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Abstract

Erdős-Rényi limit laws give the length scale of a time-window over which time-averages in
Birkhoff sums have a non-trivial almost-sure limit. We establish Erdős-Rényi type limit laws
for Hölder observables on dynamical systems modeled by Young Towers with exponential
and polynomial tails. This extends earlier results on Erdős-Rényi limit laws to a broad class
of dynamical systems with some degree of hyperbolicity.

1 Introduction

The Erdős-Rényi fluctuation law gives the length scale of a time-window over which time-
averages in Birkhoff sums have a non-trivial almost-sure limit. It was first proved in the inde-
pendent and identically distributed (i.i.d.) case [9] in the following form:

Proposition 1.1. Let (Xn)n≥1 be an i.i.d. sequence of non-degenerate random variables, E[X1] =
0, and let Sn = X1 + · · · + Xn. Assume that the moment generating function φ(t) = E(etX1)
exists in some open interval U ⊂ R containing t = 0. For each α > 0, define ψα(t) = φ(t)e−αt.
For those α for which ψα attains its minimum at a point tα ∈ U , let cα = αtα − lnφ(tα). Then

lim
n→∞

max{(Sj+[lnn/cα − Sj)/[lnn/cα] : 1 ≤ j ≤ n− [lnn/cα]} = α

The existence of ψα(t) for all t ∈ U implies exponential large deviations with a rate function
(in fact cα = I(α) where I is the rate function, defined later) and this implies that sampling over
a window length k(n) of larger than logarithmic length scale (in the sense that k(n)/ lnn→∞),
allows the ergodic theorem to kick in and

lim
n→∞

max{(Sj+k(n) − Sj)/k(n) : 1 ≤ j ≤ n− k(n)} = 0

while sampling over too small a window, for example k(n) = 1, gives similarly a trivial limit

lim
n→∞

max{(Sj+k(n) − Sj)/k(n) : 1 ≤ j ≤ n− k(n)} = ‖X1‖∞

Define the function

θ(n, k(n)) := max
0≤j≤n−k(n)

Sj+k(n) − Sj
k(n)

,
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which may be interpreted as the maximal average gain over a time window of length k(n) up
to time n. In the setting of coin tosses the Erdős-Rényi law gives precise information on the
maximal average gain of a player in a fair game in the case where the length of the time window
ensures limn→∞ θ(n, k(n)) has a non-degenerate almost sure limit.

In 1986 Deheuvels, Devroye and Lynch [6] in the i.i.d. setting of Proposition 1.1 gave a
precise rate of convergence and showed that if k(n) = [lnn/cα] then P a.s:

lim sup
[θ(n, k(n))− αk(n)]

ln k(n)
=

1

2tα

and

lim inf
[θ(n, k(n))− αk(n)]

ln k(n)
= − 1

2tα

In this paper we establish Erdős-Rényi limit laws for Hölder observables on dynamical sys-
tems modeled by Young Towers [21, 22] with exponential and polynomial tails. Tails refer to
the measure µ(R > n) of the return time R function to the base of the tower. Our exposition
is based upon [13, Section 2.3] and [15] who present a framework more general than that of the
original Tower construction of Young [21] in that uniform contraction of local stable manifolds
is not assumed for polynomially mixing systems in dimensions greater than 1. We will give more
details on Young Towers below but here note that Hölder observables on Young Towers with
exponential (polynomial) tails have exponential (polynomial) decay of correlations, the precise
rate is encoded in the return time function.

Our results extends the work of [16] from the class of non-uniformly expanding maps with
exponential decay of correlations to all systems modeled by a Young Tower, including Sinai
dispersing billiard maps; diffeomorphisms of Henón type; polynomially mixing billards as in [4]
(as long as the correlation decay rate is greater than n−β, β > 1); smooth unimodal and
multimodal maps satisfying the Collet-Eckmann conditions [13, Example 4.10]; certain Viana
maps [13, Example 4.11]; and Lorenz-like maps. Other examples to which our results apply are
listed in [15].

In the setting of hyperbolic dynamical systems there are many earlier results. Grigull [10]
established the Erdős-Renyi law for hyperbolic rational maps, Chazottes and Collet [5] proved
Erdős-Renyi theorems with rates for uniformly expanding maps of the interval, while Denker
and Kabluchko [7] proved Erdős-Renyi results for Gibbs-Markov dynamics. In [8] Erdős-Rényi
limit laws for Lipschitz observations on a class of non-uniformly expanding dynamical systems,
including logistic-like maps, were given as well as related results on maximal averages of a
time series arising from Hölder observations on intermittent-type maps over a time window of
polynomial length. Kifer [11, 12] has established Erdős-Rényi laws for non-conventional ergodic
sums and in the setting of averaging or homogenization of chaotic dynamical systems. We
mention also recent related work of [2, 3] on applications of Erdő-Renýı limit laws to multifractal
analysis.

The main novelty of out technique is the use of the symbolic metric on the axiomatic Young
Tower construction of [15, 13] to control the norm of the indicator function of sets of the form
(Sn > nα) on the quotiented tower. This eliminates many difficulties involved with considering
the Lipschitz norm of such sets with respect to the Riemannian metric on the phase space of
the system. The structure allows us to consider, with small error, averaged Birkhoff sums as
being constant on stable manifolds, and thence use the decay of correlations for observables on
the quotiented tower in terms of their Lipschitz and L∞ norms.

Our results in the case of Young Towers with exponential decay of correlations, Theorem 5.1,
are optimal and replicate the i.i.d case, while in the case of Young Towers with polynomial tails
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we investigate windows of polynomial length and give close to optimal upper and lower bounds,
Theorem 7.1 and Theorem 7.2.

2 Young Towers.

We now describe more precisely what we mean by a non-uniformly hyperbolic dynamical system
modeled by a Young Tower. Our exposition is based upon [13, Section 2.3] and [15] who present a
framework more general than that of the original Tower of Young [21] in that uniform contraction
of local stable manifolds is not assumed for polynomially mixing systems in dimensions greater
than 1. This set-up is very useful for the study of almost sure fluctuations of Birkhoff sums of
bounded variables.

We suppose T is a diffeomorphism of a Riemannian manifold (M,d), possibly with singu-
larities. Fix a subset Λ ⊂ M with a ‘product structure’. Product structure means there exists
a family of disjoint stable disks (sometimes called local stable manifolds) {W s} that cover Λ
as well as a family of disjoint unstable disks (sometimes called local unstable manifolds) {W u}
that cover Λ. The stable and unstable disks containing x ∈ Λ are denoted W s(x) and W u(x).
Each stable disk intersects each unstable disk in precisely one point.

Suppose there is a partition {Λj} of Λ such that each stable disk W s(x) lies in Λj if x ∈ Λj .
Suppose there exists a ‘return time’ integer-valued function R : Λ → N, constant with value
R(j) on each partition element Λj , such that TR(j)(W s(x)) ⊂ W s(TR(j)x) for all x ∈ Λj . We
assume that the greatest common denominator of the integers {R(j)} is 1, which ensures that
the Tower is mixing. We define the induced return map f : Λ→ Λ by f(x) = TR(x)(x).

For x, y ∈ Λ let s(x, y) be the least integer n ≥ 0 such that fn(x) and fn(y) lie in different
partition elements of Λ. We call s the separation time with respect to the map f : Λ→ Λ.
Assumptions: there exist constants K ≥ 1 and 0 < β1 < 1 such that

(a) if z ∈W s(x) then d(fnz, fnx) ≤ Kβn1 ;

(b) if z ∈W u(x) then d(fnz, fnx) ≤ Kβs(x,z)−n1 ;
(c) if z, x ∈ Λ then d(T jz, T jx) ≤ K(d(z, x) + d(fz, fx)) for all 0 ≤ j ≤ min{R(z), R(x)}.
Define an equivalence relation on Λ by z ∼ x if z ∈ W s(x) and form the quotient space

Λ = Λ/ ∼ with corresponding partition {Λj}. The return time function R : Λ → N is well-
defined as each stable disk W s(x) lies in Λj if x ∈ Λj and TR(j)(W s(x)) ⊂ W s(TR(j)x) for all
x ∈ Λj . So we have a well-defined induced map f̄ : Λ → Λ. Suppose that f̄ and the partition

{Λj} separates points in Λ. Define dβ1(z, x) = β
s(z,x)
1 , then dβ1 is a metric on Λ.

Let m be a reference probability measure on Λ (in most applications this will be normalized
Lebesgue measure). Assume that f̄ : Λ→ Λ is a Gibbs-Markov uniformly expanding on (Λ, dβ1).
By this we mean that f̄ is a measure-theoretic bijection from each Λj onto Λ.

We assume that f̄ : Λ → Λ has an invariant probability measure ν and 0 < a < dν̄
dm < b for

some constants a, b. We assume that R is ν-integrable and there is an f invariant probability
ν measure on Λ such that π∗ν = ν where π is the quotient map taking Λ onto Λ/ ∼. Now we
define the Young Tower

∆ = {x, j) ∈ Λ× N : 0 ≤ j ≤ R(x)− 1}

and the tower map F by

F (x, j) =

{
(x, j + 1) if j < R(x)− 1;
(fx, 0) if j = R(x)− 1.

and lift ν in a standard way to an invariant probability measure ν∆ for F : ∆ → ∆. In fact
ν∆ = ν × counting measure.
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Define the semi-conjugacy π : ∆ → M , π(x, j) = T j(x). The measure µ = π∗ν∆ is a
T -invariant mixing probability measure on M . Given an observable ϕ : M → R we may lift
to an observable ϕ : ∆ → R by defining ϕ(x, j) = ϕ(T jx) (we keep the same notation for
the observable). The semi-conjugacy π∗ allows us to transfer statistical properties from lifted
observables ϕ on (∆, F, ν∆) to the original observables ϕ on (T,M, µ).

3 Large deviations and rate functions.

Before stating precisely our main result we recall the definition of rate function and some other
notions of large deviations theory. Suppose (T,M, µ) is a probability preserving transformation
and ϕ : M → R is a mean-zero integrable function i.e.

∫
M ϕ dµ = 0. Throughout this paper we

will write Sn(ϕ) := ϕ+ ϕ ◦ T + . . .+ ϕ ◦ Tn−1 for the nth ergodic sum of ϕ. Sometimes we will
write Sn instead of Sn(ϕ) for simplicity of notation or when ϕ is clear from context.

Definition 3.1. A mean-zero integrable function ϕ : M → R is said to satisfy a large deviation
principle with rate function I(α), if there exists a non-empty neighborhood U of 0 and a strictly
convex function I : U → R, non-negative and vanishing only at α = 0, such that

lim
n→∞

1

n
logµ(Sn(ϕ) ≥ nα) = −I(α) (1)

for all α > 0 in U and

lim
n→∞

1

n
logµ(Sn(ϕ) ≤ nα) = −I(α) (2)

for all α < 0 in U .

In the literature this is referred to as a first level or local (near the average) large deviations
principle.

For Hölder observables on Young Towers with exponential tails (which are not L1 cobound-
aries in the sense that ϕ 6= ψ ◦ T − ψ for any ψ ∈ L1(µ)) such an exponential large deviations
result holds with rate function Iϕ(α) [16, 19, 14, 18]. A formula for the width of U is given in
[19] following a standard approach but it is not useful in concrete estimates.

4 Erdős-Rényi laws: background.

Proposition 4.1 given below is found in a proof from Erdős and Rényi [9] (see [?, Theorem
2.4.3], Grigull [10] Denker and Kabluchko [7] or [8] where this method has been used). The
Gauss bracket [.] denotes the integer part of a number. Throughout the proofs of this paper we
will concentrate on the case α > 0 as the case α < 0 is identical with the obvious modifications
of statements.

Proposition 4.1. Let (T,M, µ) be an ergodic dynamical system and ϕ : M → R is an observable.
(a) Suppose that ϕ satisfies a large deviation principle with rate function I defined on the

open set U and assume µ(ϕ) = 0 Let α > 0, α ∈ U and set

Ln = Ln(α) =

[
lnn

I(α)

]
n ∈ N.

Then the upper Erdős-Rényi law holds, that is, for µ a.e. x ∈ X

lim sup
n→∞

max
0≤j≤n−Ln

1

Ln
SLn(ϕ) ◦ T j(x) ≤ α.
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(b) If for some constant C > 0 and integer κ ≥ 0 for each interval A

µ

(
n−Ln⋂
m=0

{SLn(ϕ) ◦ Tm ∈ A}

)
≤ C[µ(SLn ∈ A)]n/(Ln)κ (3)

then the lower Erdős-Rényi law holds as well, that is, for µ a.e. x ∈ X

lim inf
n→∞

max
0≤j≤n−Ln

1

Ln
SLn(ϕ) ◦ T j ≥ α.

Remark 4.2. If both Assumptions (a) and (b) of Proposition 4.1 hold then

lim
n→∞

max
0≤m≤n−Ln

SLn ◦ Tm

Ln
= α.

Remark 4.3. The proof of the lemma shows that the upper Erdős-Rényi law follows from the
existence of exponential large deviations given by a rate function, while for the lower Erdős-
Rényi law it suffices to show that for every ε > 0 the series

∑
n>0 µ(Bn(ε)), where Bn(ε) =

{max0≤m≤n−Ln SLn ◦ Tm ≤ Ln(α− ε)} is summable. This is usually the harder part to prove in
the deterministic case.

5 Erdős-Rényi limit laws for Young Towers with exponential
tails.

We now state our main theorem in the case of exponential tails.

Theorem 5.1. Suppose (T,M, µ) is a dynamical system modeled by a Young Tower with
ν∆(R > j) ≤ Cβj2 for some β2 ∈ (0, 1) and some constant C2. Let ϕ : M → R be Hölder with∫
ϕ dµ = 0. Assume ϕ 6= ψ ◦T −ψ for any ψ ∈ L1(µ). Let I(α) denote the non-degenerate rate

function defined on an open set U ⊂ R containing 0. Define Sn(x) =
∑n−1

j=0 ϕ(T jx).
Let α > 0, α ∈ U and define

Ln = Ln(α) =

[
lnn

I(α)

]
n ∈ N.

Then

lim
n→∞

max
0≤j≤n−Ln

SLn ◦ T j(x)

Ln
= α,

for µ a.e. x ∈ Ω.

6 Proof of Theorem 5.1.

We now give the proof of Theorem 5.1, beginning with some preliminary lemmas. Throughout
this proof we will assume that ϕ is Lipschitz, as the modification for Hölder ϕ is straightforward.

The next lemma is not optimal but is useful in allowing us to go from uniform contraction
along stable manifolds upon returns to the base of the Young Tower (Property (P3) of [21]) to
estimates of the contraction along stable leaves in the whole manifold.

Lemma 6.1. Let β1 be defined as in Section (2.1) Assumption (a) and β2 be as in Theorem

2.2. Let D(m) = {(x, j) ∈ ∆ : |T kW s(x, j)| < (
√
β1)

k
for all k ≥ m}. Then for any δ > 0 there

exists K(δ) > 0 such that for all m ≥ K, ν∆(D(m)c) ≤ C(β2 + δ)m/2 for some constant C > 0.
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Proof. Let τr(x, j) := #{k : 1 < k ≤ r : F k(x, j) ∈ Λ}, so that τr(x, j) denotes the number
of times k ∈ [1, r] that F k(x, j) lies in the base of the Young Tower. Let Br = {(x, j) ∈ ∆ :
τr(x, j) ≤

√
r}. If τr(x, j) ≤

√
r then there is at least one k ∈ [0, r], such that R(F k(x, j)) >

√
r

and hence Br ⊂
⋃r
k=1 F

−k(R >
√
r). Thus ν∆(Br) ≤ rν(R >

√
r) < C2rβ2

√
r.

Suppose now that (x, j) ∈ Bc
r. Then |T rWs((x, j))| ≤ 2Kβ

√
r

1 by (a) and (c) and moreover

ν∆(
⋃
r≥m(Br)) ≤

∑
r≥mC2rβ2

√
r. Now the lemma follows from a straightforward calculation.

Corollary 6.2. Lift ϕ : M → R to ϕ : ∆→ R by defining ϕ(x, j) = ϕ(T jx). Let β1 be defined as

in Section (2.1) (a). Suppose p ∈ D(m) = {(x, j) ∈ ∆ : |T kW s(x, j)| < (
√
β1)

k
for all k ≥ m}

and let Ln = [ lnn
I(α) ]. Then if q ∈W s(p), |SLnϕ ◦ Fm(p)− SLnϕ ◦ Fm(q)| ≤ C‖ϕ‖∞Lnβ1

m/2.

Proof of Theorem 5.1. The main idea of the proof of Theorem 5.1 is to approximate functions
on ∆ by functions constant on stable manifolds, so that correlation decay estimates on the
quotiented tower from [13, Corollary 2.9] can be used.

We define an equivalence relation on Λ by z ∼ x if z ∈ W s(x) and form the quotient space
Λ = Λ/ ∼ with corresponding partition {Λj}. The return time function R : Λ → N is well-
defined (and the same in the quotiented and unquotiented tower) as each stable disk W s(x)
lies in Λj if x ∈ Λj and TR(j)(W s(x)) ⊂ W s(TR(j)x) for all x ∈ Λj . So we have a well-defined
induced map f̄ : Λ→ Λ. We similarly define the quotient space of ∆, denoted ∆. The separation
time for f : Λ→ Λ extends to a separation time on ∆ by defining

s((x, l), (y, l
′
)) =

{
s(x, y) if l = l

′
;

1 if l 6= l
′
.

We fix β1 from Section 2.1 Assumption (a) and define the metric dβ1 on ∆ by dβ1(p, q) =

β
s(p,q)
1 . Here we write p = (x, l) ∈ ∆, q = (y, l

′
). We define the ‖ · ‖β1-norm by ‖φ‖β1 :=

‖φ‖∞ + supp,q∈∆
|φ(p)−φ(q)|
dβ1 (p,q) . Functions φ and ψ which are constant on stable manifolds in ∆

naturally project to functions φ and ψ (we use the same notation) on ∆ with the same dβ1
Lipschitz constant and L∞ norm. If φ : ∆ → R is constant on stable manifolds we define the
‖ · ‖β1-norm by ‖φ‖β1 := ‖φ‖∞ + supp,q∈∆

|φ(p)−φ(q)|
dβ1 (p,q) .

With this set-up the correlation estimate of [13, Corollary 2.9] can be stated:

Proposition 6.3. [13, Corollary 2.9]
Suppose that φ, ψ : ∆ → R are constant on stable manifolds then for some constants C,

β3 ∈ (0, 1),

|
∫

∆
φ(ψ ◦ F j) dν∆ −

∫
∆
φdν∆

∫
∆
ψ dν∆| ≤ C‖φ‖β1‖ψ‖∞β

j
3

for all j ≥ 0 .

In the case that ϕ is not an L1 coboundary i.e. there exists no ψ such that ϕ = ψ ◦ T − ψ,
ψ ∈ L1(m) it has been shown [16, 19] under the assumptions of Theorem 5.1 that ϕ has
exponential large deviations with a rate function I(α). Thus assumption (a) of Proposition 4.1
holds and we therefore only need to prove µ({max0≤m≤n−Ln SLn ◦Tm ≤ Ln(α−ε)}) is summable
in order to get the lower bound by an application of the Borel-Cantelli lemma. This direction
is more difficult and uses differential and dynamical information on the system.

For the reader’s convenience we recall our assumptions:
Assumptions: there exist constants K ≥ 1 and 0 < β1 < 1 such that

(a) if z ∈W s(x) then d(fnz, fnx) ≤ Kβn1 ;

(b) if z ∈W u(x) then d(fnz, fnx) ≤ Kβs(x,z)−n1 ;
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(c) if z, x ∈ Λ then d(T jz, T jx) ≤ K(d(z, x) + d(fz, fx)) for all 0 ≤ j ≤ min{R(z), R(x)}.
We lift ϕ from M to ∆ by defining ϕ(x, j) = ϕ(T jx). We will use the same notation for ϕ

on ∆ as we use for ϕ on M .
To simplify notation we will sometimes write p = (x, j) for a point p ∈ ∆.
For 0 < ε� α put

An(ε) := {(x, j) ∈ ∆ : SLn ≤ Ln(α− ε)},

where

Sn(x, j) =
n−1∑
k=0

ϕ ◦ F k(x, j)

is the nth ergodic sum of ϕ. Define

Bn(ε) =

n−Ln⋂
m=0

F−mAn(ε) =

{
(x, j) ∈ ∆ : max

0≤m≤n−Ln
Sln ◦ Fm ≤ Ln(α− ε)

}
.

The theorem follows by the Borel-Cantelli lemma once we show that
∑∞

n=1 ν∆(Bn(ε)) <∞.
To do this we will use a blocking argument to take advantage of decay of correlations and

intercalate by blocks of length κn := lnκ(n), where κ will be specified later.
For 1 ≤ j < rn := [ nκn ] put

Ejn(ε) :=

j⋂
m=1

F−m[κn]An(ε)

which is a nested sequence of sets. Note that ν∆(Bn(ε)) ≤ ν∆(Ernn (ε)).
We also have the recursion

Ejn(ε) = An(ε) ∩ F−κnEj−1
n (ε)

j = 1, . . . , rn, which implies

ν∆(Ejn(ε)) = ν∆(An(ε) ∩ F−κnEj−1
n (ε))

Recall D(m) = {(x, j) ∈ ∆ : |T kW s(x)| < (
√
β1)k for all k ≥ m}. Hence given δ > 0 such

that β
′
2 := β2 + δ < 1 by Lemma 6.1 we may estimate ν∆(D(κn)c) ≤ (β

′
2)κn/2 for sufficiently

large n.
Furthermore if m ≥ κn, p ∈ D(m) and q ∈ W s(p) then |SLn ◦ Fm(p) − SLn ◦ Fm(q)| ≤

C‖ϕ‖∞Lnβκn/21 by the corollary to Lemma 6.1. We will take κ and n large enough that

C‖ϕ‖∞Lnβκn/21 < ε
2 .

Accordingly for large n if m ≥ κn, p ∈ D(m)∩F−mAn(ε) and q ∈W s(p) then Fmq ∈ An( ε2).

First Approximation.
We now approximate 1An(ε)∩D(κn) by a function gεn which is constant on stable manifolds

by requiring that if p ∈ An(ε) ∩ D(κn) then gεn(p) = 1 on W s(p) and gεn = 0 otherwise. Thus
{gεn = 1} ⊂ An( ε2) and

ν∆(gn = 1) ≤ ν∆(An(
ε

2
))

Furthermore
An(ε) ⊂ {gεn = 1} ∪D(κn)c

hence
ν∆(An(ε)) ≤ ν∆(gεn = 1) + ν∆(D(κn)c).
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For j = 1, . . . , rn let

Gjn(ε) =:

j∏
i=1

gεn ◦ F i[κn]

and note ν∆(Ejn(ε)) ≤ ν∆(Gjn(ε)) + jν∆(D(κn)c).

Second Approximation
We will approximate gεn (considered as a function on ∆) by a dβ1 Lipschitz function hεn which

extends to a function on ∆ by requiring hεn to be constant on stable manifolds.
First define

hεn(p̄) := max{0, 1− dβ1(p̄, supp(gεn))β
−√κn
1 }

on ∆ and then extend so that it is constant on local stable manifolds and hence is a function on
∆. In particular hεn has support in points such that dβ1(p, supp(gεn)) ≤ β

√
κn

1 and ‖hεn‖β1 ≤ β
√
κn

1

by [20, Section 2.1].

By (b) and (c) if z ∈ W u(p) and dβ1(p, z) < β
√
κn

1 then d(F jp, F jz) ≤ 2K β
√
κn−Ln

1 for all
j ≤ Ln.

Hence if dβ1(z, supp(gεn)) ≤ β
√
κn

1 then there exists p ∈ supp(gεn) such that d(F jp, F jz) ≤
2Kβ

√
κn−Ln

1 for all j ≤ Ln and hence

|
Ln∑
j=0

[ϕ ◦ F j(z)− ϕ ◦ F j(p)]| ≤ CLnβ
√
κn−Ln

1 ≤ ε

2

for sufficiently large n. This implies that ν∆(gεn) ≤ ν∆(hεn) ≤ ν∆(An( ε2)).
As hεn Lipschitz in the dβ1 metric we obtain by Proposition 6.3

ν∆(Ejn(ε)) ≤
∫

∆
(Gjn(ε)) dν∆ + jν∆(D(lnk(n)c)

≤
∫

∆
(gεn ·Gj−1

n ◦ F κn) dν∆ + Cn(β
′
1)
κn/2

≤
∫
hεn dν∆

∫
Gj−1
n (ε) dν∆ + c3β

κn
3 ‖h

ε
n‖β1‖Gj−1

n (ε)‖∞ + Cj(β
′
1)
κn/2

≤ ν∆(An(
ε

2
))ν∆(Gj−1

n (ε)) + c3β
κn
3 β

−√κn
1 + Cj(β

′
1)
κn/2

.

Iterating this estimate yields

ν∆(E0
n(ε)) ≤ ν∆(An(

ε

2
))[n/κn] + nc3β

κn
3 β

−√κn
1 + n2Cβ

κn/2
1 .

The terms nc3β
κn
3 β

−√κn
1 and n2Cβκn1 are summable if we take κ > 3 in the definition of κn.

In order to verify summability of the ν∆(An( ε2))[n/κn] term we proceed as in the proof of
Proposition 4.1 using large deviations. By the existence of a rate function we obtain ν∆((An( ε2))c) ≥
e−Ln(I(α− ε

2
)+δ1) for some 0 < δ1 and hence 1 − ν∆(An( ε2)) ≥ e−Ln(I(α− ε

2
)+δ1) for some 0 < δ1.

Hence ν∆(An( ε2)) ≤ 1− n−ρ where ρ =
I(α− ε

2
)

I(α) + δ1 is less than 1 for δ1 > 0 small enough. The
principal term can be bounded by

ν∆(An(
ε

2
))[n/κn] ≤ (1− n−ρ)[n/κn]

which is also summable over n. Hence by Borel-Cantelli we conclude that the set {Bn(ε) i.o.}
has measure zero. This concludes the proof.
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7 Erdös-Rényi laws for Young Towers with polynomial tails.

We now consider Young Towers with polynomial tails in the sense that ν∆(R > n) ≤ Cn−β.

7.1 Upper bounds.

We first prove a general result. We suppose that (T,M, µ) is an ergodic dynamical system and
ϕ : M → R is a bounded observable. We assume also

µ

(∣∣∣∣ 1nSn(ϕ)− ϕ̄
∣∣∣∣ > ε

)
≤ C(ε)n−β.

Theorem 7.1. Assume that ϕ̄ = µ(ϕ) = 0, ϕ is bounded and for every ε > 0 there exists a
constant C(ε) > 0 and β > 1 so that

µ

(∣∣∣∣ 1nSn(ϕ)

∣∣∣∣ > ε

)
≤ C(ε)n−β.

Then if τ > 1
β for µ a.e. x ∈M ,

lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm(x) = 0.

Proof. Choose τ > 1
β and put Ln = nτ . Let ε > 0 and define

An := {x ∈ X : max
0≤m≤n−Ln

|SLn ◦ Tm| ≥ Lnε}.

Then µ(An) ≤ nµ(SLn ≥ εLn) ≤ c1(δ)n1−τβ = c1n
−δ, for some c1 > 0, where δ = τβ − 1.

Let p > 1
δ (i.e. δp > 1) and consider the subsequence n = kp. Since

∑
k µ(Akp) ≤

c1
∑

k k
−pδ <∞, we obtain via the Borel-Cantelli lemma that for µ a.e. x ∈ X

lim sup
k→∞

max
0≤m≤kp−Lkp

L−1
kp |SLkp ◦ T

m| ≤ ε.

To fill the gaps use that kp − (k − 1)p = O(kp−1) and we obtain (as ϕ is bounded) that

SLkp ◦ Tm

Lkp
=
SL(k−1)p

◦ Tm

Lkp
+O

(
1

k

)
where the implied constant is uniform in x ∈ Xas ϕ is bounded. As limk→∞

kp

(k−1)p = 1 we
conclude

lim
k→∞

|SLkp |
Lkp

= lim
k→∞

|SL(k−1)p
|

Lkp
.

Since any n ∈ N satisfies (k − 1)p ≤ n ≤ kp for some k and ϕ is bounded, it follows that

lim sup
n→∞

max
0≤m≤n−Ln

|SLn ◦ Tm|/Ln ≤ ε.

As ε was arbitrary this gives the upper bound.
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7.2 Lower bounds.

Now we suppose there exists γ ≥ β, an observable ϕ and an α > 0 such that for all n,
µ
(∣∣ 1
nSn(ϕ)− ϕ̄

∣∣ > α
)
≥ C(α)n−γ . We show if we take a window of length nτ , τ < 1

1+β+1
β
γ

then the time-averaged fluctuation persists almost surely. In the case that γ limits to β then we
require τ < 1

2+β . Comparing Theorem 7.1 and Theorem 7.2 there is a gap 1

1+β+1
β
γ
< τ < 1

β for

which we don’t know the almost sure limit of windows of length nτ . In Example 7.3 we show
that τ < 1

β+1 is required to ensure that a time-averaged fluctuation persists almost surely.

Theorem 7.2. Suppose that (T,M, µ) is modeled by a Young Tower and ν̄∆(R > n) ≤ Cn−β.
Suppose that γ ≥ β and there exists a function C which is continuous on a neighborhood of
α > 0 such that

µ

(∣∣∣∣ 1nSn(ϕ)− ϕ̄
∣∣∣∣ > α

)
≥ C(α)n−γ

Then if 0 < τ < 1

1+γ β+1
β

for µ a.e. x ∈M

lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm(x) ≥ α

Proof. Let 0 < ε� α and put

Anτ (ε) = {(x, j) :
nτ∑
r=1

ϕ ◦ F r(x, j) ≤ α− ε}.

Since ϕ is Lipschitz continuous with Lipschitz constant L, then if y ∈ Anτ (ε) and d(y, y′) < ε
2Lnτ ,

then y′ ∈ Anτ (ε/2). Hence let us choose n1 so that Kβn1
1 < ε

2Lnτ and define

Bnτ (ε) = {(x, 0) ∈ Λ : ∃ 0 ≤ j < R(fn1x) with (fn1x, j) ∈ Anτ (ε)} = f−n1(πAnτ (ε)),

where π : ∆ → Λ is the projection given by π((x, j)) = (x, 0) (j < R(x)). The choice of the
integer achieves that if (x, 0) ∈ Bnτ (ε) and (x′, 0) ∈W s(x, 0) then (fn1x′, 0) ∈ π(Anτ ( ε2)). This
is a consequence of Assumption (a). By assumption

ν∆(Anτ (ε)) ≥ C(α− ε)n−γτ .

For δ > τγ
β we have

ν∆(R > nδ) = o(n−δ)

as by assumption ν∆(R > `) ≤ C`−β.
Since ν∆ = ν̄ × (counting measure) we get for D ⊂ ∆

ν̄(π(D)) ≥ ν∆(D)− ν∆(R > nδ)

nδ
.

Consequently

ν̄(π(Anτ (ε))) ≥
(
C(α− ε)n−τγ − o(n−δβ)

)
n−δ

and since δβ > τγ the first term dominates and we obtain

ν̄(π(Anτ (ε))) ≥ c1n
−τγ−δ

for some c1 > 0 and since fn1 preserves ν̄,

ν̄(Bnτ (ε)) ≥ c1n
−τγ−δ.
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We can now define
B̃nτ (ε) =

⋃
x∈Bnτ (ε)

W s(x)

which by choice of n1 implies that

B̃nτ (ε) ⊂ Bnτ (ε/2).

We now approximate 1Bnτ (ε) by a function hnτ (ε) which has Lipschitz constant β−n
τ

1 in the
dβ1-norm, that is we define

hnτ (ε)(p) = max(0, 1− d(p,Bnτ (ε)β−n
τ

1 )

where we write p for (p, 0). We can choose n1 to be much smaller than nτ and therefore, since
by Assumption (b) and (c) if d(p,Bnτ (ε)) < βτn1 then d(fn1p,Bnτ (ε)) < Kβn

τ−n1
1 < ε

2Lnτ which
implies that the support of hnτ (ε) is contained in Bnτ (ε/2).

Now we let τ1 > τ but τ1 − τ < 1− (τγ β+1
β + τ) and consider

Gn(ε) =

[n/nτ1 ]⋂
m=0

f−mn
τ1
Bnτ (ε)

We will show that ∑
n

ν̄(Gn(ε)) <∞

Now

ν̄(Gn(ε)) ≤ ν̄

n1−τ1∏
m=0

hnτ (ε) ◦ fmnτ1


≤ ν̄(hnτ (ε))ν̄(Gn−1(ε)) + c3‖hnτ (ε)‖β1‖|Gn−1(ε)|∞βn
τ1

3

≤ [ν̄(hnτ (ε))]n
1−τ1

+ nC3β
nτ1
3 β−n

τ

1

The term nC3β
nτ1
3 β−n

τ

1 is summable in n as τ1 > τ . The principal term is estimated by

[ν̄(hnτ (ε))]n
1−τ1 ≤

(
1− C(α− ε

2
)n−γτ−δ

)n1−τ1

≤ exp
(
−C(α− ε/2)n1−τ1−γτ−δ

)
Since τ1 > τ can be chosen arbitrarily close to τ and δ > τγ

β can be chosen to achieve the power

1 − τ − τγ − δ is positive for any chosen τ < (1 + γ β+1
β )−1 we obtain that the principal terms

are summable which implies summability of ν̄(Gn(ε).
Now define

En := {(x, 0) : for all j < n :

nτ∑
r=0

ϕ(FRn1 (x)+j+rx, 0) ≤ (α− ε

2
)nτ},

where R` =
∑`−1

i=0 R ◦ f i is the `-th ergodic sum of R. As En(ε) ⊂ Gn(ε), ν̄(Gn(ε)) summable
implies that

∑∞
n=1 ν̄(En(ε)) <∞.

By Birkhoff’s ergodic theorem

lim
n→∞

Rn(x, j)

n
= R̄ =

1

ν∆(Λ)

for ν∆ a.e. (x, j) ∈ ∆, and so the theorem follows.
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Example 7.3. The condition τ < 1

1+γ β+1
β

is close to optimal in that, taking γ = β, we require

τ < 1
2+β . We may construct a Young Tower and observable ϕ,

∫
∆ ϕdν∆ = 0 and α > 0 such

that ν∆(Snτϕ(x, j) ≥ nτα) ≤ Cn−τβ, yet for all τ > 1
β+1 ,

lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm = 0

We sketch the main idea of the tower and observable and make a couple of technical adjust-
ments to ensure the tower is mixing and that the observable is not a coboundary. The construc-
tion is based on that of [1]. The base partition consists of disjoint intervals Λi of length i−β−2 and
height 2i. Above the base element Λi the levels of the tower consist of {(x, j) : 0 ≤ j ≤ 2i− 1}.
We define ϕ on the Tower by, if x ∈ Λi,

ϕ(x, j) =

{
−1 if 0 ≤ j < i;
1 if i ≤ j < 2i.

Clearly ν∆(ϕ) = 0.
Let 0 < α < 1. Note that Snτϕ(x, j) ≥ nτα only if (x, j) ∈ (R > nτ ) and in fact

ν∆(Snτϕ(x, j) ≥ nτα) ≥ Cν∆(R > 2nτ ) =
∑∞

r=2nτ (2j)j−2−β ≤ Cn−τβ.
However if τ > 1

β+1 then
∑

j≥nτ ν̄(Λj) ≤
∑∞

n=1 n
−τ(β+1) < ∞. Hence by the Borel-Cantelli

lemma fn(x, 0) ∈
⋃
j>nτ Λj only finitely many times for ν̄ a.e. (x, 0). This implies that for ν̄

a.e. (x, 0) there exists an N(x) such that for all n ≥ N(x)

for all j < n :
nτ∑
r=0

ϕ(f j+rx, 0) < αnτ .

Hence for µ a.e. x ∈M
lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm < α

for every α > 0.
The same argument shows for ν∆ a.e. (x, j)

lim
n→∞

max
0≤m≤n−nτ

n−τSnτ ◦ Tm = 0

and
lim
n→∞

min
0≤m≤n−nτ

n−τSnτ ◦ Tm = 0

The heights of the levels in the tower above are all multiples of 2. Furthermore the observable
ϕ is a coboundary. If we define

ψ(x, j) =

{
j if x ∈ Λk, 0 ≤ j ≤ k
2k − j if x ∈ Λk, k < j ≤ 2k − 1

.

It is easy to check that
ϕ = ψ ◦ F − ψ

We will modify the tower and the observable so that the greatest common denominator of the
return time function R is 1 (to ensure the tower is mixing) and that the new observable is not a
coboundary. We change Λ3 to have height 3. This entails that the tower is mixing. On the levels
above Λ3 we modify ϕ to ϕ1 so that ϕ1(x, j) = κ > 0, j = 0, 1, 2, x ∈ Λ3 where κ > 0 is small but
ϕ1 = ϕ elsewhere . This entails r1 := ν∆(ϕ1) = κν∆(Λ3) > 0. We subtract r1/(ν∆(Λ2)) from
the value of ϕ1 on Λ2 to form a new observable ϕ2 such that ν∆(ϕ2) = 0. Since F 3 has a fixed
point p on Λ3 and since

∑2
j=0 ϕ2(x, j) 6= 0 we conclude ϕ2 is not a coboundary (by the Liv̌sic

theorem [17]). The new tower with observable ϕ2 we defined has the properties of the former
pertinent to our example.
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