
Convergence of the transfer operator for
rational maps

Nicolai Haydn ∗

Abstract: We prove that the transfer operator for a general class of rational
maps converges exponentially fast in the supremum norm and in Hölder
norms for small enough Hölder exponents to its principal eigendirection.

1 Introduction

Let T : C→ C be a rational map of degree d ≥ 2, and denote by J its Julia
set. If f : J → R is a continuous function, then we would like to consider
the action of the associated transfer operator Lf . It is well known that
for real f the operator Lf has a largest simple eigenvalue whose associated
eigenfunction and eigenfunctional define an invariant measure µ on J which
is conformal with respect to P (f) − f , where P (f) is the pressure of f . If
the function f is Hölder continuous and satisfies the condition P (f)− f > 0,
then it was shown [1] that µ is in fact the equilibrium state for f , that is it
realises the maximum in the variational principle

P (f) = sup
ν

(h(ν) + µ(f)),

where the supremum is over all T -invariant probability measures ν on J , and
h(ν) denotes the metric entropy of ν.

For f : J → R, one defines the transfer operator L by

Lφ(x) =
∑

y∈T−1x

ef(y)φ(y),
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where φ are functions on J and x ∈ J . In order to use the euclidean metric
on C (rather than the spherical metric on C̄) let us assume that∞ 6∈ J , and
denote by Cα(J), α > 0, the Hölder continuous functions on J with Hölder
exponent α, that is, if f ∈ Cα(J) then there exists a smallest constant |f |α
so that |f(x) − f(y)| ≤ |f |α|x − y|α, for all x, y ∈ J . If we denote by
|f |∞ the supremum norm on J , then the natural norm on Cα(J) is given by
‖ ·‖α = | · |α+ | · |∞. The main result in this paper is to show that L contracts
to the eigenspace spanned by µ exponentially fast in the supremum norm
(theorem 10) and in the Hölder norm for small enough Hölder exponents
κ < α (theorem 11). It was previously shown in [2] that the contraction
is subexponential at the rate ϑ

√
n for some ϑ < 1, where n is the number

of times the operator L is iterated. Clearly, in general we cannot expect
the convergence to be exponential in the Cα-norm, since this remains the
privilege of the case when the map T is (uniformly) hyperbolic in which case
the operator L : Cα → Cα has a spectral gap which is essential to effect
exponential convergence in Cα.

Quasicompactness of the transfer operator acting on Sobolev spaces has
been shown by Smirnov [7].

These results were made possible by many converstations I had with M.
Urbanski. Work on this paper was begun while visiting the SFB 170 at the
University of Göttingen.

In a forthcoming paper we use these results to prove that the normalised
return times of rational maps are Poisson distributed for all orders and that
rational maps are weakly Bernoulli.

2 Inverse branches

We shall need the following theorem (where |S| denotes the cardinality of
the finite set S).

Theorem 1 Let J not contain any critical periodic point of T and let 0 <
λ < 1. Then there exist ε > 0, η ∈ (0, 1), a sequence of simply connected
regions Ωn, n ∈ N, and a disjoint decomposition of the inverse branches of
T n on Ωn into two subsets S ′n = S ′n(λ) and S ′′n = S ′′n(λ) so that
(a) |S ′′n| ≤ rλ−n, n ∈ N, for some constant r.
(b) |ϕ′(z)| ≤ ηn for z ∈ Ωn and in particular diam(ϕ(Ωn)) ≤ ηn,∀ϕ ∈ S ′n, n ∈
N.
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(c) dist(z,Ωn) ≤ C1e
−nε for all z ∈ J, n ∈ N, for some constant C1 > 0.

The following lemma serves to obtain in lemma 3 an estimate on the boundary
behaviour of the Riemann map for a polygon which then will be used to get
uniform bounds on the Köbe constant of polygonal regions (lemma 5).

Lemma 2 Let g(z) be analytic in some simply connected region Ω and x0 ∈
∂Ω. Moreover, let h(z) = (g(z)−g(x0))1/γ (with suitable branch cuts), where
0 < γ < 2. Then there exists a constant C2 ≥ 1, so that

|g(z)− g(x)| ≤ C2|h(z)− h(x)|γ.

Proof. We consider two cases, namely x = x0 and x 6= x0.
(I) Let us assume that x = x0. Then we have |g(z) − g(x)| = |h(z)|γ =
|h(z)− h(x)|γ, as h(x) = h(x0) = 0.
(II) Let us now assume that x 6= x0 and put d = |h(x)−h(x0)| = |h(x)|. Let
us first consider the case when |h(z)−h(x)| ≤ d/2, that is when |h(z)| ≥ d/2.
Since |h(ζ)| ≤ |h(x)|+ |h(x)− h(z)| ≤ 3d/2 for ζ ∈ [z, x], we obtain

|g(z)− g(x)| ≤
∫ h(x)

h(z)

∣∣∣∣∣dhγdh
∣∣∣∣∣ |dh|

≤ γ max
ζ∈[z,x]

|h(ζ)|γ−1|h(z)− h(x)|

≤ γ3γ−1|h(z)− h(x)|γ,

as |h(x)− h(z)| ≤ |h(x)− h(z)|γ(d/2)1−γ.
In the case |h(z)− h(x)| > d/2 we get

|g(z)− g(x)| ≤ |h(z)γ − h(x0)γ|+ |h(x0)γ − h(x)γ|
≤ |h(z)|γ + dγ

≤ (3γ + 2γ)|h(z)− h(x)|γ,

where we used that |h(z)| ≤ d+ |h(z)− h(x)| ≤ 3|h(z)− h(x)|.
Thus the lemma is proven, if we put C2 = max(3γ + 2γ, γ3γ). 2

Lemma 3 Let γ > 0 and N ≥ 3. Then there exists a constant C3 (depending
on γ and N) so that for every polygon P with at most N vertices and interior
angles ≥ πγ > 0 the following estimate holds:

dist(f(z), ∂P ) ≤ C3(1− |z|)γN (diam(P ))γ
−2N

.

where f : D → P is the Riemann map from the unit disc D to P .
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Proof. Let xj ∈ ∂D, j = 1, 2, . . . , N, be the prevertices of the polygon P
(assume 0 ∈ P ) under the map f . We can assume that Arg(xj) < Arg(xj+1)
for all j = 1, . . . , N (xN+1 = x1). For every j, the map f has by the Schwarz
reflection principle an analytic continuation to the slit plane C \ Sj, which
it maps conformally to P and its reflection along the edge f(Sj) which lie
in a branched cover of the complex plane, where Sj ⊂ ∂D is the arcsegment
whose endpoints are the prevertices xj, xj+1 and which does not contain any
other prevertices. Let x ∈ ∂D and Bδ(x) be the ball of radius centred at
x. Then f(Bδ(x)) ⊂ B2p(0), δ < 1, where p = diam(P ). Without loss of
generality we can assume that xj, j = 1, . . . ,M,M < N are those prevertices
of P which lie in the ball Bδ(x). Put g0(z) = f(z) and define inductively

gj(z) = (gj−1(z)− gj−1(xj))
1/γj , j = 1, . . . ,M,

where πγj is the interior angle at the vertex f(xj). These maps are analytic
in Bδ(x)∩D and gM can by the Schwarz reflection principle holomorphically
be extended to the entire ball Bδ(x). From the estimates

sup
Bδ(x)∩D

|gj(z)| ≤ 21/γj sup
Bδ(x)∩D

|gj−1(z)|1/γj

j = 1, . . . ,M , and the fact that supBδ(x)∩D |g0(z)| ≤ p we conclude that

sup
Bδ(x)∩D

|gM(z)| ≤ (2Mp)1/γM ≤ (2Np)γ
−N
.

Since by the reflection principle gM can analytically be extended to the
entire ball Bδ(x) we obtain supBδ(x) |gM(z)| ≤ 2(2Np)γ

−N
. For z ∈ Bδ/2(x)

a Cauchy estimate provides |g′M(z)| ≤ c1p
γ−N , where c1 = 4 · 2Nγ−N , and

therefore |gM(z)− gM(x)| ≤ c1p
γ−N |x− z|. A repeated application of lemma

2 yields the estimate

|g0(z)− g0(x)| ≤ (CN
2 c1)1/γ′pγ

−N |x− z|γ′ ,

where γ′ = γ1γ2 · · · γM ≥ γN . This proves the lemma with C3 = (CN
2 c1)γ

−N
.

2

Lemma 4 (Köbe distortion theorem [3]) A univalent function g on the unit-
disc satisfies: (

δ′

2− δ′

)4

≤
∣∣∣∣∣ g′(w)

g′(w′)

∣∣∣∣∣ ≤
(

2− δ′

δ′

)4

for all |w|, |w′| < 1− δ′, where δ′ > 0.
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Lemma 5 Let P (as above) be a polygon with ≤ N vertices whose interior
angles are ≥ πγ > 0, and let ϕ be a univalent function on P . Then for every
(small) δ > 0 we have that

1

256

(
δ

C3

)8/γN

≤
∣∣∣∣∣ ϕ′(z)

ϕ′(z′)

∣∣∣∣∣ ≤ 256
(
C3

δ

)8/γN

for all z, z′ ∈ P for which dist(z, ∂P ), dist(z′, ∂P ) ≥ δ, where C3 is a constant
(determined by lemma 3).

Proof. Let f : D → P be the Riemann map and put δ′ = (δ/C3)1/γN . This
ensures that

P \Bδ(∂P ) ⊂ f(B1−δ′(0)).

As g = ϕ ◦ f is univalent on the unitdisc D it satisfies the Köbe distortion
inequality

δ′4

16
≤
∣∣∣∣∣ g′(w)

g′(w′)

∣∣∣∣∣ ≤ 16

δ′4

for all w,w′ ∈ B1−δ′(0). Since g′(w) = ϕ′(z)f ′(w), where z = f(w) ∈ P , we
obtain ∣∣∣∣∣ ϕ′(z)

ϕ′(z′)

∣∣∣∣∣ =

∣∣∣∣∣ g′(w)

g′(w′)

∣∣∣∣∣×
∣∣∣∣∣f ′(w′)f ′(w)

∣∣∣∣∣ ,
and, since also f satisfies the distortion estimate of lemma 4, we obtain

δ′8

256
≤
∣∣∣∣∣ ϕ′(z)

ϕ′(z′)

∣∣∣∣∣ ≤ 256

δ′8
,

for all z, z′ ∈ P \Bδ(∂P ). The estimate in the lemma now follows readily. 2

Proof of theorem 1. Denote by Λn the critical values of T n (critical points
of the inverse maps) and let U be a topological disc in C which avoids all
periodic critical points of T . We shall assume that U is a finite region. Denote
by πx the projection of C onto the real axis (x-axis) and by πy the projection
onto the imaginary axis (y-axis). Let (without counting muliplicities) {xj :
j = 1, 2, . . .} be the (finite) set πxΛn, labelled in such a way that x1 < x2 <
· · ·. Put aj = xj+1 − xj, j = 1, 2, . . ..

Let λ ∈ (0, 1) put δ = − log λ
8192

and choose ε ∈ (0, δ). Put εn = e−εn and
δn = e−δn.
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Let us assume that
∑
j aj > dn2εn (the points in πxΛn are spread out). In

this case we can find a gap ã > 0 so that |ã−aj| > εn∀j. Since |Λn| ≤ dn, we
can choose ã ≤ nεn. We say two points xj, xj+1 are close if aj = xj+1− xJ <
ã− εn and are apart if aj > ã+ εn. A set of points {xj : j = k, k+ 1, . . . , k+
k0} ⊂ πxΛn (some k, k0) form a cluster if aj < ã−εn for j = k, . . . , k+k0−1,
and aj−s, ak + k0 > ã+ εn.

The set πxΛn consists of a finite number of (disjoint) clusters. In the case
when

∑
j aj ≤ dn2εn (the points in πxΛn are closely packed) the entire set

πxΛn might form a single cluster. We shall now do ‘branch cuts’ to remove
all the critical values Λn in U by cutting out a cluster at a time.

For large enough n there exists a number b̃ ∈ (0, 1) so that |πy(z)− b̃| > εn
for every point z ∈ Λn. Let Γ be a cluster of critical values. If πyΓ∩(−∞, b̃) 6=
∅ then we do a rectangular cut whose short side is parallel to the x-axis at
hight maxz∈Γ,πy(z)<b̃ πy(z) ≤ b̃ − εn and whose long sides are parallel to the
y-axis, extend all the way in negative y-direction to the boundary of U and
are made to enclose the portion of the cluster Γ which lies in the halfplane
{(x, y) : y < b̃}. To remove the portion of the cluster Γ which lies in the
halfplane {(x, y) : y > b̃} we do a similar rectangular cut whose short side
has the y-coordinate minz∈Γ,πy(z)>b̃ πy(z) ≥ b̃+ εn and whose long sides reach
in the positive y-direction to the boundary ∂U . Notice that the widths of
these ‘cuts’ are ≤ |Λn|ã ≤ dn2εn (the absolute values denote the cardinality
of the finite set).

In this way we remove every cluster of critical values and denote by Un the
region U minus the rectangular cuts. It has the property that any two points
z, z′ ∈ Un which satisfy dist(z, ∂Un), dist(z′, ∂Un) ≥ δn can be connected by a
polygonal path C with at most three straight lines parallel to the coordinate
axes and which lies inside a polygonal region P ⊂ Un whose edges are parallel
to the coordinate axies and satisfies dist(C, ∂P ) ≥ 1√

2
δn. Therefore, if ϕ is a

univalent function of Un, then by lemma 5

K−1
n ≤

∣∣∣∣∣ ϕ′(z)

ϕ′(z′)

∣∣∣∣∣ ≤ Kn,

whereKn ≤ 2200C2048
2 δ−2048

n (withN = 8, γ = 1/2 and diam(P ) = diam(Ωn)),
for z, z′ ∈ Un \Bδn(∂Un).

Put Ωn = T (Un \Bδn(∂Un)). To construct the inverse branches of T n on
Ωn we shall follow [1] and [5]. Let Sn be the (univalent) inverse branches of
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T n on Ωn and denote by |V | the normalised spherical measure of measurable
set V ⊂ C. Define S ′′n = {ϕ ∈ Sn : |ϕ(Ωn)| > λn} and S ′n = Sn \ S ′′n (for the
set of ‘good’ branches). Since the multiplicity of the family {ϕ(Ωn) : ϕ ∈ Sn}
is uniformly in n bounded by some number r which is the largest degree of
the critical values in J of the iterates of T (that is for every point z ∈ C there
are at most r branches ϕ ∈ Sn so that z ∈ ϕ(Ωn)), we obtain |S ′′n| ≤ rλ−n.
This proves part (a) of the theorem.

To estimate the diameter of the sets ϕ(Ωn) for ϕ ∈ S ′n from their spherical
measures we proceed as follows:

|ϕ(Ωn)| ≥ |Ωn| inf
z∈Ωn
|ϕ′(z)|2

≥ K−2
n |Ωn| sup

z∈Ωn

|ϕ′(z)|2.

Together with the assumption |ϕ(Ωn)| ≤ λn, this yields (c1 > 0)

sup
z∈Ωn

|ϕ′(z)| ≤ Kn

√√√√ |ϕ(Ωn)|
|Ωn|

≤ c1 λ
n/2δ−2048

n .

Since δ = − log λ
8192

we obtain diam(ϕ(Ωn)) ≤ ηn, where η = 4
√
λ. This concludes

the proof of part (b) of the theorem.
To prove the last part of the theorem, let us observe that by construction

of the inverse branches dist(z, Un \ Bδn(Un)) ≤ εn + δn, which immediately
leads to the estimate dist(z,Ωn) ≤

√
2(εn + δn) ≤ C1e

−εn, for some C1 and
all z ∈ J \ Ωn. 2

Remark. In the proof of theorem 1 we describe doing the thickened branch
cuts parallel to the imaginary axis. Naturally the branch cuts can of course
be done at any angle with respect to the imaginary axis. In particular, given
any two points x, x′ ∈ Ω which lie outside the set BC1e−εn(Λn) then we can
arrange the branch cuts in such a way that they avoid x, x′—that is we can
assume that x, x′ ∈ Ωn whenever x, x′ 6∈ BC1e−εn(Λn)

3 Main result

Lemma 6 Let f ∈ Cα satisfy P (f) > sup f , and µ be its equilibrium state
on J . Let Ωn be as in constructed in Theorem 1 and λ ∈ (ρ, 1), where
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ρ = esup f−P (f). Put Bn =
⋃
ϕ∈S′′n(λ) ϕ(Ωn), then

|µ(Bn)| ≤ (ρ/λ)n.

Proof. The equilibrium state µ of a function f ∈ Cα is of the form hν,
where h is Hölder continuous [2] and an eigenfunction to the largest eigen-
value eP (P = P (f)) of the transferoperator Lf . The measure ν is an eigen-
functional to the same eigenvalue of the dual operator, or, equivalently, an
ef−P -conformal measure [?], which means that

ν(TA) =
∫
A
eP−f dν,

for measurable sets A on which T is injective. Hence

ν(ϕ(Ωn)) =
∫

Ωn
ef

n−nP dν ≤ ρn,

for all ϕ ∈ S, where fn = f + f ◦ T + · · · + f ◦ T n−1 is the nth ergodic
sum of f . As h is Hölder continuous µ(ϕ(Ωn)) ≤ c1 ρ

n, for some c1 > 0, and
therefore by theorem 1 (a)

µ(Bn) ≤
∑

ϕ∈S′′(λ)n

µ(ϕ(Ωn)) ≤ c1 |S ′′(λ)n|ρn ≤ c1 r (ρ/λ)n,

where ρ/λ is less than 1. This proves the lemma. 2

Let S̃n denote univalent extensions of the inverse branches Sn to simply
connected regions Ω̃n (Ωn ⊂ Ω̃n) which are the topological disk U minus a
finite number of regular branch cuts.

Lemma 7 ([2]) There exists a constant C4 > 1 and γ0, ξ > 0, so that
diam(ϕ(Bγ(x))) ≤ Cn

4 γ
ξ for all x ∈ J , ϕ ∈ S̃n, n ≥ 0 and γ ≤ γ0, pro-

vided Bδ(x) ⊂ Ω̃n.

We shall need the following result which is proven in [6] and [2] and which is
based on the previous lemma.

Lemma 8 ([6] and [2] (3.1)) There exist constants C5 and β > 0 (depending
on α and T ) so that ‖Lnfψ‖β ≤ C5‖ψ‖α, for all n ∈ N, ψ ∈ Cα.
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A consequence of this result is that the eigenfunction h to the largest eigen-
value eP of the transfer operator Lf : Cα → Cβ, for real f ∈ Cα, is Hölder
continuous with exponent β which is given by lemma 8. As h is bounded away
from 0 and∞, we can introduce a normalised transfer operator L̂ : Cα → Cγ

by L̂ = e−P (f)Lf+log h−log h◦T , where the Hölder exponent γ depends on β and
T and is given by lemma 8. The normalised transfer operator has the prop-
erty that the principal eigenvalue has been rescaled to 1 with the associated
eigenfunctions being the constants, that is L̂1 = 1.

Consider χ(x, x′) as a function of the first variable x ∈ J where the second
entry x′ ∈ J is assumed to be a parameter, and let

‖χ(x′)‖γ = sup
x
|χ(x, x′)|+ sup

x6=y

|χ(x, x′)− χ(y, x′)|
|x− y|γ

,

be its γ-Hölder norm (γ > 0) for the parameter value x′. Then we denote by
‖χ‖γ = supx′ ‖χ(x′)‖γ the norm of χ.

The transfer operator L̂ acts on the function χ as:

L̂χ(x, x′) =
∑
ϕ∈S̃1

g1(ϕx)χ(ϕx, ϕx′),

where g1 = h
h◦T e

f−P (f).
The following statement is a slight generalisation of lemma 8 and is proven

in the same way. (The supremum norm estimate is straighforward and the
estimates on the variation do not depend on the ‘parameter’ x′.)

Lemma 9 ([6], [2]) There exist constants C6 and δ ∈ (0, γ) (depending on
γ and T ) so that

‖L̂nfχ‖δ ≤ C5‖χ‖γ,

for all n ∈ N, where χ(x, x′) is as above a function on J × J and ‖χ‖γ its
γ-Hölder norm with respect to the variable x.

Let us now prove the main result of this paper.

Theorem 10 Let f ∈ Cα such that esup f−P (f) < 1, and µ its equilibrium
state. Then there exists a σ < 1 and a constant C7, such that for all k ≥ 1
and ψ ∈ Cα:

|L̂kψ − µ(ψ)|∞ ≤ C7σ
k‖ψ‖α.
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Proof. Without loss of generality we can assume that µ(ψ) = 0. Let ρ =
esup f−P (f) and choose λ ∈ (ρ, 1). Let η be the contraction rate of the ‘good’
inverse branches of theorem 1. Let C4 be as in lemma 7, β ∈ (0, α) (depending
on α and T ) as given by lemma 8 and choose η′ ∈ (ηβ, 1). Moreover choose
σ < 1 so that σ > max(ϑ, ηβ), where ϑ = max(η′, e−δ

′ε, ρ
λ
), where δ′ < δ is

an arbitrary positive number and δ < γ is given by lemma 9 with γ = ξβ (ξ
as in lemma 7). Finally, choose a number p > 1 close enough to 1 so that

p < 1 + log(η′/η)
β log |T ′|∞ and C

β p−1
p

4 < σ/ϑ.
Let N be an integer which will be specified below. Then we define a

sequence of integers nj = [n(1−p−j)] ([·] denotes integer part), j = 1, . . . ,M ,
where M is so that N ≤ np−M ≤ pN . Put mj = nj − nj−1, ψ0 = ψ and

ψj = L̂njψ = L̂mjψj−1, j = 1, . . . ,M . Observe that np−j ≤ n−nj ≤ np−j+1
and moreover mj ≤ (p − 1)(n − nj) + 1. We also have the lower bound
mj ≥ (p− 1)np−j = (p− 1)np−MpM−j ≥ (p− 1)NpM−j

The theorem will be proven by induction, where the induction hypothesis
shall be

|L̂kψ|∞ ≤ C7σ
k‖ψ‖α,

for k = 0, 1, . . . , n− 1. We shall show that the estimate also holds for k = n.
In particular we have |ψj|∞ ≤ C7σ

nj‖ψ‖α for j = 0, . . . ,M .
Let Ωn be the regions for the inverse branches of T n given by theorem 1

and let x, x′ ∈ J ∩ Ωn. Then

L̂nψ(x)− L̂nψ(x′) =
∑
ϕ∈Sn

(gn(ϕx)ψ(ϕx)− gn(ϕx′)ψ(ϕx′))

= I + II,

where gn = ef
n+h−h◦Tn−nP . In the first term,

I =
∑
ϕ∈Sn

gn(ϕx)(ψ(ϕx)− ψ(ϕx′)),

we get by theorem 1(b) for the contracting branches ϕ ∈ S ′n :

|ψ(ϕx)− ψ(ϕx′)| ≤ |ψ|α|ϕx− ϕx′|α ≤ |ψ|αηnα|x− x′|α.

On the other hand, since supy∈ϕ(Ωn) gn(y) ≤ c1 µ(ϕ(Ωn)), for some c1, we
obtain by lemma 6 for the non-contracting branches that∑

ϕ∈S′′n

gn(ϕx)|ψ(ϕx)− ψ(ϕx′)| ≤ 2|ψ|∞c1µ(Bn) ≤ 2|ψ|∞c1

(
ρ

λ

)n
,
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which implies (with some c2):

I ≤ |ψ|αηnα|x− x′|α + 2|ψ|∞c1

(
ρ

λ

)n
≤ c2‖ψ‖α

(
max(ηα,

ρ

λ
)
)n

≤ C7

8
‖ψ‖ασn,

provided n is large enough.
Let us now consider the second term for which we use the following tele-

scoping sums (note: gn−nj−1
(ϕx) = gn−nj(T

mjϕx)gmj(ϕx)):

II =
∑
ϕ∈Sn

ψ(ϕx′) (gn(ϕx)− gn(ϕx′))

=
M∑
j=1

∑
ϕ∈S̃n−nj−1

L̂nj−1ψ(ϕx′)
(
gn−nj−1

(ϕx)− gmj(ϕx′)gn−nj(Tmjϕx)
)

=
M∑
j=1

∑
ϕ∈S̃n−nj−1

L̂nj−1ψ(ϕx′)gn−nj−1
(ϕx)

(
1−

gmj(ϕx
′)

gmj(ϕx)

)
.

In order to estimate the second sum for a given value of j, let us consider
two cases: (i) If the point x lies in J \ (Ωn−nj−1

\B
C1e
−ε(n−nj−1)(Λn−nj−1

)) then
following the remark made at the end of section 2, we can execute the branch
cuts at some angle to the imaginary axis rather than parallel to it so that x
and x′ come to lie outside the cut in the region Ωn−nj−1

. Put y = x. (ii) If
on the other hand x ∈ (J \Ωn−nj−1

)∩B
C1e
−ε(n−nj−1)(Λn−nj−1

), then let us use
the fact the Julia set is uniformly perfect [4] which means that there exists
a constant c3 which only deponds on the map T so that for every r > 0 and
x ∈ J the distance dist(x, J \Br(x)) is bounded by c3r. Since the number of
critical values for T n−nj−1 is bounded by c4(n−nj−1) (for some constant c4),
we can find a point y ∈ J∩Ωn−nj−1

so that |x−y| ≤ 2c3c4(n−nj−1)e−ε(n−nj−1).
In a similar way if x′ ∈ (J \Ωn−nj−1

)∩B
C1e
−ε(n−nj−1)(Λn−nj−1

), then there

is a point y′ ∈ J ∩Ωn−nj−1
so that |x′− y′| ≤ 2c3c4(n− nj−1)e−ε(n−nj−1) (and

otherwise we put y′ = x′).

Now, since L̂nj−1ψ = ψj−1 and p > 1 was chosen so that |T ′|βmj∞ ηβ(n−nj−1) ≤
|T ′|β∞η′n−nj−1 we obtain considering only the contracting branches (c6 ≤

11



c5C7):∣∣∣∣∣∣∣
∑

ϕ∈S′n−nj−1

L̂nj−1ψ(ϕy′)gn−nj−1
(ϕy)

(
1−

gmj(ϕy
′)

gmj(ϕy)

)∣∣∣∣∣∣∣
Π ≤ c5|ψj−1|∞|T ′|βmj∞ ηβ(n−nj−1)|y − y′|β

∑
ϕ∈S̃n−nj−1

gn−nj−1
(ϕy)

≤ c6‖ψ‖ασnj−1|T ′|β∞η′n−nj−1

≤ c6‖ψ‖ασn|T ′|β∞

(
η′

σ

)n−nj−1

,

where we used that∣∣∣∣∣1− gm(ϕy′)

gm(ϕy)

∣∣∣∣∣ =
∣∣∣1− efm(ϕy′)−fm(ϕy)+h(ϕy′)−h(ϕy)+h(Tmϕy)−h(Tmϕy′)

∣∣∣
≤ c5 |T ′|mβ∞ |ϕy − ϕy′|β,
≤ c5 |T ′|mβ∞ ηβn

′ |y − y′|β,

for ϕ ∈ S ′n′ (n′ > m).and some constant c5 which depends on the functions
f and h, as |Tmϕy′ − Tmϕy| ≤ |T ′|m∞|ϕy′ − ϕy|.

For the non-contracting branches we proceed as above in estimating term
I:∣∣∣∣∣∣∣

∑
ϕ∈S′′n−nj−1

L̂nj−1ψ(ϕy′)gn−nj−1
(ϕy)

(
1−

gmj(ϕy
′)

gmj(ϕy)

)∣∣∣∣∣∣∣ ≤ 2c1|ψj−1|∞
(
ρ

λ

)n−nj−1

,

since |gn−nj−1
(ϕy)− gn−nj(Tmjϕy)gmj(ϕy

′)| ≤ 2c1ρ
n−nj−1 .

In order to estimate the error we made when replacing x by y ∈ Ωn−nj−1
∩

J , put
χj(x, y) =

∑
ϕ∈S̃mj

ψj−1(ϕy)
(
gmj(ϕx)− gmj(ϕy)

)
,

(note that χj(y, y) = 0) and apply lemma 9 to obtain∣∣∣∣∣∣∣
∑

ϕ∈S̃n−nj−1

L̂nj−1ψ(ϕy)gn−nj−1
(ϕx)

(
1−

gmj(ϕy)

gmj(ϕx)

)∣∣∣∣∣∣∣
12



Π =
∣∣∣L̂n−njχj(x, y)

∣∣∣
Π ≤ C6‖χj‖γ|x− y|δ

Π ≤ C6‖χj‖γ2c3c4(n− nj−1)e−δε(n−nj−1),

where γ = ξβ and δ < γ was given by lemma 9. If we let δ′ < δ then we get
with some constant c7:∣∣∣L̂n−njχj(x, y)

∣∣∣ ≤ c7‖χj‖γe−δ
′ε(n−nj−1).

It remains to estimate the γ-norm of χj. By the induction hypothesis:
|χj|∞ ≤ 2|ψj−1|∞ ≤ 2C7σ

nj−1‖ψ‖α. Since, by lemma 7 |T `ϕz − T `ϕz′| ≤
Cm−`

4 |z − z′|ξ, ` = 0, . . . ,m, ϕ ∈ S̃m, for any two points z, z′ ∈ J (that are
close enough), we can write:

|χj(z, y)− χj(z′, y)| ≤ |ψj−1|∞
∑

ϕ∈S̃mj

|gmj(ϕz)− gmj(ϕz′)|

≤ |ψj−1|∞
∑

ϕ∈S̃mj

gmj(ϕz)

∣∣∣∣∣1− gmj(ϕz
′)

gmj(ϕz)

∣∣∣∣∣
Π ≤ c8|ψj−1|∞C

βmj
4 |z − z′|βξ,

for some constant c8. One concludes that

‖χj‖γ ≤ c8C
βmj
4 |ψj−1|∞ ≤ c8C7C

βmj
4 σnj−1‖ψ‖α.

Therefore

∣∣∣L̂n−njχj(x, y)
∣∣∣ ≤ c9C7C

βmj
4 ‖ψ‖ασn

(
e−δ

′ε

σ

)n−nj−1

,

for some constant c9, and we arrive at the estimate (c10 > 0 and recall that
mj ≤ (p − 1)(n − nj) + 3 and n − nj ≥ np−j ≥ NpM−j = Npk if we put
k = M − j):

II ≤ (c6|T ′|β∞ + 2c1 + c9C7)‖ψ‖ασn
M∑
j=1

C
βmj
4

(
ϑ

σ

)n−nj−1

≤ c10C7‖ψ‖ασn
∞∑
k=0

Cβ(p−1)
4 ϑ

σ

Npk ,
13



where ϑ = max(η′, e−δ
′ε, ρ

λ
) < σ. Since the number p > 1 was chosen so that

the expression inside the brackets is less than 1 we can make the sum over
k arbitrarily small if we only choose N large enough. In particular we can
achieve that II ≤ C7

8
‖ψ‖ασn.

Finally we obtain the estimate:

∣∣∣L̂nψ(x)− L̂nψ(x′)
∣∣∣ ≤ I + II ≤ C7

4
‖ψ‖ασn,

for x, x′ ∈ J ∩ Ωn.
Now suppose y, y′ ∈ J \Ωn, then, in the same way as above (according to

the remark), we can assume that in fact y, y′ lie in a C1e
−nε-neighbourhood

of the critical values Λn. Since J is a uniformly perfect set, we can find, as
above, x, x′ ∈ J ∩ Ωn so that |x− y|, |x′ − y′| ≤ n2c4c3C1e

−nε. Therefore, as
by lemma 8 |L̂nψ|τ ≤ C5‖ψ‖α, we obtain that

∣∣∣L̂nψ(y)− L̂nψ(y′)
∣∣∣ ≤ C7

4
‖ψ‖ασn + 4nC5c3c4C1‖ψ‖αe−nε ≤

C7

2
‖ψ‖ασn,

for all n, provided C7 > 6C5c3c4C1 supn>0 ne
−nεσ−n. Since µ(ψ) = µ(L̂nψ) =

0 and L̂nψ is continuous, this implies that |L̂nψ|∞ ≤ C7‖ψ‖ασn. 2

Theorem 11 Let f ∈ Cα such that esup f−P (f) < 1, and, as above, µ its the
equilibrium state. Let β < α be as in lemma 8 and ξ as in lemma 7. For
every (positive) small enough κ < ξβ there exist a ς < 1 and a constant C8,
such that for all n ≥ 1 and ψ ∈ Cα:

‖L̂nψ − µ(ψ)‖κ ≤ C8ς
n‖ψ‖α.

Proof. We have to show that the Hölder constants |L̂nψ|κ goes exponentially
fast to zero with some rate ς < 1. For simplicity’s sake we shall as in the
previous theorem assume that µ(ψ) = 0. To estimate the variation of L̂nψ
let x, x′ ∈ J and put ε = |x − x′|. Assume ε > 0. To get bounds on the
variation for large n we shall use theorem 10 and for small n we use lemma
7. Let β, ξ and C4 > 1 be as in lemmas 8 and 7 and choose κ < ξβ small

enough so that σC
2κβ
ξβ−κ
4 is less than 1. Put

P (ε) =
ξβ − κ

2β

| log ε|
logC4

,
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and consider the two cases (I) and (II):
(I) If n ≥ P (ε) then, by theorem 10,∣∣∣L̂nψ(x)− L̂nψ(x′)

∣∣∣ ≤ 2|L̂nψ|∞ ≤ 2C7‖ψ‖ασn ≤ C8‖ψ‖αςnεκ,

where the last inequality holds with C8 ≥ 2C7 provided

ς

σ
≥ C

2κβ
ξβ−κ
4 .

(II) If n < P (ε) then we have by lemma 7 that |ϕx− ϕx′| ≤ Cn
4 ε

ξ for all
ϕ ∈ S̃n. This implies

|ψ(ϕx)− ψ(ϕx′)| ≤ |ψ|αCnα
4 εξα

and ∣∣∣∣∣1− gn(ϕx)

gn(ϕx′)

∣∣∣∣∣ ≤ c1C
nβ
4 εξβ

for some constant c1 which depends on the Hölder norms of f and h. We can
therefore estimate in the following (rough) manner:∣∣∣L̂nψ(x)− L̂nψ(x′)

∣∣∣ ≤ ∑
ϕ∈S̃n

gn(ϕx)|ψ(ϕx)− ψ(ϕx′)|

+
∑
ϕ∈S̃n

gn(ϕx′)|ψ(ϕx′)|
∣∣∣∣∣1− gn(ϕx)

gn(ϕx′)

∣∣∣∣∣
≤ |ψ|αCnα

4 εξα + |ψ|∞c1C
nβ
4 εξβ

≤ ‖ψ‖αc2C
nβ
4 εξβ,

≤ ‖ψ‖αc2C
−nβ
4 εδ,

with c2 = max((diam J)α/β, c1), where in the last inequality we replaced n
by P .

Cases (I) and (II) together yield∣∣∣L̂nψ(x)− L̂nψ(x′)
∣∣∣ ≤ C8‖ψ‖αςnεκ,

for all integers n, where C8 = max(2C7, c2) and where by assumption

ς = max

(
C−β4 , σC

2κβ
ξβ−κ
4

)

is less than 1. 2
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Corollary 12 Let E be a bounded measurable function on J and F be an
α-Hölder continuous function on J . Then there exists a constant C9 such
that for all n ≥ 0:

|µ(F · E ◦ T n)− µ(E)µ(F )| ≤ C9σ
n,

where σ < 1 is given by theorem 10.

Proof. Without loss of generality we can assume that the function F has
average zero, i.e. that µ(F ) = 0. Then, by theorem 10, |L̂nF |∞ ≤ C7‖F‖ασn
and therefore

|µ(F · E ◦ T n)| = |µ(L̂n(F · E ◦ T n))|
= |µ(E · L̂nF )|
≤ |E|∞|L̂nF |∞
≤ |E|∞‖F‖αC7σ

n.

This proves the corollary with C9 = |E|∞‖F‖αC7. 2
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