R(x)(x). We may form a quotiented tower (see [27]
for details) by introducing an equivalence relation for points on the same stable manifold. We
now list the features of the tower that we will use.

There exists an invariant measure m0 for f : �0 → �0 which has absolutely continuous
conditional measures on local unstable manifolds in �0, with density bounded uniformly from
above and below.

There exists an F -invariant measure ν on � which is given by ν(B) = m0(F
−lB)∫

�0
R dm0

for

measurable B ⊂ �l , and extended to the entire tower � in the obvious way. There is a
projection π : � → M given by π(x, l) = T l(x) which semi-conjugates F and T , that is it
satisfies π ◦F = T ◦π . The invariant measure µ, which is an SRB measure for T : M → M ,
is then given by µ = π∗ν. Denote by Ws

ε (x) the local stable manifold through x, i.e. there
exist ε(x) > 0, C > 0, 0 < α < 1 such that

Ws
ε (x) = {y : d(x, y) < ε, d(T ny, T nx) < Cαn ∀n � 0}.

We use the notation Ws
loc(x) rather than Ws

ε (x) in contexts where the length of the local
stable manifold is not important. Analogously one defines the local unstable manifold Wu

loc(x).
Let B(x, r) denote the ball of radius r centred at the point x. We lift a function φ : M → R

to � by defining, with abuse of notation, φ(x, l) = φ(T lx).
Under the assumption of exponential tails, that is if m(R > n) = O(θn) for some

0 < θ < 1, then from the computations in [27] one can deduce that there exists 0 < θ1 < 1
such that for all Lipschitz φ, ψ we have∣∣∣∣

∫
φψ ◦ T n dµ −

∫
φ dµ

∫
ψ dµ

∣∣∣∣ � Cθn
1 ‖φ‖Lip‖ψ‖Lip (9)

for some constant C. Moreover, if the lift of ψ is constant on local stable leaves of the Young
tower, then ∣∣∣∣

∫
φψ ◦ T n dµ −

∫
φ dµ

∫
ψ dµ

∣∣∣∣ � Cθn
1 ‖φ‖Lip‖ψ‖∞. (10)

As before, let ζ be in the support of µ and define a stochastic process Xn given by
Xn(x) = − log d(T nx, ζ ). In the remainder of this section we establish condition D3(un) for
maps modelled by a Young tower with exponential tails satisfying assumption A. Our main
theorem for this section is as follows.

Theorem 3.1. Let T : (M, µ) → (M, µ) be a dynamical system modelled by a Young tower
with exponential tails satisfying assumption A. Then the stochastic process X0, X1, . . . defined
as in (3) satisfies the condition D3(un).
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Proof. For ζ ∈ M , we first define

Br,k(ζ ) = {x : T k(Ws
ε (x)) ∩ ∂B(ζ, r) �= ∅} ,

and obtain as an immediate consequence of assumption A the following:

Proposition 3.2. Under assumption A there exist constants C > 0 and 0 < τ1 < 1 such that
for any r, k,

µ(Br,k(ζ )) � Cτk
1 . (11)

Proof. As a consequence of the uniform contraction of local stable manifolds [27, (P2)],
there exist α ∈ (0, 1) and c1 > 0 such that d(T n(x), T n(y)) � c1α

n for all y ∈ Ws
ε (x). In

particular, this implies that |T k(Ws
ε (x))| � c1α

k where | · | denotes the length with respect to
the Lebesgue measure. Therefore, for every x ∈ Br,k(ζ ) the leaf T k(Ws

ε (x)) lies in an annulus
of width 2c1α

k around ∂B(ζ, r). By assumption A and the invariance of µ, the result follows,
with C = (2c1)

q̄ and τ1 = αq̄ . �

We now continue the proof of theorem 3.1. The constant τ1 below is from proposition 3.2.
Let A ∈ S such that A = ∪l

j=1[aj , bj ), and define IA = [a1, bl].

Lemma 3.1. Suppose that � : M → R is Lipschitz and �A is the indicator function

�A := 1{M(A)�un}.

Then, for all j � 0,∣∣∣∣
∫

��A ◦ T j dµ −
∫

� dµ

∫
�A dµ

∣∣∣∣ � O(1)
(
‖�‖∞τ

�j/2�
1 + ‖�‖Lipθ

�j/2�
)

. (12)

Proof. Define the function �̃ : � → R by �̃(x, r) = �(T r(x)) and define the function
�̃A(x, r) = �A(T r(x)). We choose a reference unstable manifold γ̃ u ⊂ �0, and by the
hyperbolic product structure each local stable manifold Ws

ε (x) will intersect γ̃ u at a unique
point x̂. Here x denotes a point in the base of the tower �0 and we therefore have x ∈ Ws

ε (x̂).
We define the function �A(x, r) := �A(x̂, r). We note that �A is constant along stable

manifolds in � and that the set of points where �A �= �̃A is, by definition, the set of (x, r)

which project to points T r(x) for which there exist x1, x2 on the same local stable manifold as
T r(x) for which

x1 ∈ {M(A) � un}
but

x2 /∈ {M(A) � un}.
This set is contained inside ∪a1+bl

k=a1
T −kBun,k(ζ ). If we let a1 � �j/2�, then by proposition 3.2

we have

ν
{
�̃�j/2�,�j/2�+bl

�= ��j/2�,�j/2�+bl

}
�

∞∑
k=�j/2�

µ(Bun,k) � O(1)τ
�j/2�
1 .

By the decay of correlations as proved in [27] under the assumption of exponential tails, we
have∣∣∣∣
∫

�̃�A+�j/2� ◦ F j−�j/2� dν −
∫

�̃ dν

∫
�A+�j/2� dν

∣∣∣∣ � O(1)‖�‖Lip‖�‖∞θ �j/2�.
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Recall that∣∣∣∣
∫

��A+�j/2� ◦ T j−�j/2� dµ −
∫

� dν

∫
�A+�j/2� dµ

∣∣∣∣
=
∣∣∣∣
∫

�̃�̃A+�j/2� ◦ F j−�j/2� dν −
∫

�̃ dν

∫
�̃A+�j/2� dν

∣∣∣∣.
We will use the identity

∫
φ̃ψ̃ ◦ F − ∫ φ̃

∫
ψ̃ = ∫ φ̃(ψ̃ ◦ F − ψ̄ ◦ F) +

∫
φ̃ψ̄ ◦ F − ∫ φ̃

∫
ψ̄ +∫

φ̃
∫

ψ̄ − ∫ φ̃
∫

ψ̃ . Thus∣∣∣∣
∫

��A+�j/2� ◦ T j−�j/2� dµ −
∫

� dν

∫
�A+�j/2� dµ

∣∣∣∣
=
∣∣∣∣
∫

�̃�̃A+�j/2� ◦ F j−�j/2� dν −
∫

�̃ dν

∫
�̃A+�j/2� dν

∣∣∣∣
�
∣∣∣∣
∫

�̃
(
�̃A+�j/2� − �A+�j/2�

)
◦ F j−�j/2� dν

∣∣∣∣ + O(1)‖�‖Lipθ �j/2�

+

∣∣∣∣
∫

�̃ dν

∫ (
�A+�j/2� − �̃A+�j/2�

)
dν

∣∣∣∣
� O(1)

(
2‖�‖∞ν

{
�A+�j/2� �= �̃A+�j/2�

}
+ ‖�‖Lipθ �j/2�

)

� O(1)
(
‖�‖∞τ

�j/2�
1 + ‖�‖Lipθ �j/2�

)
. (13)

We complete the proof by observing that
∫

�A dµ = ∫ �A+�j/2� dµ by the µ-invariance of T

and that �A+�j/2� ◦ T j−�j/2� = �A+j = �A ◦ T j . �
To prove condition D3(un), we will approximate the characteristic function of the set

Un = {X0 > un} by a suitable Lipschitz function. This approximation will decrease sharply
to zero near the boundary of the set Un. The bound in lemma 3.1 involves the Lipschitz norm;
therefore, we need to be able to bound the increase in this norm.

We approximate the indicator function 1Un
by a Lipschitz continuous function �n as

follows. Since Un is a ball of some radius rn ∼ 1√
n

centred at the point ζ , we define �n to be 1

inside a ball centred at ζ of radius rn − n
− 2

q̄ , where q̄ comes from assumption A and decaying
to 0, so on the boundary of Un, �n vanishes. The Lipschitz norm of �n is seen to be bounded

by n
2
q̄ and ‖1Un

− �n‖1 � 1
n2 . Therefore∣∣∣∣

∫
1Un

�A+�j/2� ◦ T j−�j/2� dµ − µ(Un)

∫
�A+l dµ

∣∣∣∣
�
∣∣∣∣
∫ (

1Un
− �n

)
�A+�j/2� dµ

∣∣∣∣ + O(1)
(
‖�n‖∞j 2τ

�j/4�
1 + ‖�n‖Lipθ

�j/2�
)

+

∣∣∣∣
∫ (

1Un
− �n

)
dµ

∫
�A+�j/2� dµ

∣∣∣∣, (14)

and consequently

|µ(Un ∩ {M(A + l) � un}) − µ(Un)µ({M(A) � un})| � γ (n, j),

where

γ (n, j) = O(1)
(
n−2 + n

2
q̄ θ

�j/2�
1

)
where θ1 = max {τ1, θ}. Let j = tn = (log n)5. Then nγ (n, tn) → 0 as n → ∞. Note that
we had considerable freedom of choice as regards tn; anticipating our applications, we choose
tn = (log n)5. �
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3.1. Property D′(un) for planar dispersing billiard maps

We have shown that D3(un) is immediate in the case of dispersing billiard maps with finite
horizon, as they are modelled by a Young tower in [27] and have exponentially decaying
correlations. Chernov [7, section 5] (see also [5, section 5]) constructs a Young tower for
billiards with infinite horizon to prove exponential decay of correlations, so condition D3(un)

is satisfied by this class of billiard map as well. Hence to prove a Poisson limit law, we need
only prove condition D′(un), which we do in this section.

It is known (see [7, lemma 7.1] for finite horizon and [7, section 8] for infinite horizon)
that dispersing billiard maps expand in the unstable direction in the Euclidean metric | · | =√

(dr)2 + (dφ)2,4 in that |DT n
u v| � Cλ̃n|v| for some constant C > 0 and λ̃ > 1 independently

of v.
If we choose N0 such that λ := Cλ̃N0 > 1, then T N0 (or DT N0 ) expands unstable manifolds

(tangent vectors to unstable manifolds) uniformly in the Euclidean metric.
It is common to use the p-metric in proving ergodic properties of billiards. Recall that for

any curve γ , the p-norm of a vector tangent to γ is given as |v|p = cos φ(r)| dr| where γ is
parametrized in the (r, φ) plane as (r, φ(r)). Since the Euclidean metric in the (r, φ) plane is
given by ds2 = dr2 + dφ2, this implies that |v|p � cos φ(r) ds � ds = |v|. We will use lp(C)

to denote the length of a curve in the p-metric and l(C) to denote length in the Euclidean metric.
If γ is a local unstable manifold or local stable manifold, then C1l(γ )p � l(γ ) � C2

√
lp(γ ).

For planar dispersing billiards, there exists an invariant measure µ (which is equivalent to
the two-dimensional Lebesgue measure), and through µ-a.e. point x, there exist a local stable
manifold Ws

loc(x) and a local unstable manifold Wu
loc(x). The SRB measure µ has absolutely

continuous (with respect to the Lebesgue measure) conditional measures µx on each Wu
loc(x).

The expansion by DT is unbounded, however, in the p-metric at cos θ = 0 and this may
lead to quite different expansion rates at different points on Wu

loc(x). To overcome this effect
and obtain uniform estimates on the densities of conditional SRB measure, it is common to
definite homogeneous local unstable and local stable manifolds. This approach was adopted
in [4, 5, 7, 27]. Fix a large k0 and define for k > k0

Ik =
{
(r, θ) :

π

2
− k−2 < θ <

π

2
− (k + 1)−2

}

I−k =
{
(r, θ) : −π

2
+ (k + 1)−2 < θ < −π

2
+ k−2

}

and

Ik0 =
{
(r, θ) : −π

2
+ k−2

0 < θ <
π

2
− k−2

0

}
.

We call a local unstable (stable) manifold Wu
loc(x) (Ws

loc(x)) homogeneous if T nWu
loc(x)

(T −nWs
loc(x)) does not intersect any of the line segments in ∪k>k0(Ik ∪ I−k) ∪ Ik0 for all

n � 0. Homogeneous Wu
loc(x) have almost constant conditional SRB densities dµx

dmx
in the

sense that there exists C > 0 such that 1
C

� dµx

dmx
(z1)/

dµx

dmx
(z2) � C for all z1, z2 ∈ Wu

loc(x)

(see [7, section 2] and the remarks following theorem 3.1).
From this point on, all the local unstable (stable) manifolds that we consider will be

homogeneous. Bunimovich et al [5, appendix 2, equation A2.1] give quantitative estimates
for the length of homogeneous Wu

loc(x). They show that there exist C, τ > 0 such that
µ{x : l(Ws

loc(x)) < ε or l(Wu
loc(x)) < ε} � Cετ , where l(C) denotes the one-dimensional

Lebesgue measure or length of a rectifiable curve C. In our setting, τ could be taken to be 2
9 ;

4 Note that before we used the notation | · | to denote the length of a set with respect to the Lebesgue measure. The
argument will be used to distinguish between the Euclidean metric (applied to vectors) and the length (applied to sets).
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its exact value will play no role, but for simplicity in the forthcoming estimates we assume
that 0 < τ < 1

2 .
The natural measure µ has absolutely continuous conditional measures µx on local

unstable manifolds Wu
loc(x), which have almost uniform densities with respect to the Lebesgue

measure on Wu
loc(x), by [7, equation 2.4].

3.1.1. Controlling the measure of the set of rapidly returning points. Let A√
ε = {x :

|Wu
loc(x)| >

√
ε}; then µ(Ac√

ε
) < c1ε

τ/2 by Bunimovich’s result. Let x ∈ A√
ε and consider

Wu
loc(x). Since |T −kWu

loc(x)| < λ−1|Wu
loc(x)| for k > N0 we obtain, by the triangle inequality,

for y, y ′ ∈ Wu
loc(x),

d(y, y ′) � d(T −ky ′, y ′) + d(T −ky, T −ky ′) + d(T −ky, y) � 2ε +
1

λ
d(y, y ′)

which implies that d(y, y ′) � 2(1 − 1
λ
)ε. Thus

l{y ∈ Wu
loc(x) : d(y, T −ky) < ε} � 2(1 − λ−1)ε � c2

√
ε l{y ∈ Wu

loc(x)}.
Since the density of the conditional SRB measure µx is bounded above and below with

respect to the one-dimensional Lebesgue measure, we obtain µx(y ∈ Wu
loc(x) : d(y, T −ky) <

ε) < c3
√

ε. Integrating over all unstable manifolds in A√
ε (discarding the set µ(Ac√

ε
)), we

obtain µ{x : d(T −kx, x) < ε) < c4ε
τ/2 (c4 � c1 + c3). Since µ is T -invariant, we get

Ek(ε) := µ{x : d(T kx, x) < ε} < c4ε
τ/2

for k > N0. Consequently,

Ek := {x : d(T jx, x) � 2√
k

for some 1 � j � log5 k}

obeys the upper bound µ(Ek) � c5k
−σ for any σ > τ

4 . Let us note that a similar result has
been shown in [6], lemma 4.1.

3.1.2. Controlling the measure of the set of points whose neighbourhoods have large overlaps
with the sets Ek . As in [9], we define the Hardy–Littlewood maximal function Ml for
φ(x) = 1El

(x)ρ(x), where ρ(x) = dµ

dm
(x), such that

Ml(x) := sup
a>0

1

m(B(x, a))

∫
B(x,a)

1El
(y)ρ(y) dm(y).

Hence (see [10, page 96]),

m(|Ml| > C) � ‖1El
ρ‖1

C

where ‖ · ‖1 is the L 1 norm with respect to m. Let

Fk := {x : µ(B(x, k−γ /2) ∩ Ekγ/2) � (k−γβ/2)k−γ .

Then Fk ⊂ {Mkγ/2 > k−γβ/2} and hence

m(Fk) � µ(Ekγ/2)kγβ/2 � Ck−γ σ/2kγβ/2.

If we take 0 < β < σ/2 and γ > σ/4, then for some δ > 0, we have k−γ σ/2kγβ/2 < k−1−δ ,
and hence ∑

k

m(Fk) < ∞.
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Thus by the Borel–Cantelli lemma, for m-a.e. (and hence µ-a.e.) ζ ∈ X, there exists N(ζ)

such that ζ �∈ Fk for all k > N(ζ ). Thus along the subsequence nk = k−γ /2, we have
µ(Unk

∩ T −jUnk
) � n−1−δ

k for k > N(ζ ), where, as before, Un = {X0 > un} (and thus
T −jUn = {X0 ◦ T j > un}). This is sufficient for obtaining an estimate for all un. For if
kγ/2 � n � (k + 1)γ/2, then µ(Un ∩ T −jUn) � µ(Unk

∩ T −jUnk
) � n−1−δ

k � 2n−1−δ for all
n large enough as ( k+1

k
)γ /2 → 1.

We now control the iterates 1 � j � N0. If ζ is not periodic, then
min1�i<j�N0 d(T iζ, T j ζ ) � s(ζ ) > 0 and hence µ(Un ∩ T −jUn) = 0 for all 1 � j � N0

and n large enough.
Since un was chosen such that nµ(Un) → 1, we get

µ(Un ∩ T −jUn) � 2n−1−δ

for any 1 � j � log5 n, and consequently

lim
n→∞ n

log5 n∑
j=1

µ(Un ∩ T −jUn) = 0.

3.1.3. Accounting for exceedances between log5 n and
√

n. We use exponential decay of
correlations to show that

lim
n→∞ n

p=√
n∑

j=log5 n

µ(Un ∩ T −jUn) = 0. (15)

As before, we approximate the indicator function 1Un
of the set Un by a suitable Lipschitz

function. Recall that Un is a ball of some radius rn ∼ 1√
n

centred at the point ζ . We define �n

to be 1 inside B(ζ, rn − n
− 2

q̄ ), where q̄ comes from assumption A, and to decay to �n = 0 on

X \ Un. The Lipschitz norm of �n is then bounded by n
2
q̄ . Thus∣∣∣∣∣

∫
1Un

(
1Un

◦ T j
)

dµ −
(∫

1Un
dµ

)2
∣∣∣∣∣ �

∣∣∣∣∣
∫

�n

(
�n ◦ T j

)
dµ −

(∫
�n dµ

)2
∣∣∣∣∣

+

∣∣∣∣∣
(∫

�n dµ

)2

−
(∫

1Un
dµ

)2
∣∣∣∣∣

+

∣∣∣∣
∫

1Un

(
1Un

◦ T j
)

dµ −
∫

�n

(
�n ◦ T j

)
dµ

∣∣∣∣ .
If (log n)5 � j � p = √

n, then we obtain, by decay of correlations, for the first term,∣∣∣∣∣
∫

�n

(
�n ◦ T j

)
dµ −

(∫
�n dµ

)2
∣∣∣∣∣ � Cn

4
q̄ θ j � C

n2

if n is sufficiently large. For the second term we obtain, for n large enough,∣∣∣∣∣
(∫

�n dµ

)2

−
(∫

1Un
dµ

)2
∣∣∣∣∣ � µ

(
Arn,n−2/q̄

)
�
(
n−2/q̄

)q̄
< Cn−2.

Similarly we estimate the third term as follows:∣∣∣∣
∫

�n

(
�n ◦ T j

)
dµ −

∫
1Un

(
1Un

◦ T j
)

dµ

∣∣∣∣ � 2µ
(
Arn,n−2/q̄

)
� C

n2
.

Hence equation (15) is satisfied, which concludes the proof of theorem 2.4.
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4. Billiards with polynomial mixing rates

Proof of theorem 2.5. First suppose that ζ is a generic point in M . We may establish a
Poisson limit law for nested balls about ζ by proving D3(un) and D′(un) as in the case of
Sinai dispersing billiards for the map F : M → M with respect to the measure µM . To prove
D3(un), note that local stable manifolds contract exponentially, assumption A holds (as the
measure µM(·) = 1

µ(M)
(· ∩ M)) and the exponential decay of equation (10) in the Lipschitz

norm versus L ∞(m) holds because we have the structure of a Young tower for F : M → M .
Hence D3(un) holds for generic points ζ in M . These are all of the ingredients of the proof
for D3(un).

The proof of D′(un) also proceeds in the same way as for Sinai dispersing billiards; as
the local unstable manifolds contract uniformly under F−1, the measure µM decomposes into
a conditional measure on the local unstable manifolds which is absolutely continuous with
respect to the Lebesgue measure. These are all of the ingredients of the proof of D′(un) for
Sinai dispersing billiards.

Finally we use proposition 2.6 to extend this result to generic points in phase space. �

Proof of proposition 2.6. The argument below is built on adjustments of the proofs of [2,
theorem 2.1] and [13, theorem 5]. SinceN is a simple point process, without multiple events, we
may use a criterion proposed by Kallenberg [20, theorem 4.7] to show the stated convergence.
Namely we need to verify that:

(1) E(Nn(I ))
n→∞−−−→ E(N(I)), for all I ∈ S;

(2) µ(Nn(J ) = 0)
n→∞−−−→ µ(N(J ) = 0), for all J ∈ R,

where E(·) denotes the expectation with respect to µ. As before, let us put Un = {X0 > un}.
The first condition follows trivially by definition of the point process Nn. In fact, let

a, b ∈ R
+ be such that I = [a, b); then, recalling that vn = 1/µ(Un), we have

E(Nn(I )) = E


 �vnb�∑

j=�vna�+1

1T −j Un


 =

�vnb�∑
j=�vna�+1

E(1T −j Un
)

= (�vnb� − (�vna� + 1)) µ(Un)

∼ (b − a)vnµ(Un)n → ∞(b − a) = E(N(I)).

To prove (2), note that by [29, corollary 6] we only need to show that

µM(Nn(J ) = 0)
n→∞−−−→ P(N(J ) = 0), for all J ∈ R.

Let

En(x) := 1

n

n−1∑
i=0

rM ◦ F i(x).

Then by the ergodic theorem, we get, for µ-a.e. x ∈ M ,

En(x) → c :=
∫

M

rM dµM = 1

µ(M)
,

where the final equality follows from Kac’s theorem. Moreover c = vn/v̂n.
For µ-a.e. x ∈ M , there exists a finite number j (x, ε) such that |En(x) − c| < ε for all

n � j (x, ε). Let G̃ε
n := {x ∈ M : j (x, ε) < n}. Moreover, we define N = N(ε) to be such

that

µ̂(G̃ε
N) > 1 − ε. (16)
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Since ∣∣∣∣∣
n−1∑
i=0

rM(F i(x)) − cn

∣∣∣∣∣ < εn for x ∈ G̃ε
N and n � N,

for all such n, there exists s = s(x) with |s| < εn such that Fn(x) = T cn+s(x). Since
rUn

=∑r̂Un −1
i=0 rM ◦ F i , we obtain

rUn
(x) = cr̂Un

(x) + s

for some |s| < εr̂Un
(x) whenever r̂Un

(x) � N and x ∈ G̃ε
N , where we used that c = vn/v̂n.

Note that since Un+1 ⊂ Un∀n, the sets Lε
N,n := {r̂Un

> N} are nested, i.e. Lε
N,n ⊂

Lε
N,n+1∀n. Hence, as µM(r̂Un

� j) � jµM(Un) → 0 as n → ∞ there exists N ′ = N ′(ε)
sufficiently large such that

µM((Lε
N,n)

c) < ε (17)

for all n > N ′.
Let Jsup = sup J + 1. Observe that

µM

(
Nn([0, Jsup)) > κ

)
� µM

(
N̂n(vn/v̂n[0, Jsup)) > κ

)

= µM

(
N̂n(c[0, Jsup)) > κ

)
u→uF−−−→ P(N([0, cJsup) > κ)

κ→∞−−−→ 0.

This implies that we can choose K(J ) independent of ε such that µM(Nn(J ) > K(J )) < ε.

Also, for any x ∈ M and i = 2, . . ., let r
(i)
Un

(x) := rU(n)(T
r
(i−1)
Un )(x) where r

(1)
Un

:= rUn

and put τ i
Un

= τ i−1
Un

+ r
(i)
Un

, with τ 1
Un

= rUn
for the time of the ith return to Un under the map

T . Similarly we define r̂
(i)
Un

(x) := r̂Un
(F r̂

(i−1)
Un )(x) and τ̂ i

Un
= τ̂ i−1

Un
+ r̂

(i)
Un

for the time of the ith
return to Un under F . We will use the ergodic theorem to approximate τ i

Un
(x) by cτ̂ i

Un
(x) on

a large set.
For that purpose put

E(un, J, ε) := {Nn(J ) = 0} ∩ {Nn([0, Jsup)) > K} ∩

 K⋂

j=1

T −τ
j

Un

(
G̃

ε/K

N ∩ L
ε/K

N,N ′

) .

By stationarity, (16) and (17), for K , N and n sufficiently large we have∣∣∣µM(Nn(J ) = 0) − µM (E(un, J, ε))

∣∣∣
� µM(Nn([0, Jsup)) > K) + KµM

((
G̃

ε/K

N

)c)
+ KµM

((
L

ε/K

N,N ′

)c)
� 3ε. (18)

By the definition of G̃
ε/K

N we now conclude that for x ∈ E(un, J, ε) and j = 1, . . . , K , there
exist |sj | < εr̂

(j)

Un
(x) such that

r
(j)

Un
(x) = cr̂

(j)

Un
(x) + sj .

Hence ∣∣∣τ j

Un
− cτ̂

j

Un

∣∣∣ � Kε (19)

on E(un, J, ε) for j = 1, . . . , K . Since v̂n = vn/c, from (19) we get that, for x ∈ E(un, J, ε)

and every j = 1, . . . , K ,

τ
j

Un
(x) ∈ vnJ ⇒ τ̂

j

Un
(x) ∈ v̂n(1 + B(0, Kε/c))J (20)
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and also

τ̂
j

Un
(x) ∈ v̂nJ ⇒ τ

j

Un
(x) ∈ vn(1 + B(0, Kε/c))J, (21)

where we used (1 + B(0, δ))J = {x = (1 + y)z : |y| < δ, z ∈ J }. Hence,

µM(N̂n(J ) = 0) � µM (E(un, (1 + B(0, Kε/c))J, ε))�µM(N̂n((1 + B(0, 2Kε/c))J ) = 0).

Taking limits as n → ∞, by hypothesis, we get that

P(N(J ) = 0) � µM (E(un, (1 + B(0, Kε/c))J, ε)) � P(N((1 + B(0, 2Kε/c))J ) = 0).

Finally, using (18) and that limδ→0 P(N((1 + B(0, δ))J ) = 0) = P(N(J ) = 0) (as J is a
finite union of disjoint intervals), we get

lim
n→∞ µM(Nn(J ) = 0) = P(N(J ) = 0). �
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