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Abstract. We continue the development of transfer operator techniques for expanding maps on
a lattice coupled by general interaction functions. We obtain a spectral gap for an appropriately
defined transfer operator, and, as corollaries, the existence of an invariant conformal probability
measure for the system, exponential decay of correlations, the central limit theorem and the almost
sure invariance principle.

1. Introduction

For one dimensional dynamical systems, the conditions under which there exists a unique ergodic
invariant probability measure, supported on an invariant attractor and governing the dynamics of
initial conditions in the basin of the attractor, are well understood. The complexity of the geometry
in higher dimensions makes the problem much harder, however, in certain cases, significant results
have been proven. For instance, the uniformly hyperbolic case has been presented in [?], the non-
uniformly hyperbolic case of the Hénon map in [?, ?], and recently, the n dimensional analogue in
[?]. In all, even though the 1 dimensional case is better understood in general than the n dimensional
setting for n > 1, the theory of SRB measures for finite dimensional dynamical systems is fairly
complete (for an excellent, though somewhat dated, overview, see [?] and the references therein).

However, outside of a few settings, not much is known in the infinite dimensional setup. The
primary problem is one of methodology, and the settings in which something can be said about
an infinite dimensional dynamical system are those in which the techniques applicable in the finite
dimensional case can be extended to infinite dimensions. Coupled maps on a lattice (CML) provide
an example of infinite dimensional systems that can be studied by extensions of finite dimensional
techniques, and for this reason, they have been extensively studied.

An excellent review of the theory of CML is provided in [?]. In recalling the background on CML
theory, we will be more restrictive; in particular, we will focus only on the development of ideas
relevant to the results in this paper. An imprecise definition of a CML is provided in this section
to set the context of the results that we mention. A precise formulation follows in later sections.
Suppose we have a map τ on [0, 1) and let Ω = [0, 1)Z. We have an extended map τ̄ on the space
Ω which can be defined as (τ̄(x))i = τ(xi) where x ∈ Ω and xi ∈ [0, 1). Suppose now we have
interactions E between the different dynamical systems (τi, [0, 1)). In the simplest case of E being
the nearest neighbor diffusive coupling, we can specify the interactions as, for a given 0 < ε� 1,

(E(x))i = (1− ε)xi +
ε

2
xi−1 +

ε

2
xi+1.

ε therefore becomes a parameter that tunes the strength of the interactions between the nodes of
the lattice. We note also that this coupling specified has range 1, because only the closest neighbors
to each node influence the state of that node. The system under study is now iterations of E ◦ τ̄ .
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Bunimovich and Sinăi [?] considered τ as expanding maps of the interval with nearest neighbor
diffusive coupling with a non-constant diffusion strength, chosen so that the coupling map was onto.
They established that if the interval map exhibits sufficient expansion, then there exists a unique
invariant measure, mixing in time and space. They construct the invariant measure as the limit
of the Gibbs measures for the finite dimensional projections of their coupled system. Then, in [?]
the authors implement a numerical algorithm to extract orbits periodic in time and space for a
1-d lattice of Hénon maps, coupled by a weak nearest neighbor diffusive coupling. They define
a new family of Lyapunov exponents that estimate the growth rate of spatially inhomogeneous
perturbations.

Following the results in [?] and [?], a natural question arose: if the coupling is viewed as pertur-
bation of the uncoupled system, what can happen if the coupling strength becomes large relative to
the inherent stability of the uncoupled system? This question was studied in [?], where the authors
considered CML, where the maps on each node were one dimensional with a globally attracting
stable periodic trajectory. These maps are coupled by a diffusive nearest neighbor coupling. The
authors prove that if the coupling strength is sufficient large, then the phase space of the coupled
map lattice is split into a complicated partition with many basins of different attractors.

The question of phase transitions for a one parameter family of finite-dimensional CML, with the
coupling strength ε as the parameter of interest, was studied further, theoretically and numerically,
by [?]. They obtained sufficient conditions in terms of ε that the lattice have a continuum of ergodic
components when the individual node maps are the doubling maps. They also produced an example
of a function f for which the uncoupled system is mixing, whereas for a suitable ε, there are several
domains in the phase space, interchanging with the period 2.

Keller and Künzle [?] then investigated transfer operator techniques for CML maps. They also
considered expanding maps on each node of the lattice, and coupled them by a weak coupling (small
ε). The authors established the spectral theory using spaces of bounded variation, closely following
the setting in [?]. Then, in a three-part paper, Gundlach and Rand [?, ?, ?] developed the stable
manifold theory for coupled lattice maps with short or finite range interactions (Part I), and use this
to establish the existence of a natural spatio-temporal measure that plays the role of the usual SRB
measure in the case of temporal systems (Part III) and the existence and uniqueness of Gibbs states
for higher dimensional symbolic systems by using thermodynamic formalism (Part II). The transfer
operator approach of [?] was developed further by [?] where the author established a spectral gap
for weakly coupled real-analytic circle maps. In [?], the author then modified the approach in [?]
to construct generalized transfer operators associated to potentials and establish a spectral gap for
small potentials for weakly coupled analytic maps. Some limit theorems, such as the central limit
theorem, moderate deviations, and a partial large deviations result were also established.

Returning to the setting of expanding real maps, [?] gave a proof of the existence, uniqueness and
exponential mixing of invariant measures for weakly coupled lattice maps without cluster expansion.
The coupling considered was finite range and had a very specific form, and the transfer operator
was considered on the space of measures of bounded variation with absolutely continuous finite
dimensional marginals. Subsequently, efforts were made to admit more general couplings and more
general maps on the lattice nodes, and in [?] the authors study a one-dimensional lattice of weakly
coupled piecewise expanding maps of the interval. Strong assumptions are still required on the
coupling, however, the authors do not require that the coupling be a homeomorphism of the infinite
dimensional state space. They prove that the transfer operator defined on an appropriate space of
densities with bounded variations, with absolutely continuous finite dimensional marginals (with
respect to the Lebesgue measure), has a spectral gap. This implies that there exists a measure with
exponential decay of correlations in time and space. In [?] the authors extend the results established
in [?] to include lattices of any dimensions and couplings of infinite rage with the coupling strength
decaying exponentially in space.
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In the setting of [?] and [?] the Bardet, Gouëzel and Keller [?] prove the central limit theorem
and the local limit theorem for Lipschitz functions depending on finitely many coordinates. The
proof of the local limit theorem requires the additional assumption that for any compact interval J

σ
√

2πnµε

{
x :

n−1∑
k=0

f ◦ T kε (x) ∈ J

}
→ |J |.

σ here is the variance in the central limit theorem. As in [?, ?], the transfer operator is defined on
the Banach space of measures of bounded variation with absolutely continuous finite dimensional
marginals.

In this paper we continue the development of transfer operator techniques for studying existence
and uniqueness of invariant measures corresponding to an initial potential in an appropriate class
of potentials for expanding maps on a lattice coupled by an infinite range coupling. As in the
setting of [?, ?], we obtain a spectral gap for the transfer operator in an appropriate space of
densities. In contrast to the setting of [?, ?], we obtain our potentials and densities from a class of
Hölder functions, and admit spatial couplings more general that those previously considered. We
do not assume the existence of a reference measure; the theory is developed with respect to suitable
potentials. Finally, we only require that the minimal expansion η−1 > 1 and the coupling strength
ε > 0 be related as εη < 1 for the existence, and uniqueness, of the invariant probability measure.
We then use an abstract result of Gouëzel to obtain the almost sure invariance principle for our
system. We also show that the invariant probability measure ν is conformal on open sets.

2. Main results.

In this section, we will list the main theorems that we prove. The precise definitions see section 3.
We start with a result known in the dynamical systems literature as “decay of correlations”. We

establish this result by showing that an appropriate transfer operator L has a spectral gap. For
more details on the operator L see sections 4.2, 5 and 6. We also check that the Doeblin-Fortet-
Lasota-Yorke inequality is stable under perturbation and in doing so, establish the almost sure
invariance principle by using [?]. We use the space C of Hölder continuous functions with the norm
‖ · ‖ = | · |∞ + | · |β where | · |β is the β-Hölder constant (the precise definition is below).

Theorem 2.1. Let T be the coupled lattice map on the lattice system Ω and C the space of Hölder
continuous functions on Ω.

Then for any potential function f ∈ C there exists an invariant measure ν which is g-conformal
where f = g + h − f ◦ T for an h ∈ C. Moreover there exist constants 0 < ς < 1 and C1 with the
property that for any Φ1,Φ2 ∈ C one has∣∣∣∣∫ Φ1 ◦ TnΦ2dν −

∫
Φ1dν

∫
Φ2dν

∣∣∣∣ ≤ C1|Φ1|∞‖Φ2‖ςn.

Finally, by using an abstract result from [?], and Theorem 5.1, we prove that

Theorem 2.2. The system satisfies the almost sure invariance principle.

Various statistical properties such as the law of iterated logarithms, the weak invariance principle
and the central limit theorem now follow as corollaries.

Corollary 2.3. (CLT) For observables Φ ∈ C one has

P

(∑n−1
j=0 Φ ◦ T j − nν(Φ)

σ
√
n

≤ t

)
→ N(t)

as n→∞ where T is the coupled lattice map and N(t) is the normal distribution.

A technical result along the way is the following proposition:
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Proposition 2.4. Let Φ ∈ C. Then L(Φ) ∈ C and moreover there exists a constant θ1 ∈ (0, 1) and
a constant C2 > 0 such that

|Ln(Φ)|β ≤ |Φ|βθn1 + C2|Φ|∞

The proposition is used to prove the existence of the invariant probability measure ν which
satisfies L∗ν = ν. This result is proved as Theorem 5.1. As a corollary to this theorem, with
suitable modifications to the classical techniques we prove that the essential spectral radius of L is
strictly smaller than the spectral radius of L (which is 1).

Finally, we make a note regarding constants. We denote ‘global’ constants by C1, C2, . . . through-
out the paper and ‘local’ constants by c1, c2, . . . for each lemma or theorem. The constant CE tunes
the strength of interactions between the maps on the lattice.

3. The setup.

First, we need to define what the admissible class of observables is. In order to study observables
(and potentials) on an infinite lattice, we need to define how well approximated these observables
are by restrictions to finite sub-lattices. Let Λ = Z and Ω = IZ the lattice space where I is the unit
interval. Define

Λk = (−k,−k + 1, . . . ,−1, 0, 1, . . . , k − 1, k)

and put Ωk = IΛk . On Ω we have the shift map σ : Ω → Ω which is given by σ((xi)∞i=−∞) =
(xi+1)∞i=−∞.

3.1. The metric on Ω.
(d1) Let dI : I → R+ be a metric on the unit interval I and pick θ ∈ (0, 1). Define a metric d on Ω

by

(1) d(x, y) = sup
k∈Z

θ|k|dI(xk, yk).

where x = (. . . , x−1, x0, x1, x2, . . . ), y = (. . . , y−1, y0, y1, y2, . . . ) are points in Ω.

3.2. The interval map. The global map on Ω is thought to be composed of individual maps on
the nodes I. We require the map satisfies the following two conditions (but note that in order to
keep the exposition transparent these are not the most general conditions under which our theorem
can be stated):
(τ1) The map τ : I → I has full branches. As a consequence, for each x ∈ I, b = #

{
τ−1x

}
is

constant. This also implies that the map τ has at least one fixed point. Denote one such fixed
point by pτ .

(τ2) The map τ : I → I is expanding. This is taken to mean that there exists a constant η ∈ (0, 1)
such that for every inverse branch ζ of τ one has d(ζx, ζy) ≤ ηd(x, y) (ζx, ζy are the images of
x, y under ζ, i.e. τζx = x, τζy = y).

3.3. The finite lattice projections. Define ik : Ωk → Λ as ik(x) =

{
xi if |i| ≤ k
pτ otherwise

and put

πk : Λ→ Λ for the projection which is given by πkx = ik(x|Ωk) where Ωk = IΛk .
For Φ ∈ C(Ω) we define the restriction to Ωk as

Φk = Φ ◦ πk
that is Φk(x) = Φ◦ ik(x|Ωk). A consequence of the fact that outside of the lattice Ωk we have chosen
πk(x) to be equal to pτ is that

τ̄ iπk(x) = πkτ̄
i(x).
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3.4. The function space C. For Φ ∈ C(Ω) we define the Hölder constant

|Φ|β := sup
k∈N
|Φk|β

where

|Φk|β := sup
x,y∈Ω

|Φk(x)− Φk(y)|
d(x, y)β

.

Then
‖ · ‖ = | · |∞ + | · |β

defines a norm and we define the function space

Cβ = {Φ ∈ C(Ω) : ‖Φ‖ <∞} .
We will also sometimes need the variation semi-norm for some α ∈ (0, 1) given by

Vα(Φ) := sup
k∈N

vark(Φ)
αk

where
vark(Φ) = sup

x∈Ω
|Φ(x)− Φk(x)|

is the kth variation of Φ. In particular we see that vark(Φ) ≤ Vα(Φ)αk. Moreover, if α ≥ θβ then
Vα(Φ) ≤ |Φ|β for all Φ ∈ Cβ . Therefore, in what follows, we fix some α ≥ θβ and, instead of writing
Cβ , we only write C.

3.5. The coupling E. Denote by σ : Ω → Ω the shift map which is given by σ((xi)∞i=−∞) =
(xi+1)∞i=−∞. Let E : Ω→ Ω be an injective function and denote by T = E ◦ τ̄ the coupled map. We
put

Ω̂ =
⋂
j>0

T j(Ω),

which clearly satisfies Ω̂ ⊂ E(Ω). Hence E−1 exists on Ω̂. We assume there exists a constant
CE ∈ (0, η−1) such that

(2) d(σnE−1x, σnE−1y) ≤ CEd(σnx, σny) ∀ n ∈ Z

for all x, y ∈ Ω̂.

4. The uncoupled system.

4.1. The positive operators P and L. Let f ∈ C be a potential function and define for the finite
sub-lattice Λk the transfer operator Pk for τ̄ |Ωk by

Pk(Φ)(x) =
1
bk

∑
|ζ|=k

exp(f(ikζx))Φ(ikζx)

x ∈ Ω, where the summation is over inverse branches ζ of τ̄ |Ωk , i.e. τ̄ ◦ζ is the identity and moreover
ζx the image of x under ζ has the property that (ζx)j = xj for |j| > k. For the normalising factor
one has bk = #

{
τ̄−1x|Ωk

}
= b2k+1 as #

{
τ−1x

}
= b.

Clearly, Pk is a well defined, positive, bounded linear operator on functions on Ω. The following
lemma serves to define the transfer operator P by taking a limit k to infinity.

Lemma 4.1. Let f : Ω→ R such that |f |∞ + Vα(f) <∞. Then
(I) Pk is uniformly (in k) bounded in the | · |∞-norm.
(II) For Φ such that |Φ|∞ + Vα(Φ) <∞ the sequence (Pk(Φ)) is Cauchy for each x ∈ Ω.
(III) Vα(PkΦ) ≤ C3(|PΦ|∞ + Vα(Φ)) ∀k for some constant C3.
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Proof. (I) Clearly |PkΦ|∞ ≤ e|f |∞ |Φ|∞, which implies Pk is bounded uniformly in k.
(II) For k1 < k2 one has

|Pk2(Φ)(x)− Pk1(Φ)(x)| =

∣∣∣∣∣∣
∑
|ζ′|=k2

exp(fζ ′x)Φ(ζ ′x)
bk2

−
∑
|ζ|=k1

exp(fζx)Φ(ζx)
bk1

∣∣∣∣∣∣
where ζ ′ are inverse branches in τ̄−1|Ωk2

and ζ are inverse branches in τ̄−1|Ωk1
.

The lattice Λk2 contains 2(k2− k1) elements more than Λk1 , and so bk2 = b2(k2−k1)bk1 . Therefore
the above sum simplifies as∣∣∣∣∣∣

∑
|ζ′|=k2

efζ
′
xΦ(ζ ′x)
bk2

−
∑
|ζ|=k1

efζxΦ(ζx)
bk1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑
|ζ|=k1

 1
bk2

∑
ζ′|Ωk1

=ζ

efζ
′
xΦ(ζ ′x)− efζxΦ(ζx)

bk1


∣∣∣∣∣∣∣

≤
∑
|ζ|=k1

efζxΦ(ζx)
b2k1+1

∣∣∣∣∣∣∣
b2k1+1

b2k2+1

∑
ζ′|Ωk1

=ζ

efζ
′
x−fζx − 1

∣∣∣∣∣∣∣+
∑
|ζ′|=k2

efζ
′
x

b2k1+1
|Φ(ζ ′x)− Φ(ζx)|(3)

Using the fact that |fζ ′x−fζx| ≤ Vα(f) we obtain efζ′x−fζx ≤ 1+Vα(f)αk1 +o(αk1) and consequently∣∣∣∣∣∣∣
b2k1+1

b2k2+1

∑
ζ′|Ωk1

=ζ

efζ
′
x−fζx − 1

∣∣∣∣∣∣∣ ≤ c1Vα(f)αk1

for some c1 and all |ζ| = k2. Moreover∣∣Φ(ζ ′x)− Φ(ζx)
∣∣ ≤ Vα(Φ)αk1

which implies (for some c2)

1
b2k1+1

∑
|ζ′|=k2

efζ
′
x |Φ(ζ ′x)− Φ(ζx)| ≤ Vα(Φ)αk1Pk21(x) ≤ c2Vα(Φ)αk1

for all x. Therefore,

|Pk2(Φ)(x)− Pk1(Φ)(x)| ≤ (c1Vα(f)|Pk1Φ|∞ + c2Vα(Φ))αk1 ≤ C3(|PΦ|∞ + Vα(Φ))αk1

for some constant C3 as by part (I) |Pk1Φ|∞ is uniformly bounded.
(III) This follows from the first inequality in the last line of estimates. �

Since by Lemma 4.1, for each x ∈ Ω, the sequence Pk(Φ)(x) is a Cauchy sequence (of real
numbers) we now define the operator P for the infinite lattice system as the pointwise limit:

P (Φ)(x) = lim
k→∞

Pk(Φ)(x).

Lemma 4.2. P is a non-negative and continuous operator on C.

Proof. Clearly P is non-negative as the approximations Pk are non-negative. Since P is a linear
operator, it is enough to show continuity at the origin. For Φ ∈ C we see that P is a bounded
operator in the | · |∞-norm as

|P (Φ)| ≤ e|f |∞ |Φ|∞.
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Now let x, y ∈ Ω, then

|PΦ(x)− PΦ(y)| ≤ lim
k

1
bk

∑
|ζ|=k

∣∣∣ef(ikζx)Φ(ikζx)− ef(ikζy)Φ(ikζy)
∣∣∣

≤ lim
k

1
bk

∑
ζ

ef(ikζx)|Φ(ikζx)− Φ(ikζy)|+ |Φ|∞
∑
ζ

ef(ikζy)
∣∣∣ef(ikζy)−f(ikζy) − 1

∣∣∣


≤ e|f |∞ |Φ|βd(x, y)β + c1|Φ|∞|f |βd(x, y)β

for some c1 as d(ikζx, ikζy) ≤ c2d(x, y) (c2 > 0). Hence |PΦ|β ≤ c3(|Φ|β + |Φ|∞) = c3‖Φ‖ for some
constant c3 which is independent of Φ. �

Note that the space Ω with the metric d is convex, compact and separable. Separability follows
from the fact that for every k ∈ N there are finitely many points in ikΩk that are ϑk-dense in Ω for
any ϑ ∈ (0, 1). In this way one produces a countable dense set in Ω. This implies that the set M
of probability measures on Ω is compact in the weak* topology. Thus following [?] we can define
an operator M : M →M by Mν = P ∗ν

P ∗ν(1) where ν ∈M . By the theorem of Schauder-Tychonoff
M has a fixed point ν in M . Thus P ∗ν = λν, where λ = P ∗ν(1).

Definition 4.3. Let f ∈ C and put B(z) = exp
(
|f |β ηβ

1−ηβ z
β
)
, z ≥ 0. Define the function set

∆f := {Φ ∈ C(Ω) : Φ ≥ 0, ν(Φ) = 1,Φ(x) ≤ B(d(x, y))Φ(y)∀x, y ∈ Ω} .

Notice that B(ηz)e|f |βη
βzβ = B(z).

Lemma 4.4. ∆f ⊂ C.

Proof. For Φ ∈ ∆f one has Φ(x)/Φ(y) ≤ B(d(x, y)) and Φ(y)/Φ(x) ≤ B(d(x, y)) which implies

|Φ(x)−Φ(y)| =
∣∣∣∣Φ(x)
Φ(y)

− 1
∣∣∣∣ |Φ(y)| ≤ |Φ(y)||B(d(x, y))−1| ≤ |Φ|∞

[
d(x, y)β|f |β

ηβ

1− ηβ
+ o(d(x, y)β)

]
where |Φ|∞ ≤ B(1) as the diameter of Ω is equal to 1 and ν(Φ) = 1 (i.e. inf Φ ≤ 1). This implies
that |Φ|β ≤ |f |β

(
ηβ

1−ηβ + c1

)
<∞ for some c1. Hence ‖Φ‖ <∞. �

In order to apply the theorem of Schauder-Tychonoff we must first show that the operator 1
λP

maps ∆f into itself.

Lemma 4.5. 1
λP maps ∆f into itself.

Proof. Clearly ν( 1
λPΦ) = 1 for all Φ ∈ ∆f . Since P is a positive operator we also get 1

λPΦ ≥ 0 for
all Φ ∈ ∆f . It remains to verify the regularity property. Since

f(ikζx) ≤ f(ikζy) + |f |βd(ikζx, ikζy)β ≤ f(ikζy) + |f |βηβd(x, y)β

one obtains
1
λ
PΦ(x) =

1
λ

lim
k→∞

1
bk

∑
|ζ|=k

ef(ikζx)Φ(ikζx)

≤ 1
λ

lim
k→∞

1
bk

∑
|ζ|=k

ef(ikζy)Φ(ikζy)B(ηd(x, y))e|f |βη
βd(x,y)β

≤ 1
λ
PΦ(y)B(ηd(x, y))e|f |βη

βd(x,y)β

≤ 1
λ
PΦ(y)B(d(x, y)).
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Therefore, 1
λPΦ ∈ ∆f .

�

Lemma 4.6. There exist a unique h ∈ ∆f so that Ph = λh and moreover h is strictly positive.

Proof. The set ∆f is convex and equicontinuous by Lemma 4.4. Therefore ∆f is compact in the
| · |∞-norm by Arzela-Ascoli and 1

λP has by Schauder-Tychonoff a fixed point h ∈ ∆f . That is
Ph = λh. To see that h is strictly positive assume that h has a zero at x ∈ Ω, i.e. h(x) = 0. Then

0 =
1
λn
Pnh(x) =

1
λn

lim
k
Pnk h(x) =

1
λn

lim
k→∞

1
bk

∑
ζ

ef
n(ikζx)h(ikζx)

where the sum is over all inverse branches ζ of τ̄−n in ikΛk. Since h ≥ 0 this implies that h(ζx) = 0
for all inverse branches ζ of τ̄n. Since the set

⋃
n

⋃
ζ∈τ̄−n ζx is dense in Ω and h is continuous we

conclude that h is identically zero which contradicts the assumption ν(h) = 1.
To obtain uniqueness of h assume that there is a second eigenfunction h′ ∈ ∆f so that Ph′ = λh′

and put t = inf h
′

h . By convexity of ∆f one has h− th ∈ ∆f and by choice of t there exists an x ∈ Ω
so that (h− th′)(t) = 0. By the argument above we conclude that h− th′ must vanish identically,
which is impossible. Hence h is unique. �

We now define the normalized transfer operator L : C → C by putting L(Φ) := P (hΦ)/(λh)
for Φ ∈ C. Note that L(Φ) is well defined since h > 0 and has the potential function g = f −
log λ − log h ◦ τ̄ + log h. Moreover L has the (dominant) simple eigenvalue 1 with eigenfunction 1

as L(1) = 1. The associated eigen-functional µ = hν is a τ̄ -invariant probability measure. Define,
also, Lk(Φ) as follows:

Lk(Φ)(x) =
1
bk

∑
|ζ|=k

eg(ikζx)Φ(ikζx)

where g(x) = f(x)− log λ− log h ◦ τ̄(x) + log h(x). Note that by definition, |g|β ≤ |f |β + 2|h|β <∞,
and |g|∞ <∞.

Hence, we state a corollary to Lemma 4.1:

Corollary 4.7. For each x, and for each Φ, the sequence Lk(Φ)(x) is Cauchy, and hence it converges
to L(Φ)(x).

Proof. The fact that Lk(Φ)(x) is Cauchy, and hence has a point wise limit, follows directly from
Lemma 4.1. Also, notice that

L(Φ)(x) =
P (hΦ)(x)
λh(x)

= lim
k→∞

Pk(hΦ)(x)
λh(x)

≥ lim
k→∞

1
bk

∑
|ζ|=k

ef(ikζx)h(ikζx)Φ(ikζx)
1

λh(x)
.

The term in the last summation can be written as

ef(ikζx)h(ikζx)Φ(ikζx)
1

λh(x)
= eg(ikζx)Φ(ikζx)

h(τ(ikζx))
h(x)

,

and so, because var(h) <∞, for any ε > 0, we have that

L(Φ)(x) ≥ (1− ε) lim
k→∞

Lk(Φ)(x).

Similarly, we obtain that L(Φ)(x) ≤ (1 + ε) limk→∞ Lk(Φ)(x). This completes the proof. �
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4.2. Doeblin-Fortet-Lasota-Yorke inequality for L. We now establish a Doeblin-Fortet-Lasota-
Yorke inequality for the operator L. We do this by obtaining the corresponding inequality for each
approximation Lk. We use the following notation: For a function Φ we denote by Φ(n) =

∑n−1
j=0 Φ◦ τ̄

its nth ergodic sum. We shall need the following technical estimate.

Lemma 4.8. Let f ∈ C be a potential and let g = f − log λ− log h ◦ τ̄ + log h.
Then for all x and y ∈ Ω:

∣∣∣g(n)(ikζx)− g(n)(ikζy)
∣∣∣ ≤ (3|h|β +

ηβ

1− ηβ
|f |β

)
d(x, y)β.

Proof. Since

g(n)(ikζx) =
n−1∑
j=0

g ◦ τ̄ j(ikζx) =
n−1∑
j=0

f ◦ τ̄ j(ikζx)− n log λ+ h(ikζx)− h ◦ τ̄n(ikζx)

we get that

g(n)(ikζx)− g(n)(ikζy) = f (n)(ikζx)− f (n)(ikζy) + h(ikζx)− h(ikζy) + h ◦ τ̄n(ikζy)− h ◦ τ̄n(ikζx).

Note that |h ◦ τ̄n(ikζy) − h ◦ τ̄n(ikζx)| is bounded by |h|βd(ikx|Λk , iky|Λk)β ≤ |h|βd(x, y)β and
|h(ikζx)− h(ikζy)| is bounded by |h|βηβnd(x, y)β . Define τ(k) := τ̄ ◦ ik. The above combined with

∣∣∣f (n)(ikζx)− f (n)(ikζy)
∣∣∣ ≤ n−1∑

i=0

∣∣f ◦ τ̄ i(ikζx)− f ◦ τ̄ i(ikζy)
∣∣

≤
n−1∑
i=0

∣∣∣f(ik(τ i(k)ζx))− f(ik(τ i(k)ζy))
∣∣∣

≤
n−1∑
i=0

∣∣f(ik((τ iikζx))|Ωk)− f(ik((τ iikζy))|Ωk)
∣∣

≤ |fk|β
n−1∑
i=0

d(ik(τ̄ i(k)ζx), ik(τ̄ i(k)ζy))
β

≤ |f |βd(x, y)β
n−1∑
i=0

ηβ(n−i).

proves the desired bound. �

Proposition 4.9 (Doeblin-Fortet-Lasota-Yorke inequality for Lk). Let Φ ∈ C and f, h, τ be as
before. Let k ∈ Z+. Then ∃ C4 > 0 (depending on f, h and τ) such that

|Lnk(Φ)|β ≤
(
|Φ|βηβn + C4|Φ|∞

)
Lnk(1).
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Proof. For x, y ∈ Ω.:

|Lnk(Φ)(x)− Lnk(Φ)(y)| ≤ 1
bk

∑
|ζ|=

∣∣∣eg(n)(ikζx)Φ(ikζx)− eg(n)(ikζy)Φ(ikζy)
∣∣∣

≤ 1
bk

∑
ζ

eg
(n)(ikζx) |Φ(ikζx)− Φ(ikζy)|+

∑
ζ

|Φ|∞
∣∣∣eg(n)(ikζx) − eg(n)(ikζy)

∣∣∣


≤ 1
bk

∑
ζ

|Φ|βηβnd(x, y)βLnk(1)

+
∑
ζ

|Φ|∞eg
(n)(ikζy)

∣∣∣1− exp(g(n)(ikζx)− g(n)(ikζy))
∣∣∣


as d(ikζx, ikζy) ≤ ηnd(x, y). By Lemma 4.8, we have∣∣∣1− exp(g(n)(ikζx)− g(n)(ikζy))
∣∣∣ ≤ c1d(x, y)β + o(d(x, y)β) ≤ c2d(x, y)β

where c1 ≤ 3|h|β + ηβ

1−ηβ |f |β . Consequently

sup
x 6=y

|Lnk(Φ)(x)− Lnk(Φ)(y)|
d(x, y)β

≤ |Φ|βηβnLnk(1) + c2|Φ|∞Lnk(1).

�

Now we can prove the ‘Doeblin-Fortet-Lasota-Yorke’ inequality for the operator L for the uncou-
pled map τ̄ on the full, infinite lattice Ω.

Theorem 4.10. Let Φ ∈ C and let f, h, τ be as before, and n ∈ N. There exists a constant C5 > 0
depending only on f, h, τ such that

|Ln(Φ)|β ≤ |Φ|βηβn + C5|Φ|∞.

Proof. Recall η from Assumption (τ2). Let k2 ≥ k1 ∈ Z+. Then for all x, y ∈ Ω one has

|Lnk2
(Φ)(y)− Lnk1

(Φ)(x)| ≤ |Lnk1
(Φ)(x)− Lnk1

(Φ)(y)|+ |Lnk1
(Φ)(y)− Lnk2

(Φ)(y)|

≤
[
|Φ|βηnβ + C4|Φ|∞

]
Lnk1

(1)d(x, y)β + C3(|Lnk1
(Φ)|∞ + Vα(Φ))αk1

≤
[
|Φ|βηβn + C4|Φ|∞

]
Lnk1

(1)d(x, y)β + C3e
|g|∞(|Φ|∞ + Vα(Φ))αk1 ,

where the second line uses Lemmas 4.9 and 4.1 (III) while the last line follows from the proof of
Lemma 4.1 (I). Letting k2 →∞ we see that

|Ln(Φ)(y)− Lnk1
(Φ)(x)| ≤

[
|Φ|βηβn + C4|Φ|∞

]
Lnk1

(1)d(x, y)β + C3e
|g|∞(|Φ|∞ + Vα(Φ))αk1

and then on letting k1 →∞, and recalling that Lk1(1)→ L(1) = 1 we get

|Ln(Φ)(y)− Ln(Φ)(x)| ≤
[
|Φ|βηβn + C4(|Φ|∞ + Vα(Φ))

]
d(x, y)β

The proof is complete on dividing by d(x, y)β and taking the supremum. We put C5 = C4. �
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5. The coupled map.

Let E : Ω → Ω be in injective map satisfying (2). Then T = E ◦ τ̄ is the coupled map and
we put as before Ω̂ =

⋂
j>0 T

j(Ω). Clearly E−1 exists on Ω̂. We now define the transfer operator
L′ : C(Ω̂)→ C(Ω̂) by

L(Φ)(x) = L(Φ)(E−1(x)),

where Φ ∈ C(Ω̂). It is straightforward to verify that for Φ,Ψ ∈ C(Ω̂), L(Φ ◦ T · Ψ) = Φ · L(Ψ) (as
T = E ◦ τ̄).

Theorem 5.1. There exists a constant C6 such that for every Φ ∈ C(Ω̂), L(Φ) ∈ C(Ω̂) one has

|Ln(Φ)|β ≤ |Φ|β(CEη)βn + C6|Φ|∞CβE
∞∑
i=0

(CEη)iβ

Proof. By Lemma 3.10 (n = 1)

|L(Φ)(x)− L(Φ)(y)| = |L(Φ)(E−1(x))− L(Φ)(E−1(y))|
≤ |L(Φ)|βd(E−1x,E−1y)β

≤
(
|Φ|βηβ + C5|Φ|∞

)
CβEd(x, y)β

and so
|L(Φ)|β ≤ |Φ|β(CEη)β + C5C

β
E |Φ|∞.

Assume the formula for n− 1. Since |L(Φ)|∞ = |L(Φ)|∞ ≤ |Φ|∞, we obtain inductively

|Ln(Φ)|β ≤ |Ln−1(Φ)|β(CEη)β + C5C
β
E |Φ|∞

≤ |Φ|β(CEη)nβ + C5|Φ|∞CβE
∞∑
i=1

(CEη)βi + C5C
β
E |Φ|∞

= |Φ|β(CEη)nβ + C5|Φ|∞CβE
∞∑
i=0

(CEη)βi.

�

Let us note that C4 = C5 = C6. We record, for future use, two elementary topological properties
of the map T : Ω→ Ω.

Lemma 5.2. For each x ∈ Ω, {T−nx, n ≥ 0} is dense in Ω.

Proof. Let x ∈ Ω, and let ε > 0. Since
{
τ−1x0

}
∪ {0, 1} forms a partition of [0, 1] with mesh < η,

τ̄−1(E−1x)|Λ0 also forms a partition with mesh smaller than CEη < 1. On iterating, we see that
T−n(x)|Λ0 generates a partition with mesh less than (CEη)n. This remains true on each node of
the lattice; denoting by ∆i the mesh of the ith node of the lattice and defining ∆ = supi θ|i|∆i,
we see that there will be a pre-image of x within ε of an arbitrarily chosen point y provided
n ≥ log(1/ε)/ log(1/CEη). �

Lemma 5.3. If U and V are any open subsets of Ω, then there exists an N ∈ Z+ such that for all
n ≥ N , U ∩ TnV 6= ∅.

Proof. Let x ∈ U . Since {T−nx, n ≥ 0} is dense in Ω, there exists an n1 such that T−n1x ∈ V. Since
V is open, there exists a δ > 0 such that Bδ(T−n1x) ∈ V. Choose n2 ≥ log(2/δ)/ log(1/CEη). Then
for n ≥ n2, there always exists an element of {T−nx} inside Bδ(T−n1x) since the mesh ∆ as defined
above is less than δ for n ≥ n2. Hence T−nU ∩ V 6= ∅ ∀ n ≥ n2. �
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We note that the above lemmas imply that the map T is topologically mixing, and since Ω is
compact, forward transitive. Further, the map T is expansive, namely, if x ∈ Ω and y ∈ Ω are such
that Tnx = Tny for every n ∈ N then x = y.

6. Spectral properties of L.

6.1. Ionescu-Tulcea and Marinescu Theorem. In this section we recall the classical machinery
of quasi-compactness that is used to establish the statistical properties of a deterministic dynamical
system, once a Lasota-Yorke type inequality (see Theorem 5.1) can be established. The main
ingredient is the theorem by Ionescu-Tulcea and Marinescu.

Definition 6.1. Let L be an operator on a Banach space (V, ‖ · ‖). L is quasi-compact if there
exists a positive integer r and a compact operator K such that ‖Lr −K‖ < 1.

If L is quasi-compact, then V = F ⊕H with F and H invariant under L, dimF <∞, r(L|H) <
r(L) and each eigenvalue of L|F has modulus r(L), where r(·) denotes the spectral radius.

As noted in [?, ?], quasi compactness can be restated in many equivalent ways. We give below
the following definition [?] as this is the form in which we will use quasi-compactness.

Definition 6.2 (Theorem 2.5.3, [?]). L : V → V is quasi-compact if and only if there are bounded
linear operators {Qσ : σ ∈ Υ} and R on V such that

Ln =
∑
σ∈Υ

σnφσ +Rn ∀ n = 1, 2, . . . ,

φσφσ′ = 0 if σ 6= σ′

φ2
σ = φσ, ∀ σ ∈ Υ

φσR = Rφσ = 0 ∀ σ ∈ Υ
φσV = D(σ), ∀ σ ∈ Υ
r(R) < 1

where Υ is the set of the eigenvalues of L with modulus 1, D(σ) = {f ∈ V : Lf = σf} is the eigen-
space of L corresponding to the eigenvalue σ and r(R) := limn→∞ ‖Rn‖1/n is the spectral radius of
R.

Next, we recall a version of the Ionescu-Tulcea and Marinescu theorem, established by Hennion
and Hervé[?, Theorem II.5].

Theorem 6.3. Let | · | be a continuous semi-norm on a Banach space (V, ‖ · ‖) and let Q be a
bounded operator on V such that

(1)
Q({f : f ∈ V, ‖f‖ ≤ 1})

is conditionally compact in (V, | · |)
(2) there exists a constant M such that for all f ∈ V , |Q(f)| ≤M |f |
(3) there exists a k ∈ N and real numbers r and R such that r < r(Q) and for all f ∈ V

‖Qkf‖ ≤ R|f |+ rk‖f‖.

Then Q is quasi-compact.

6.2. Quasi-compactness and other properties of L, P .

Lemma 6.4. L is quasi-compact.
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Proof. We will take | · | = | · |∞ and ‖ · ‖ = | · |β + | · |∞. The set C(Ω̂) is a Banach space under
‖ · ‖. Clearly, condition 1 is satisfied since the unit ball of (V, ‖ · ‖) is mapped under L inside a ball
of finite radius. Condition 2 is true because |L(Φ)|∞ ≤ |Φ|∞. Condition 3 follows very easily from
Theorem 5.1 and the observation that L1 = 1 implies that r(L) ≥ 1. �

The next sequence of lemmas establish that 1 is the unique eigenvalue of L on the unit disk, and
that 1 is a simple eigenvalue. The proofs of these statements follow standard lines (see, for instance,
the proof of the Ruelle-Perron-Frobenius Theorem, [?]), and require that the map T be forward
transitive, and topologically mixing. We have to, however, account for the non-standard definition
of L.

As a technical point, we observe that the operators Lk defined as

Lk(Φ)(x) = Lk(Φ)(E−1x)

are point-wise approximations to the operator L, that is, limk→∞Lk(Φ)(x) = L(Φ)(x) for each
Φ ∈ C and x ∈ Ω̂.

Lemma 6.5. 1 is a simple eigenvalue for L with eigenfunction 1.

Proof. First, we show that any eigenfunction ψ for L to the eigenvalue 1 is either zero, or nowhere
vanishing.

Since L is a real linear operator it is enough to consider real valued eigenfunctions.
First we show that any real valued eigenfunction can be written as a linear combination of non-

negative eigenfunctions. Let ψ+ and ψ− be the positive and negative parts of ψ. Since ψ± ≤ |ψ|,
ψ± ∈ C(Ω̂). Further, the set

F+ :=

 1
n

n−1∑
j=0

Ljψ+

∣∣∣∣∣∣n ≥ 1


has a bounded diameter in the Lipschitz norm and hence is equicontinuous and bounded in the
| · |∞ norm. The Arzelà-Ascoli theorem implies that there exists a subsequence nj such that
limnj→∞

1
nj

∑nj−1
j=0 Lj(ψ+) → ψ+

∞ uniformly in the | · |∞ norm. Clearly, ψ+
∞ ≥ 0, and Lψ+

∞ = ψ+
∞.

Finally, |ψ+
∞|∞ < ∞ and by Theorem 5.1, |ψ+

∞|β < ∞; this implies that ψ+
∞ ∈ C(Ω̂). A similar

analysis can be performed for ψ−. It then follows from a straightforward diagonalization argument
that

ψ = lim
nj→∞

1
nj

nj−1∑
j=0

Ljψ+ − 1
nj

nj−1∑
j=0

Ljψ− = ψ+
∞ − ψ−∞.

For the rest of this proof, it will be assumed that all eigenfunctions are non-negative and real.
Let x ∈ Ω̂ be a point such that ψ(x) = 0, with ψ an eigenfunction. Then

0 = ψ(x) = Ln(ψ)(x) = lim
k→∞

Lnk(ψ)(x) = lim
k→∞

∑
|ζ|=k

1
bk
eg

(n)(ikζx)ψ(ikζx).

By Lemma 5.2 and the non-negativity and continuity of ψ, it follows that ψ is identically 0.
To show that the geometric multiplicity of 1 is 1, suppose there are two positive real eigenfunctions

φ and ψ and put

t = inf
x∈Ω̂

φ(x)
ψ(x)

,

which equals φ(z)/ψ(z) at some point z ∈ Ω̂. Then h(x) = φ(x)− tψ(x) is an eigenfunction to the
eigenvalue 1, and h(z) = 0 which, by the previous paragraph, implies that h ≡ 0. Therefore ψ is
some multiple of φ.

Finally, we show that the algebraic multiplicity of 1 is also 1. Suppose not. Then there exists
a ψ with (1 − L)2ψ = 0 but (1 − L)ψ 6= 0. Since (1 − L)ψ is an eigenvector for L, we must have
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Lψ − ψ = k1 for some k 6= 0. Iteration yields Lnψ = nk1 + ψ which contradicts the uniform
boundedness of Ln as |Lnψ|∞ ≤ |ψ|∞ ∀n. �

Lemma 6.6. Let M (Ω̂) be the space of complex Radon measures on Ω̂. The operator L∗ : M (Ω̂)→
M (Ω̂) is well defined. There exists a unique probability measure ν such that L∗(ν) = ν.

Proof. Note that C(Ω̂) is dense in C(Ω̂) (by the Stone-Weierstrass Theorem, since C(Ω̂) separates
points, Ω̂ is compact, Hausdorff, and C(Ω̂) contains the constant functions). Since L is Lipschitz
on C(Ω̂), it has a continuous extension to C(Ω̂), that we also denote by L. Since the dual of C(Ω̂)
is M (Ω̂), the operator L∗ : M →M is well defined. Since L and L∗ have the same spectrum, 1 is
also a simple eigenvalue for L∗. By Lemma 6.5 we conclude that there exists a probability measure
ν such that L∗ν = ν.

To establish the uniqueness of ν we prove that 1 is the only eigenvalue for L on the unit disk.
Let λ be another eigenvalue of modulus 1, and let φλ be the eigenvector corresponding to λ. By
orthogonality,

∫
φλdν = 0. But, for any ψ ∈ C(Ω̂), we will show that Ln(ψ) →

∫
ψdν. This will

then give us a contradiction, because Lnφλ = λnφλ does not converge to 0.
We note that it is sufficient to prove this claim for positive ψ ∈ C(Ω̂) because if ψ′ ∈ C(Ω̂), then

on decomposing ψ′ = ψ+ − ψ− we get Lnψ′ = Lnψ′+ − Lnψ′− →
∫

(ψ′+ − ψ′−)dν =
∫
ψ′dν. Now,

if ψ is some positive element of C, denote by ψ̃ any continuous accumulation point of Lnψ. We will
show that ψ̃ must be constant.

To see this, observe that ψ̃ ≥ 0 and

sup ψ̃ ≥ sup Lψ̃ ≥ · · · ≥ sup Lnψ̃ ≥ . . . .

Since ψ̃ is an accumulation point for Lnψ none of these inequalities can be strict, so in fact sup Lnψ̃ =
sup ψ̃ for all n ≥ 0. By continuity, there exists a point xn with sup Lnψ̃ = Lnψ̃(xn). This implies
that

ψ̃(x0) = Lnψ̃(xn) = lim
k→∞

1
bk

∑
|ζ|=k

eg
(n)ikζxn ψ̃(ikζxn)

from where it follows that

lim
k→∞

∣∣∣∣∣∣ 1
bk

∑
|ζ|=k

eg
(n)(ikζxn )

(
ψ̃(x0)− ψ̃(ikζxn)

)∣∣∣∣∣∣ = 0.

Using again the fact that
1
bk

∑
|ζ|=k

eg
(n)(ikζxn ) = Lnk1(xn)→ 1 as k →∞

for each n ≥ 0, we get that, on writing Lnk1(xn) = 1 + εk with εk → 0, and observing that
ψ̃(x0) ≥ ψ̃(ikζ) for each branch,

lim
k→∞

(1 + εk)(ψ̃(x0)− ψ̃(ikζxn)) = 0.

Since for each branch limk→∞ ikζxn = y where y satisfies Tny = xn we have that ψ̃(y) = ψ̃(x0) for
all y ∈ {T−nxn} for each n ≥ 0. It follows from lemma 5.3 that ∪n {T−nxn} is dense, and so ψ̃ is
constant.

Therefore,

ψ̃ =
∫
ψ̃dν =

∫
Lnjψdν =

∫
ψdν

where the last equality uses the fact that L∗ν = ν. �
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We now show that the measure ν constructed above is conformal. Recall that for any measurable
function f , a measure µ is said to be f−conformal if for every measurable set A on which the map
T : A→ TA is invertible,

(4)
∫
A
e−fdµ = µ(TA).

In the context of continuous transformations T on a compact metric space Ω, when the map T has
a finite generating partition, one requires that (4) hold for all measurable A. In our setup, we do
not obtain a finite, or countable, generating partition for the map T . Therefore, we only check (4)
on open sets.

Proposition 6.7. The measure ν is g-conformal, i.e., if A be an open set on which T : A→ TA is
invertible, then ∫

A
e−gdν = ν(TA).

Proof. ∫
A
e−gdν =

∫
Ω̂

L(χAe−g)(x) dν(x)

=
∫

Ω̂
lim
k→∞

(1/bk)
∑

ζ∈T−1(πkx)

eg(ikζ)e−g(ikζ)χA(ikζ) dν(x)

=
∫

Ω̂
lim
k→∞

(1/bk)
∑

ζ∈T−1(πkx)

χA(ikζ) dν(x)

=
∫

Ω̂
lim
k→∞

(1/bk)χTA(x)bk dν(x)

= ν(TA).

The third equality from the bottom follows by observing that ζ ∈ T−1(x) ∈ A if and only if x ∈ TA.
�

Theorem 6.8. There exists a constant 0 < ς < 1 with the property that for any φ1, φ2 ∈ C(Ω̂) there
exists a constant C7 such that∣∣∣∣∫ φ1 ◦ Tnφ2dν −

∫
φ1dν

∫
φ2dν

∣∣∣∣ ≤ C7|φ1|∞‖φ2‖ςn.

Proof. L has a unique eigenvalue of modulus 1, therefore the projection operator on the eigen-space
of 1 is defined by P(φ) =

∫
φdν. Since L is quasi-compact, there must exist a constant ς ∈ (0, 1)

such that (for some c1)

‖Ln(φ− P(φ))‖ ≤ c1ς
n‖φ‖.

Let φ̃1 = φ1 −
∫
φ1dν. Observe that∣∣∣∣∫ φ1 ◦ Tnφ2dν −

∫
φ1dν

∫
φ2dν

∣∣∣∣ =
∣∣∣∣∫ φ̃1 ◦ Tnφ2dν

∣∣∣∣ =
∣∣∣∣∫ φ̃1L

nφ2dν

∣∣∣∣
which is bounded by |φ̃1|∞c1ς

n‖φ2‖+
∫
φ̃1dν

∫
LnPφ2dν with the second term being 0. On adjusting

the constant c1, we finish the proof. �
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7. Almost sure invariance principle

Theorem 7.1. The invariant measure ν satisfies the almost sure invariance principle.

For a function f ∈ C(Ω̂) (note that this f ∈ L∞(ν)) and for t sufficiently close to 0, define a
family of operators Lt,f , t ∈ R, on C(Ω̂) by

Lt,f (Φ) = L
(
eitfΦ

)
.

We now recall an abstract theorem by Gouëzel [?], stated in a manner relevant to our setting.

Proposition 7.2. Suppose L satisfies Theorem 5.1 and there exists a constant C8 > 0 such that
‖Lnf,t‖C(Ω̂)→C(Ω̂) ≤ C8 for all n ∈ N and for all t small enough. Then there exists a probability space
(Γ) and two processes (Aj) and (Bj) on Γ such that

(1) the processes (f ◦ T j) and (Aj) have the same distribution
(2) the random variables (Bj) are independent and distributed as N(0, σ2) for an appropriately

chosen σ2, and
(3) almost surely in Γ ∣∣∣∣∣

n−1∑
l=0

Aj −
n−1∑
l=0

Bj

∣∣∣∣∣ = o(nγ)

for any γ > 0.25.

As noted in their paper, since a Brownian motion at integer times coincides with a sum of iid
Gaussian random variables, this theorem can be formulated as as an almost sure approximation by
a Brownian motion. To establish the almost sure invariance principle for our setup, we only need
to check that ‖Lnf,t‖C(Ω̂)→C(Ω̂) stays bounded for t small enough.

Lemma 7.3. There exists a constant C9 > 0 such that ‖Lnf,t‖C(Ω̂)→C(Ω̂) ≤ C9 for all n ∈ N and for
all t small enough.

Proof. Since |Lnf,t(Φ)|∞ ≤ |eitfΦ|∞ ≤ |Φ|∞, we only need to check if |Lnf,t(Φ)|β is bounded. By
Theorem 5.1

|Lnf,t(Φ)|β ≤ |eitfΦ|β(CEη)n + C6|Φ|∞.

It remains to bound |eitfΦ|β . Indeed, by the triangle inequality:∣∣∣eitf(x)Φ(x)− eitf(y)Φ(y)
∣∣∣ ≤ ∣∣∣eitf(x)Φ(x)− eitf(x)Φ(y)

∣∣∣+
∣∣∣eitf(x)Φ(y)− eitf(y)Φ(y)

∣∣∣
≤ |Φ(x)− Φ(y)|+ |Φ|∞|eitf(x) − eitf(y)|
≤ |Φ|βd(x, y)β + |Φ|∞c1d(x, y)β + o(d(x, y)β)

where the constant c1 depends on f (as well as η and β). The last inequality uses an argument
from lemma 4.9. On dividing by d(x, y)β and taking the supremum we obtain (for some c2)

|eitfΦ|β ≤ |Φ|β + c2|Φ|∞.

Hence we can put

C9 := max
{

sup
n
{(|Φ|β + c2|Φ|∞)(CEη)n}+ C6, 1

}
which is finite. �
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8. Example

Here we show that the classical example when the coupling is given by

(E(x))i = (1− ε)xi +
ε

2
xi−1 +

ε

2
xi+1

falls into our category of injective coupling transforms considered in the main theorem. Clearly E
is defined on Ω and for ε positive, the complement Ω \ Ω̂ is non-empty.

Indeed, if δ < ε − ε2 then one obtains that W ∪ σ(W ) ⊂ Ω \ E(Ω), where W = {~y ∈ Ω : y2j >
1 − δ, y2j+1 < δ∀j}. To see this let ~y ∈ W . If there were a ~x ∈ Ω so that E(~x) = ~y, this would
require y2j+1 = (1 − ε)x2j+1 + ε

2(x2j + x2j+2) which implies x2j+1 ≤ δ
1−ε . This, together with

y2j = (1 − ε)x2j + ε
2(x2j−1 + x2j+1) implies that y2j ≤ 1 − ε + εδ

1−ε = 1
1−ε(1 − 2ε + ε2 + εδ) is less

than 1− δ thus contradicting that ~y belongs to W .
For the inverse transformation E−1 : Ω̂→ Ω we obtain the expression :

(E−1(~y))i =
1

1− ε

∞∑
k=0

αk
k∑
j=0

(
k
j

)
yi−k+2j =

1
1− ε

∞∑
`=−∞

yi+`

∞∑
j=`∨0

α2j−`
(

2j − `
j

)
for ~y ∈ E(Ω), where α = − ε

2(1−ε) and the series converge absolutely if ε ∈ [0, 1
2) as this implies

|α| < 1
2 . We verify this as follows:

(1− ε)(E−1(~y))i +
ε

2
((E−1(~y))i−1 + (E−1(~y))i+1)

=
∞∑

`=−∞
yi+`

∞∑
j=`∨0

α2j−`
(

2j − `
j

)
−

∞∑
`=−∞

(yi+`−1 + yi+`−1)
∞∑

j=`∨0

α2j−`+1

(
2j − `
j

)

=
∞∑

`=−∞
yi+`

 ∞∑
j=`∨0

α2j−`
(

2j − `
j

)
−

∞∑
j=(`+1)∨0

α2j−`
(

2j − `− 1
j

)

−
∞∑

j=(`−1)∨0

α2j−`+2

(
2j − `+ 1

j

)
=

∞∑
`=−∞

yi+`

 ∞∑
j=(`+1)∨0

−
∞∑

j=(`−1)∨0+1

α2j−`
(

2j − `− 1
j − 1

)
+ α`χ[0,∞)(`)


= yi.

We can thus conclude that our main result Theorem 2.1 applies to this case.
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