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Abstract

We show that for expanding maps there is a one-to-one correspon-
dence between equilibrium states and Gibbs’ states (measures which
are equivalent to their pullbacks by local homeomorphism which pre-
serve the ‘hyperbolic structure’). In particular we show that there is
a one-one relationship between families of multipliers potentials (up
to constants).

1 Introduction

In this paper we consider the equivalence of Gibbs’ and equilibrium states
for expanding maps on compact metric spaces. A Gibbs’ state is determined
by a family of locally defined multipliers that satisfy a (natural) cocycle rela-
tion (see definition 2 below), where a multiplier is the rescaling factor that is
needed to have the Gibbs’ measure agree with its pullback by a conjugating
homeomorphism. Ordinarily, an equilibrium state for a potential satisfies a
variational principle and a (sufficiently regular) potential determines a family
of multipliers (see equation (1) below) which then implies that equilibirium
states satisfy the Gibbs’ property with respect to that family of multipli-
ers. Here we show that the reverse implication applies, which means that
a measure that satisfies the local comparisons prescribed by the multiplier
maximise the variational principle (on the entire space). This is largely a
consequence of expansiveness and the mixing property. Combined with pre-
vious results [4] this establishes a one-one relationship between multipliers
and potentials (up to additive constants).

∗Mathematics Department, University of Southern California, Los Angeles, 90089-1113.
Email:<nhaydn@math.usc.edu>.

1



We show that a family of (local) multipliers gives rise to a potential and
the Gibbs measure for these multipliers will prove to be the equilibrium
state for that potential. In particular for a Hölder continuous potential the
cohomology class of potentials that differ by coboundaries yields a class of
equivalent measures exactly one of which is invariant under the map. This
implies that a modification of the multipliers by ‘multiplicative coboundary’
like terms yields one which is invariant under the map (see the remark below).

Assuming the relation (1) applies, then the papers [2, 4] established the
equivalence of Gibbs and equilibrium states in various settings. Moreover, if
for some f the multipiers are given by equation (1), then Ruelle showed [4]
that for expanding maps the associated Gibbs’ state is the equilibrium state
for the potential f (which is known to be characterised by the eigenfunctional
and eigenvector to the largest eigenvalue of a suitable transfer operator).

In the special case of a subshift of finite type, we showed in [2] that a
given family of Hölder continuous multipliers (with sufficiently large Hölder
exponents) gives rise to a representation by an expression similar to equation
(1) with a Hölder continuous potential, provided the family of multipliers is
shift invariant. The construction takes advantage of the explicit hyperbolic
structure and local coordinates. The potential is determined up to additive
constants and coboudaries.

2 Definitions

A map T on a compact metric space Ω is expanding if there exists a (ex-
panding) constant λ > 1 such that d(Tx, Ty) ≥ λd(x, y) for d(x, y) ≤ ζ0, for
some positive ζ0. For every x ∈ Ω, the set T−1x = {y ∈ Ω : Ty = x} is at
most countable, and, moreover, there exists a positive ζ < ζ0 such that for
every x ∈ Ω, the set T−1(Bζ(x)) is the finite union of disjoint open subsets
A1, A2, . . ., of Ω on which T is one-to-one (Bζ(x) denotes the ball of radius
ζ centered at x). The sets A1, A2, . . . are the components of T−1(Bζ(x)) to
each of which T restricted is a homeomorphism. For every positive integer n
and x ∈ Ω the set T−n(Bζ(x)) is the disjoint union of components A1, A2, . . .
in Ω. If z lies in some Aj and satisfies T nz = x, then for every y ∈ Bζ(x)
there exists a unique z′ ∈ Aj satisfying T nz′ = y.

Mixing Assumption: We shall require that or every positive ε and x ∈ Ω,
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the set T−n(x) is ε-dense in Ω for all large enough n.

Definition 1 [1, 3] (i) Two points x, y ∈ Ω are called conjugate or n-
conjugate if T nx = T ny for some positive integer n (and consequently also
Tmx = Tmy for all m ≥ n.)
(ii) A (local) homeomorphism ϕ : Uϕ → Ω, Uϕ ⊂ Ω open, is called conju-
gating, if every x ∈ Uϕ is conjugate to ϕ(x). In fact T jx = T jϕ(x) for all
x ∈ Uϕ and j ≥ n for some positive integer n.

The composition of conjugating homeomophisms is again conjugating: ϕ =
ϕ′ ◦ ϕ′ is conjugating on the open set Uϕ = ϕ−1(Uϕ′′ ∩ ϕ′(Uϕ′)) (if Uϕ is
non-empty). In particular, if ϕ′ and ϕ′′ are both n-conjugating then also ϕ
is n-conjugating.

Definition 2 A family of positive and continuous functions {rϕ : Uϕ →
(0,∞) : ϕ conjugating} is said to be a family of multipliers if for any
two conjugating homeomorphisms ϕ′ and ϕ′′ the following cocyle equation is
satisfied:

(rϕ′′ ◦ ϕ′) rϕ′ = rϕ′′◦ϕ′ ,

on U ′′ = ϕ−1(Uϕ′′ ∩ ϕ′(Uϕ′)) (provided U ′′ is non-empty).

Let us write fn = f + fT + fT 2 + · · · + fT n−1 for the nth ergodic sum of
f and introduce the function space V (Ω) [5] as follows. We say a function
f : Ω→ R, belongs to V (Ω) if f satisfies the following two conditions:
(i) For every positive δ < ζ the norm ‖f‖δ = supd(x,x′)<δ C(x, x′) is finite,
where C(x, x′) is the smallest number for which

sup
n≥1

sup
(y,y′)∈T−nx×T−nx′

|fn(y)− fn(y′)| ≤ C(x, x′),

where the supremum is over all pairs (y, y′) ∈ Ω × Ω for which both points
lie in the same component Aj of T−n(Bζ(x)), that is, y, y′ ∈ Aj, j = 1, 2, . . ..
(ii) The constant C(x, x′) goes to zero as δ → 0.

The prime example of a family of multipliers is given as follows. Let f be a
function in V (Ω) and ϕ an n-conjugating homeomorphism. Then put

rϕ = exp (fn ◦ ϕ− fn) = exp
∞∑
k=0

(f ◦ T k ◦ ϕ− f ◦ T k). (1)
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The function rϕ is defined on Uϕ and one sees that, as ϕ runs through the
entire set of conjugating homeomorphism, one obtains a family of multipliers
which satisfies the cocyle equations of Definition 2. In this paper we show
that for expanding maps all families of multipliers are given by equation (1)
for suitably chosen f .

Definition 3 [1] Let {rϕ : ϕ conjugating} be a family of multipliers. A
probability measure µ on Ω is called Gibbs’ for the family {rϕ : ϕ} if for
every conjugating homeomorphism ϕ : Uϕ ∈ Ω the following holds true:
(i) ϕ∗µ restricted to Uϕ is absolutely continuous with respect to µ.
(ii) dϕ∗µ

dµ
= rϕ, that is ∫

χ ◦ ϕ rϕ dµ =
∫
χdµ

for measurable (test) functions χ which are supported in ϕ(Uϕ).

For x ∈ Ω let us write Tx for the homeomorphism which is given by the
restriction of T to the ball Bζ(x). Its inverse T−1

x is then a homeomorphism
as well. If µ is a measure on Ω such that T ∗xµ is absolutely continuous with
respect to µ we write h for the Radon-Nikodym derivative dT ∗xµ

dµ
(for which

we shall also write dµ(x)
dµ(Tx)

= dµ
dµT

(x)).

3 Results

The families of multipliers we consider shall satisfy the following two condi-
tions:

(I) There exists a summable sequence of constants Ck ↘ 0, as k →∞, such
that ∣∣∣∣∣log

rϕ1

rϕ ◦ T

∣∣∣∣∣ ≤ Ck,

for ϕ for which d(T jϕx, T jx) ≤ ε0, j = 0, 1, . . . , k, where ϕ1 = T ◦ ϕ ◦ T−1

and T−1 is the local inverse of T whose range contains the domain of ϕ.

(II) For every n: ∑
ϕ∈Φ(n)

rϕ(x) <∞,

for all x ∈ Ω, where Φ(n) is the collection of all n-conjugating homeomor-
phism in Ω (rϕ(x) = 0 if x 6∈ Uϕ).
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Theorem 4 Let µ be a Gibbs’ measure on Ω for a family of multipliers
{rϕ : ϕ conjugating} which satisfies the conditions (I) and (II). Then there
exists a continuous function f ∈ V (Ω) so that the multipliers rϕ are of the
form given above in (1).

Let us note that we don’t require the individual multipliers to satisfy any
particular regularity condition. It is the quasi-invariant condition (I) which
is used to show that the potential f lies in the space V (Ω). Also, if T is a
finite to one map then the condition (II) is naturally satisfied.

Let us note that the potential f is not unique. Any change by a constant
will yield the same equilibirium state (and multipliers), and if a coboundary
is added to f the Gibbs state will change to an equivalent measure.

Theorem 4 shows in particular that µT and µ are equivalent and that
dµ
dµT

= ef .

Remark: If the potential f is Hölder continuous, adding a coboundary u−
u◦T yields an equivalent but T -invariant measure [6]. If r̃ϕ are the multipliers
given by equation (1) for the modified potential f̃ = f +u−u◦T , then r̃ϕ =
eu−u◦ϕrϕ, i.e. the multipliers change by a ‘multiplicative coboundary’ eu−u◦ϕ

(conjugating homeomorphisms don’t form a group because compositions not
always exist). As a consequence, the multipliers r̃ϕ are T -invariant, which
means

r̃ϕ1 = r̃ϕ ◦ T,

where ϕ1 = T−1ϕT−1, and the invariant measure µ̃ has density dµ̃
dµ

= eu, i.e.

µ̃(χ) = µ(euχ) for integrable χ.

4 Proof of Theorem 4

We shall construct a sequence of approximating potentials fn ∈ V (Ω) which
will allow us to express the multipliers rϕ through equation (1). Define the
following ‘partition function’:

ωn(x) =
∑

ϕ∈Φ(n)

rϕ(x)

(ωn > 0), where the sum is over all n-conjugating ϕ so that x ∈ Uϕ. Note
that the partition functions are well defined by assumption (II). For any
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n-conjugating ψ one has by the ‘cocycle property’ for multipliers

ωn(x) =
∑

ϕ′∈Φ(n)

rϕ(ψx) rψ(x) = rψ(x)ωn ◦ ψ(x)

(x ∈ Uψ), where the sum is over all ϕ′ = ϕ ◦ ψ−1 (ϕ′ is n-conjugating). Let
us define:

fn(x) = log
ωn−1T (x)

ωn(x)
,

for n = 2, 3, . . ..

Lemma 5 If ϕ is n-conjugating then rϕ = exp (fnn ◦ ϕ− fnn ).

Proof. Using the definition of fn we get on Uϕ:

exp (fnn ◦ ϕ− fnn ) = exp
∑

0≤k<n

(
log

ωn−1T

ωn
T kϕ− log

ωn−1T

ωn
T k
)

=
∏

0≤k<n

ωn−1T
k+1ϕ

ωnT k+1ϕ

ωnT
k

ωn−1T k+1

=
∏

0≤k<n

ωn−1T
k+1ϕ

ωn−1T k+1

ωnT
k

ωnT k+1ϕ
.

For x ∈ Uϕ, the two points T kx and T kϕ(x) are (n− k)-conjugate (and thus
also n-conjugate). Let us put ϕk for the conjugating homeomorphism defined
on T k(Uϕ) by the requirement that it maps T kx to T kϕ(x) for all x ∈ Uϕ.
We obtain ϕkT k = T kϕ and

ωnT
k

ωnT kϕ
=

ωn
ωnϕk

◦ T k = rϕk ◦ T k,

and also
ωn−1T

k+1ϕ

ωn−1T k+1
=
ωn−1ϕ

k+1

ωn−1

◦ T k+1 =
1

rϕk+1

◦ T k+1.

Since ϕ0 = ϕ (k = 0) and ϕn = id (as T nx = T nϕ(x)), this yields

exp(fnn ◦ ϕ− fnn ) =
∏

0≤k<n

rϕkT kϕ

rϕk+1T k+1
= rϕ.
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Proof of Theorem 4. We first have to show that the family of functions
{fn : n ∈ N} is equicontinuous. Assume that y and y′ are two points in X
that are close so that there exists a k ≥ 0 such that d(T jy, T jy′) < ζ, j =
0, 1, . . . , k. For m > k we can find z ∈ Ω so that Tmz = Tmy (i.e. z and y are
m-conjugate) and so that z lies in the same component of T−m(Bζ(T

my′)).
Since we can choose m arbitrarily large we can achieve that

|fn(y′)− fn(z)|

is arbitrarily small. On the other hand, since d(T jz, T jy) ≤ ζ, ∀j ≤ k, we
obtain

|fn(z)− fn(y)| =
∣∣∣∣∣log

rϕ1

rϕ ◦ T
(y)

∣∣∣∣∣ ≤ Ck,

where ϕ1 = T ◦ ϕ ◦ T−1 (T−1 is the local inverse of T which maps to the
domain of ϕ) and Ck → 0 as k → ∞ by property (I) of the family of
multiplers. Hence

|fn(y′)− fn(y)| ≤ |fn(y′)− fn(z)|+ Ck,

and if we let m go to infinity we obtain |fn(y′) − fn(y)| ≤ Ck, uniformly in
y, y′ ∈ Ω for which d(T jy, T jy′) < ζ, 0 ≤ j ≤ k. This proves that the family
{fn : n} is equicontinuous and thus has a subsequence that converges to a
limit f .

To show that f lies in the space V (Ω), we have to show that for x, x′ ∈ Ω
there exists C(x, x′)→ 0 as d(x, x′)→ 0 so that for all N

|fN(y)− fN(y′)| ≤ C(x, x′),

for all y, y′ in the same component of T−Nx, T−Nx′. For simplicity’s sake we
shall assume that fn converges to f (rather than a subsequence). Let k ≥ 0
be the largest integer for which d(T jx, T jx′) ≤ ζ for j = 0, 1, . . . , k. Note
that k → ∞ in a uniform way as d(x, x′) → 0. By choosing n large enough
we can make the term

|fN(y)− fNn (y)|+ |fN(y′)− fNn (y′)|

arbitrarily small. Hence let n be (very) large and consider

|fNn (y)− fNn (y′)| ≤ |fNn (y′)− fNn (z(m))|+ |fNn (z(m))− fNn (y)|, (2)
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where z(m) and y are m-conjugate (m >> N, k). Since T is mixing we can
choose z(m) so that d(y′, z(m)) → 0 as m → ∞ (in particular we can of
course assume that z(m) lies in the same component of T−N−kBζ(T

kx) as
the point y′). Hence

|fNn (y′)− fNn (z(m))| → 0,

as m→∞. To estimate the second term on the right hand side of equation
(2) let ϕ be an m-conjugating homeomorphism in a neighbourhood of y
which is determined by the relation ϕ(y) = z(m). By Lemma 5 we have in
the domain Uϕ of ϕ:

fn ◦ ϕ− fn = log
rϕ1

rϕ ◦ T
,

and consequently (by assumption (I)):

|fNn (y)− fNn (z(m))| ≤
N−1∑
j=0

∣∣∣∣∣log
rϕj+1

rϕj ◦ T
(T jy)

∣∣∣∣∣
≤

N−1∑
j=0

Ck+N−j,

where ϕj = T j ◦ϕ◦T−j (T−j is the local inverse which maps to a neighbour-
hood of y) is (n− j)-conjugating. It now follows that uniformly in n,m and
N :

|fNn (y)− fNn (z(m))| ≤
∞∑

j=k+1

Cj.

Using inequality (2) and taking limits m,n→∞ we thus obtain for all N

|fN(y)− fN(y′)| ≤
∞∑

j=k+1

Cj.

Since d(T jx, T jx′) ≤ ζ for j = 0, 1, . . . , k, we can now put

C(x, x′) =
∞∑

j=k+1

Cj.

If d(x, x′)→ 0 then k →∞ and thus C(x, x′)→ 0 as the Cj are summable.
Hence f lies in V (Ω), and this concludes the proof of the theorem. 2
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