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Abstract. We show that the entry and return times for dynamical balls (Bowen
balls) is exponential for systems that have an α-mixing invariant measure with
certain regularities. We also show that systems modeled by Young’s tower has
exponential entry time distribution for dynamical balls. We also apply the results
to conformal maps and expanding maps on the interval.

1. Introduction

In this paper the distribution of entry and return times are studied for continuous
maps on metric spaces. There are many results on the distribution of return times
to cylinder sets for instance from 1990 by Pitskel [25] (see also [10]) for Axiom A
maps using Markov partitions and also by Hirata. For ψ-mixing maps, Galves and
Schmitt [12] have introduced a method to obtain the limiting distribution for the
first entry time to cylinder sets. Abadi then generalised that approach to φ and also
α-mixing measures. The nature of the return set however is critical for the longtime
statistics of return and Lacroix and Kupsa [19, 18] have given examples where for an
ergodic system any return time distribution can be realised by taking a limit along
a suitably chosen sequence of return sets. For entry and returns to balls, Pitskel’s
result shows using an approximation argument that for Axiom A maps on the two-
dimensional torus return times are Poisson distributed. Recently, Chazottes and
Collet [9] showed a similar result for attractors in the case of exponentially decaying
correlations. This was in [17] extended to polynomial decay of correlations where
the error terms are logarithmic. A similar result without error terms and requiring
sufficient regularity of the invariant measure was proven in [23] (see also [14]). In
this paper we consider another class of entry sets, namely dynamical balls on met-
ric spaces. It has been shown elsewhere that dynamical balls exhibit good limiting
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statistic and in particular have the equipartition property which for partitions is as-
sociated with the theorem of Shannon-McMillan-Breiman [20]. Similarly, a theorem
of Ornstein and Weiss [21, 22] has a counterpart for metric balls [27]: It was shown
that the exponential growth rate of recurrence times is equal to the metric entropy.

In this paper we first study the distribution of the first entry time assuming that
there is a generating partition which is α-mixing. This requirement is satisfied by a
large number of systems, in particular by those which allow Young’s tower construc-
tion with an exponential or polynomial tail. This is shown in section 6. In section 3
we deduce the first return time distribution.

2. Main results

Let (X, d) be a compact metric space, T : X 	 and (X,T, µ) be a continuous
transformation and µ a T -invariant Borel probability measure on X. For a set
B ⊂ X denote by τB(y) the first time when the orbit of y enters B, i.e.

τB(y) = min{j > 0 : T jy ∈ B} ∈ N ∪ {∞}.
If the domain of τB is the entire space X, then τB is the first entry time and if
one considers the restriction of τB to the set B itself, then τB is the first return
time. By Poincaré’s recurrence theorem the first return time τB|B is finite µ-almost
everywhere for T -invariant probability measures µ. If moreover µ is ergodic the one
has

∫
B
τB dµ = 1 by Kac’s theorem if µ(B) > 0. A large number of results on the

limiting distribution have been proven in the case when B are cylinder sets, most
notably by Galves and Schmitt [12] for ψ-mixing measures where they introduced
a method which later was in particular by Abadi [1, 2] extended to the first entries
and returns for φ-mixing and α-mixing measures.

If T is a map on a metric space Ω with metric d, then the nth Bowen ball is given
by

Bε,n(x) = {y ∈ Ω : d(T jx, T jy) < ε, 0 ≤ j < n}.
Bowen balls are used to define the metric entropy and also the pressure for potentials
(see e.g. [28]). Then in [8] the equivalent for the theorem of Shannon-McMillan-
Breiman was proven for Bowen balls. Namely, for every ergodic T -invariant proba-
bility measure µ the limit

h(µ) = lim
ε→0

lim
n→∞

1

n
| log µ(Bε,n(x)) |

exists for µ-almost every x, where the limit h(µ) is the measure theoretic entropy
of µ. Moreover, in [27] (see also [11]) it was shown that for an ergodic T -invariant
probability measures µ the limit

lim
ε→0

lim
n→∞

1

n
logRε,n(x) = h(µ)
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exists almost everywhere, where Rε,n(x) = τBε,n(x)(x) is the recurrence time to the
Bowen ball (the limit in n is lim sup or lim inf). The limit is the dynamical ball
equivalent of Ornstein-Weiss’s formula [21, 22].

In this paper we want to address the distribution of the entry time function τBε,n(x)

and in order to get meaningful results we have to assume some mixing property. We
will require the measure to be α-mixing with respect to a finite or countably infinite
generating partition. For that purpose let A be a measurable partition of X which
is generating and either finite or countably infinite (A is generating if the elements
A∞ are single points). Denote by An =

∨n−1
j=0 T

−jA its n-th join and write

γn = diam(An)

for its diameter. Since A is generating γn decreases to 0 as n→∞.
The following two properties of the invariant measure µ play a central role:

(I) Mixing property: We say the measure µ is α-mixing with respect to the
partition A if

|µ(A ∩ T−n−kB)− µ(A)µ(B)| ≤ α(k)

for all A ∈ σ(An), B ∈ σ(
⋃
j Aj), where α(k) is a decreasing function which converges

to zero as k →∞.
(II) Regularity: In order to control the measure of an annulus compared to the
metric ball of the same size we put

ϕ(ε, δ, x) =
µ(B(x, ε+ δ))− µ(B(x, ε− δ))

µ(B(x, ε))

for 0 < δ < ε and x ∈ X. The function ϕ measures the proportion of the measure
of the annulus B(x, ε + δ) \ B(x, ε − δ) to the ball B(x, ε). This is needed in order
to control the approximation of balls by cylinder sets below. For instance, if µ is a
Riemannian measure on a manifold X of dimension d, then ϕ(ε, δ, x) = O(δ/ε).

We now can formulate our main results which we take care to formulate in two
versions which differ by the assumption made on the “annulus function” ϕ. The first
pair of theorem is for the limiting entry times distribution and the second pair of
theorems for the limiting return times distribution.

2.1. Entry times distribution.

Theorem 1. Let µ an α-mixing T -invariant probability measure on Ω. Assume that
there exist constants 0 < γ < 1 and ζ, ξ, κ > 0 such that γn = O(γn

ξ
), α(n) =

O(n−(2+κ)). Also assume that for every ε > 0 there exist Cε > 0 independent of x,
such that

ϕ(ε, δ, x) ≤ Cε
| log δ|ζ

for every x and all δ < ε small enough. Furthermore we assume that ξ · ζ > 3
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Then there exists an ω > 0, a constant C1 and 0 < λBε,n(x) < 2 so that∣∣∣∣P(τBε,n(x) >
t

λBε,n(x)µ(Bε,n(x))

)
− e−t

∣∣∣∣ ≤ C1µ(Bε,n(x))ω.

Theorem 3 below can be seen as an application of this theorem.
If, as in the next result, the measure has good regularity then we relax the condition

on the decrease of the diameter of cylinders considerably.
In the next several theorems we will always assume that Cε is a constant that

depends only on ε.

Theorem 2. Assume that there exist constants, a, κ, ζ > 0 satisfying aζ > 3, such
that γn = O(n−a), α(n) = O(n−(2+κ)) and

ϕ(ε, δ, x) ≤ Cεδ
ζ

for some constant Cε.
Then there exists an ω > 0, a constant C1 and 0 < λBε,n(x) < 2 so that∣∣∣∣P(τBε,n(x) >

t

λBε,n(x)µ(Bε,n(x))

)
− e−t

∣∣∣∣ ≤ C2µ(Bε,n(x))ω.

The annulus condition of the last theorem is for instance satisfied in the case when
µ is absolutely continuous with respect to the Lebesgue measure, or Riemannian
volume if X is a manifold. Then ζ = 1.

The clustering factor λB has been more closely examined in [4]. The amount by
which the clustering factor deviates from the value 1 captures essentially the periodic
behaviour of the approximating set. As shown there, for cylinder sets for instance
the factor goes in the limit to 1 almost surely.

For diffeormorphism on compact manifolds that allow a Young tower construction
we obtain the following result, where for the details of the terms we refer to Section 6.

Theorem 3. Let µ be the SRB measure for a differentiable map T on a manifold
X which is modelled by a Young’s tower. If the tail of the tower decays at least
polynomially with power λ > 5 +

√
15, then

lim
ε→0

lim
n→∞

P
(
τBε,n(x) ≥

t

λBε,n(x)µ(Bε,n(x))

)
= e−t

for t > 0 and almost every x ∈ X.

2.2. Return times distribution. While the previous three theorems give us limit-
ing results for the entry times distribution, the next two theorems establish equivalent
results for the return times.
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For all set A ⊂ Ω define the period of A by τ(A) = min{k > 0 : T−kA ∩ A 6= ∅}
and put for any ∆ < 1/µ(A)

aA = PA(τA > τ(A) + ∆).

In our setting we will choose N(n) ≤ ∆ ≤ 1/µ(Bε,n(x)), where N(n) will be deter-
mined later. We write for simplicity B = Bε,n(x).

Theorem 4. Let µ be α-mixing with α(n) = O(n−(2+κ)) for some κ > 0. Assume
that ξζ > 5 with the remaining conditions same as in Theorem 1.

Then there exists an ω > 0 so that for all t > 0 and x ∈ X:∣∣∣∣PB(τB > t

λBµ(B)

)
− aBe−t

∣∣∣∣ ≤ C3µ(B)ω

for some constant C3 and a parameter λB which is bounded as in Lemma 4.

Theorem 5. Assume there are a, κ, ζ > 0 satisfying aζ > 5, such that γn = O(n−a),
α(n) = O(n−(2+κ)) and

ϕ(ε, δ, x) ≤ Cεδ
ζ .

The remaining conditions are as in Theorem 2.
Then there exists an ω > 0 so that∣∣∣∣PB(τB > t

λBµ(B)

)
− aBe−t

∣∣∣∣ ≤ C4µ(B)ω

for some constant C4.

Observe that in Theorems 1 and 5 the conditions aζ > 3 and aζ > 5 respectively are
vacuous in the case when the diameter γn of the joins An decay at an exponential
rate (or even super polynomially).

The parameter aB ≤ 1 captures the periodic behaviour of the set B. For this
see [3] where is also shown that if aB → 1 as n → ∞ then the clustering factor λB
converges to 1.

3. Examples

3.1. Gibbs states for conformal repeller. Let T be a C1-map on a Riemannian
manifold M . A conformal repeller is then a maximal compact set Ω ⊂ M so that
T acts conformally on Ω and is expanding, that is there exists a β > 1 so that
|DT kv| ≥ βk for all large enough k and all v ∈ TxM,∀x ∈ Ω. For simplicity we shall
assume that T : Ω 	 is topologically transitive.

For a Hölder continuous potential function f : Ω→ R one then has a unique Gibbs
state µ which has the property that for every generating measurable partition A the
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following estimate applies for all n ∈ N and all x ∈ Ω

µ(An(x)) ∈
(

1

c 0
, c0

)
ef

n(x)−nP (f),

for some constant c0 > 1, where P (f) is the pressure of f and fn = f + f ◦T + · · ·+
f ◦T n−1 is the nth ergodic sum of f . The Gibbs state µ is usually constructed using
the transfer operator (see e.g. [26]). We then obtain the following result:

Theorem 6. Let Ω ⊂M be a conformal repeller for the C1-map T : M 	 and let µ
be a Gibbs state for a Hölder continuous potential function f : Ω→ R.

Then there exists an ω > 0 so that (with B = Bε,n(x))
(i) ∣∣∣∣P(τB > t

λBµ(B)

)
− e−t

∣∣∣∣ ≤ C1µ(B)ω.

for t > 0 and almost every x ∈ X.
(ii) ∣∣∣∣PB(τB > t

λBµ(B)

)
− aBe−t

∣∣∣∣ ≤ C4µ(B)ω

for t > 0 and almost every x ∈ X (recall aB = PB(τB > τ(B) + ∆)).

Proof. A key property of a conformal repeller is that it allows Markov partitions of
arbitrarily small diameter. Let A be a generating partition, that is the elements of
A∞ consist of singletons. We will verify the assumptions of Theorems 1 and 5:
(i) Because of expansiveness of the map T it follows immediately that diamAn ≤ γn

where γ ≤ 1
β
< 1.

(ii) The measure µ is in fact ψ-mixing where ψ decays exponentially fast, therefore
a fortiori also α-mixing with exponentially decaying α.
(iii) Is satisfied for any w > 1 as µ is diametrically regular [24] and thus also has the
annular decay property [7]. This yields

µ(Bε+δ(x) \Bε−δ(x))

µ(Bε(x))
≤ c1

(
δ

ε

)ζ
for some ζ > 0, a constant c1 and for every point x ∈ Ω. Therefore ϕ(ε, δ, x) = Cεδ

ζ ,
where Cε ≤ c1ε

−1.
The result now follows from Theorems 1 and 5 respectively. �

3.2. Interval maps. As an example we consider expanding maps on the interval. If
T : I 	 is a uniformly expanding piecewise C2-map of the unit interval I = [0, 1] and
satisfies the Markov property, then it has an absolutely continous invariant measure
µ which has a strictly positive density h with respect to Lebesgue measure λ (see
e.g. [13]).
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Theorem 7. Let T be a uniformly expanding piecewise C2 map of the interval which
satisfies the Markov property. Let µ be absolutely continuous invariant measure.

Then there exists an ω > 0 so that (with B = Bε,n(x))
(i) ∣∣∣∣P(τB > t

λBµ(B)

)
− e−t

∣∣∣∣ ≤ C1µ(B)ω.

for t > 0 and almost every x ∈ X.
(ii) ∣∣∣∣PB(τB > t

λBµ(B)

)
− aBe−t

∣∣∣∣ ≤ C4µ(B)ω

for t > 0 and almost every x ∈ X (recall aB = PB(τB > τ(B) + ∆)).

Note that the absolutely continuous invariant measure is a Gibbs state for the Hölder
continuous potential function f = − log |T ′| which has zero pressure, i.e. P (f) = 0.

Proof. We verify the assumptions of Theorems 1 and 5.
(i) µ is in fact exponentially ψ-mixing which implies the α-mixing property with an
exponentially decaying α.
(ii) One has diamAn ≤ γn with γ = (inf |T ′|)−1 < 1.
(iii) The annulus property is satisfied because µ is equivalent to the Legesgue mea-
sure. Therefore

µ(Bε+δ(x) \Bε−δ(x))

µ(Bε(x))
≤ c1δ

for some constant c1. Hence ϕ(ε, δ, x) ≤ Cεδ which implies ζ = 1 and Cε = c1.
The result now follows from Theorems 1 and 5 respectively. �

4. First entry times distribution for Bowen balls

4.1. Approximation by unions of cylinder sets. The next result will be our
principal technical result on which all the other theorems are based. For that purpose
let N(n) be an increasing sequence in n. In practice our choice of N(n) depends on
the point x and the dynamical ball Bε,n(x); however to simplify notations we omit
the dependence on x and ε. We want to approximate the Bowen balls Bε,n(x) by a
unions of N(n)-cylinders from the inside. For this purpose put

B̃ε,n(x) =
⋃

AN(n)∈AN(n),AN(n)⊂Bε,n(x)

A

which is the largest union of all N(n)-cylinders contained in Bε,n(x). Before stating
the theorem, let us define, for subsets B ⊂ X and f > 0,

λB,f =
− logP(τB > f)

fµ(B)
.
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To simplify notation we will write λBε,n(x) = λBε,n(x),f , dropping the dependence on f .
The choice of f will be made clear in the next section. Again we put γk = diamAk
and formulate the following technical result:

Theorem 8. Let µ be an α-mixing T -invariant probability measure on Ω. Let x ∈ X
and assume there exist ε0 > 0 and an increasing sequence {N(n)}∞n=1 satisfying
n < N(n) < 1

4
µ(Bε,n(x))−1 such that

(1) ϕ(ε, γN(n)−k, T
kx) ≤ ϑn(ε) · µ(Bε,n(x))

ns

for all ε < ε0, 0 ≤ k ≤ n − 1, where s = α−1(C ′µ(B̃)) + N(n) for some 0 < C ′ < 1
and a sequence of real numbers ϑn(ε)→ 0 as n→∞ for every ε.

Then there exist λBε,n(x) ∈
(
C
s
, 2
)

and constants C5, C6 such that∣∣∣∣P(τBε,n(x) >
t

λBε,n(x)µ(Bε,n(x))

)
− e−t

∣∣∣∣
≤ ϑn(ε)

t

sλBε,n(x)

+ 3fµ(Bε,n(x)) + C5
sN(n)

f
+ C6s

α(N(n))

fµ(B̃)

for all f ∈
(
2N(n), 1

2
µ(Bε,n(x))−1

)
.

4.2. First entry time for the cylinder approximation B̃ε,n(x). We begin with
several lemmata, the first one of which is evident.

Lemma 1. For all n and x we have
∑N(n)

k=1 µ(B̃ε,n(x)∩T−kB̃ε,n(x)) ≤ N(n)µ(B̃ε,n(x))

and P(τB̃ε,n(x) ≤ t) ≤ tµ(B̃ε,n(x)).

To simply notation, we fix ε and n for a moment and write B = Bε,n(x) and

B̃ = B̃ε,n(x). The following lemma establishes an approximate exponential identity
of the entry times distribution. For this see also e.g. [12, 1, 3].

Lemma 2. For all ∆, f such that f ≥ ∆ > N(n) and g ∈ N we have∣∣P(τB̃ > f + g)− P(τB̃ > g)P(τB̃ > f)
∣∣ ≤ 2∆µ(B̃ε,n(x)) + α(∆−N(n))

Proof. We proceed in the traditional way splitting the difference into three parts:∣∣P(τB̃ > g + f)− P(τB̃ > g)P(τB̃ > f)
∣∣

≤
∣∣P(τB̃ > g + f)− P(τB̃ > g ∩ τB̃ ◦ T

g+∆ > f −∆)
∣∣

+
∣∣P(τB̃ > g ∩ τB̃ ◦ T

g+∆ > f −∆)− P(τB̃ > g)P(τB̃ > f −∆)
∣∣

+
∣∣P(τB̃ > g)P(τB̃ > f −∆)− P(τB̃ > g)P(τB̃ > f)

∣∣
= I + II + III.
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In the first term we open up a gap of size ∆. It is estimated as follows

I = P(τB̃ > g ∩ τB̃ ◦ T
g+∆ > f −∆ ∩ τB̃ ◦ T

g ≤ ∆) ≤ P(τB̃ ≤ ∆) ≤ ∆µ(B̃).

Similarly for the third term in which we close the gap:

III = P(τB̃ > g)P(f −∆ < τB̃ ≤ f) ≤ P(τB̃ > g)∆µ(B̃) ≤ ∆µ(B̃).

For the second term we use the α-mixing property. Notice that B̃ = B̃ε,n(x) is a
union of N(n)-cylinders which implies {τB̃ > g} ∈ σ(AN(n)+g) and consequently

II =
∣∣P(τB̃ > g ∩ τB̃ ◦ T

g+∆ > f −∆)− P(τB̃ > g)P(τB̃ > f −∆)
∣∣ ≤ α(∆−N(n))

where ∆−N(n) is the size of the gap.
The three parts combined now prove the lemma. �

Let us now put θ = θ(f) = − logP(τB̃ > f) where f > 0. We then have the
following estimate.

Lemma 3. Let f > ∆ > N(n) then for all k ≥ 1 we have∣∣P(τB̃ > kf)− e−θk
∣∣ ≤ 2∆µ(B̃) + α(∆−N(n))

P(τB̃ ≤ f)
.

Proof. First we use induction to prove that∣∣P(τB̃ > kf)− e−θk
∣∣ ≤ 2∆µ(B̃) + α(∆−N(n))) · (1 + e−θ + · · ·+ e−θ(k−2)).

Clearly it holds for k = 1 by the definition of θ. For k > 1 we use induction.
Assuming that it holds for k, we obtain:∣∣P(τB̃ > (k + 1)f)− e−θ(k+1)

∣∣
≤ |P(τB̃ > (k + 1)f)− P(τB̃ > kf) · e−θ|+ |P(τB̃ > kf) · e−θ − e−θ(k+1)|
≤ 2∆µ(B̃) + α(∆−N(n)) + e−θ

∣∣P(τB̃ > kf)− e−θk
∣∣

≤ 2∆µ(B̃) + α(∆−N(n)) + e−θ(2∆µ(B̃) + α(∆−N(n))) · (1 + e−θ + · · ·+ e−θ(k−2))

= (2∆µ(B̃) + α(∆−N(n))) · (1 + e−θ + · · ·+ e−θ(k−1)).

Hence ∣∣P(τB̃ > kf)− e−θk
∣∣ ≤ (2∆µ(B̃) + α(∆−N(n)))

1

1− e−θ
for all k ∈ N and the lemma follows since 1

1−e−θ = 1
P(τ

B̃
≤f)

. �

For subset B ⊂ X let us define

λB,f =
− logP(τB > f)

fµ(B)
.

For the approximations B̃ε,n(x) we then obtain the following estimate.
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Lemma 4. Let f ∈ N be such that fµ(B̃ε,n(x)) ≤ 1
2
. Then there exist C7 > 0 such

that
C7

s
≤ λB̃ε,n(x),f ≤ 2

where, as before, s = α−1(C ′µ(B̃ε,n(x))) +N(n) for some 0 < C ′ < 1

Proof. We follow the proof in Galves-Schmitt [12] and Abadi [3]. To estimate
λB̃ε,n(x),f we use the simple estimate

θ

2
≤ 1− e−θ ≤ θ

for all θ ∈ [0, 1]. Let us write B̃ for B̃ε,n(x) and note that P{τB̃ ≤ f} = 1 − e−θ as
θ = − logP{τB̃ > f}. By Lemma 1,

λB̃,f =
θ

fµ(B̃)
≤

2P{τB̃ ≤ f}
fµ(B̃)

≤ 2

For the lower bound, notice that {τB̃ > f} =
⋂[f ]
j=0

(
T−js(B̃)

)c
⊂
⋂[ f

s
]

j=0

(
T−js(B̃)

)c
.

As in the proof of Lemma 3 we obtain first by the mixing property

µ

(
k+1⋂
j=0

(
T−js+1(B̃)

)c)
= µ

(
k⋂
j=0

(
T−js+1(B̃)

)c
∩ T−(k+1)s+1(B̃)

)

≤ µ

(
k⋂
j=0

(
T−js+1(B̃)

)c)
µ(B̃c) + α(s−N(n))

which yields then by repeated application

µ

 [ f
s

]⋂
j=0

(
T−js+1(B̃)

)c ≤ µ(B̃c)[ f
s

] + α(s−N(n))
1

1− µ(B̃c)
.

Consequently

P(τB̃ > f) ≤ (1− µ(B̃))f/s + α(s−N(n))
1− (1− µ(B̃))f/s

µ(B̃)
,

and therefore

P(τB̃ ≤ f) ≥ (1− (1− µ(B̃))f/s)
(
1− α(s−N(n))

µ(B̃)

)
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≥ f

s
µ(B̃)

(
1− α(s−N(n))

µ(B̃)

)
.

Thus

λB̃,f =
θ

fµ(B̃)
≥

P{τB̃ ≤ f}
fµ(B̃)

≥ 1

s

(
1− α(s−N(n))

µ(B̃)

)
.

In particular since s = α−1(C ′µ(B̃)) + N(n) we get λB̃,f ≥
C7

s
and P(τB̃ ≤ f) ≥

C7fµ(B)
s

for some constant C7. �

4.3. Proof of Theorem 8. In the previous section the Bowen ball Bε,n(x) was
estimated from the inside. To proof Theorem 8 we thus have to show that the
contribution of the ‘annulus’

∂̃Bε,n(x) =
⋃

A∈AN(n), A∩∂Bε,n(x)6=∅

A

goes to zero as n→∞ and then ε→ 0. We clearly have Bε,n(x)\ B̃ε,n(x) ⊂ ∂̃Bε,n(x)

and also τBε,n(x) ≥ τB̃ε,n(x) since B̃ε,n(x) ⊂ Bε,n(x). The following lemma estimates

the size of the annulus.

Lemma 5. Assume that (1) holds for some sequence of real numbers ϑn(ε) → 0 as

n→∞. With the notation as above (and in particular with s = α−1(C ′µ(B̃))+N(n))
we obtain

µ(∂̃Bε,n(x)) = ϑn(ε)
µ(Bε,n(x))

s
.

Proof. Since T is continuous, ∂Bε,n(x) ⊂
n−1⋃
k=0

T−k∂B(T kx, ε). Hence if AN(n) ∩

∂Bε,n(x) 6= ∅ then we must have AN(n)−k(T ky) ∩ ∂B(T kx, ε) 6= ∅ for some 0 ≤
k ≤ n− 1, y ∈ AN(n). Notice that diam(AN(n)−k(T ky)) ≤ γN(n)−k, we have

∂̃Bε,n(x) ⊂
n−1⋃
k=0

T−k(B(∂B(T kx, ε), γN(n)−k))

⊂
n−1⋃
k=0

T−k(B(T kx, ε+ γN(n)−k) \B(T kx, ε− γN(n)−k)),

hence

µ(∂̃Bε,n(x)) ≤n · sup
0≤k≤n−1

µ(B(T kx, ε+ γN(n)−k) \B(T kx, ε− γN(n)−k))
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=n · sup
0≤k≤n−1

{ϕ(ε, γN(n)−k, T
kx) · µ(B(T kx, ε))}

=ϑn(ε)
µ(Bε,n(x))

s
sup

0≤k≤n−1
µ(B(T kx, ε))

≤ϑn(ε)
µ(Bε,n(x))

s
.

In particular we have µ(Bε,n(x))/µ(B̃ε,n(x)) = O(1) as n→∞. �

From now on we set λB = λB̃,f .

Lemma 6. For f ≤ 1
2
µ(B̃ε,n(x))−1 one has∣∣∣∣∣P

(
τBε,n(x) >

t

λBµ(Bε,n(x))

)
− P

(
τB̃ε,n(x) >

t

λBµ(B̃ε,n(x))

)∣∣∣∣∣ ≤ 3
ϑn(ε)t

sλB̃,f

for all t > 0.

Proof. We have∣∣∣∣∣P
(
τB >

t

λBµ(B)

)
− P

(
τB̃ >

t

λBµ(B̃)

)∣∣∣∣∣
≤

∣∣∣∣∣P
(
τB >

t

λBµ(B)

)
− P

(
τB >

t

λBµ(B̃)

)∣∣∣∣∣
+

∣∣∣∣∣P
(
τB >

t

λBµ(B̃)

)
− P

(
τB̃ >

t

λBµ(B̃)

)∣∣∣∣∣
= I + II.

We estimate the two terms separately.

For the term I first notice that B̃ε,n(x) ⊂ Bε,n(x) which implies τB̃ε,n(x) ≥ τBε,n(x)

and t
λBµ(B)

≤ t

λBµ(B̃)
. Therefore

I ≤ P

(
t

λBµ(B)
≤ τB ≤

t

λBµ(B̃)

)

≤ t

λB

(
1

µ(B̃)
− 1

µ(B)

)
µ(B)

≤ 2
ϑn(ε)t

sλB
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as µ(B)

µ(B̃)
≤ 2 and where we used that

(2)
1

µ(B̃)
− 1

µ(B)
=

µ(B \ B̃)

µ(B)µ(B̃)
≤ µ(∂̃Bε,n(x))

µ(B)µ(B̃)
≤ ϑn(ε)

1

sµ(B̃)

by Lemma 5.
The term II we estimate as follows:

II = P

({
τB ≤

t

λBµ(B̃)

}
∩

{
τB̃ >

t

λBµ(B̃)

})

≤ P

(
τ∂̃Bε,n(x) ≤

t

λBµ(B̃)

)

≤ t

λB

µ(∂̃Bε,n(x))

µ(B̃)

=
ϑn(ε)t

sλB
,

where in the last line we proceeded as for the term I above. Since by Lemma 4,
sλB > C7/2 the result follows. �

Proof of Theorem 8. We have to estimate |P(τB̃ε,n(x) >
t

λBµ(B̃ε,n(x))
) − e−t|, where,

as before, λB = λB̃,f . We put ∆ = 2N(n) and pick f > ∆ = 2N(n) with f ≤
1
2
µ(B̃ε,n(x))−1. Then t > 0 can be written as t = kf + r with 0 ≤ r < f and k

integer. Set t′ = t− r = kf , then

|P(τB̃ > t)− e−λBµ(B̃)t|

≤ |P(τB̃ > t)− P(τB̃ > t′)|+ |P(τB̃ > t′)− e−λBµ(B̃)t′ |+ |e−λBµ(B̃)t′ − e−λBµ(B̃)t|
= I + II + III.

The first term is easily estimated by

I = P(t′ < τB̃ ≤ t) ≤ rµ(B̃) < fµ(B̃).

For the third term we use the mean value theorem according to which there exist

t0 ∈ [λBµ(B̃)t′, λBµ(B̃)t] such that

III = e−t0λBµ(B̃)r ≤ 2fµ(B̃)

using Lemma 4 in the last estimate.
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To the second term, II, we apply Lemma 3 and obtain

II ≤2∆µ(B̃) + α(∆−N(n))

P(τB̃ ≤ f)

≤s(2∆µ(B̃) + α(∆−N(n)))

Cfµ(B̃)

=C5
sN(n)

f
+ C6s

α(N(n))

fµ(B̃)
.

All three estimates combined yield

|P(τB̃ε,n(x) >
t

λBµ(B̃ε,n(x))
)− e−t| ≤ 3fµ(Bε,n(x)) + C5

sN(n)

f
+ C6s

α(N(n))

fµ(B̃)
.

�

4.4. Proof of Theorem 1 and 2. Now we can prove the first pair of theorems. For
that purpose let us establish the following notation. For some 0 < η < 1

2
, β ∈ (η, 1),

which will be determined later, we set N(n) = µ(Bε,n(x))−η (length of cylinders),

f = µ(B)−β, B̃ε,n(x) =
⋃

A∈AN(n),A⊂Bε,n(x)

A (inner approximation) and

λBε,n(x) =
− logP(τB̃ε,n(x) > f)

fµ(B̃ε,n(x))
.

as before.

Proof of Theorem 1. In order to apply Theorem 8 we first verify (1) with γn =

O(γn
ξ
). Fix some 0 < η < 1

2
and set N(n) = [µ(Bε,n(x))−η]. Then

ϕ(ε, γN(n)−k, T
kx) ≤ Cε

| log γ(N(n)−k)ξ |ζ
≤ Cε
N(n)ξζ

= Cεµ(B)(ξζ)η.

Here we simply replace N(n)− k by N(n) since N(n) is much larger than k (replace
Cε by a somewhat larger constant).

Since

(3) s = α−1(C ′µ(B̃)) +N(n) ≤ c1µ(B)−
1

2+κ + µ(B)−η

for some constant c1, we have

nsϕ(ε, γN(n)−k, T
kx)

µ(B)
≤ ϑn(ε),

where

ϑn(ε) ≤ Cεnsµ(B)ξζη−1 ≤ c2nµ(B)ξζη−1
(
µ(B)−

1
2+κ + µ(B)−η

)
,
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which converges to 0 if η > η0 = max{ 1
ξζ−1

, 1
ξζ

3+κ
2+κ
}.

Applying Theorem 8 yields as sλBε,n(x) ≥ C7:∣∣P(τBε,n(x) >
t

λBε,n(x)µ(Bε,n(x))
)−e−t

∣∣ ≤ ϑn(ε)t+2fµ(Bε,n(x))+C5
sN(n)

f
+C6s

α(N(n))

fµ(B̃)
.

Since f = µ(B)−β for some β < 1, the second term on the RHS converges to 0. The
last two terms then are bounded as follows:

C5
sN(n)

f
+C6s

α(N(n))

fµ(B̃)
≤ c3µ(B)β

(
µ(B)−η + µ(B)η(2+κ)−1

) (
µ(B)−

1
2+κ + µ(B)−η

)
.

In order that all terms converge to 0 we need η > η0 so that

ω1 = β −max

{
η,

1

2 + κ

}
−max {η, 1− η(2 + κ)}

is positive. This can be achieved by picking η ∈ (η1,
1
2
), where η1 = max{ 1

ξζ−1
, 1

2+κ
}

is less than 1
2

(note that η1 ≥ η0). This also implies that ω2 = ξζη −max{ 1
2+κ

, η} is
positive. Now put ω = min{ω1, ω2, 1− β}. �

Proof of Theorem 2. In order to apply Theorem 8 we verify that condition (1) holds:

ϕ(ε, γN(n)−n, T
kx) ≤ Cεγ

ζ
N(n)−k ≤ c1(N(n)− k)−aζ ≤ c2N(n)−aζ

(for some c1, c2) and therefore nsϕ(ε, γN(n)−k, T
kx)/µ(B) ≤ ϑn(ε), where

ϑn(ε) ≤ c3nsµ(B)aζη−1 ≤ c4nµ(B)aζη−1
(
µ(B)−

1
2+κ + µ(B)−η

)
.

The last expression converges (exponentially fast) to zero if aζη − 1 −max{ 1
2+κ

, η}
is positive which can be achieved by picking η < 1

2
close enough to 1

2
.

The remainder of the proof is identical to the proof of Theorem 1. �

5. First return time distribution

In this section we will prove Theorems 4 and 5 which establish the limiting dis-
tribution of the first return time to Bowen balls and provide rates of convergence.
We use the same notation as in the previous section. Let τ(A) be the period of A
and as in [3] denote by aA = PA(τA > τ(A) + ∆) the relative size of the set of long

returns, where ∆ < 1/µ(A). Again we put B̃ = B̃ε,n(x) and B = Bε,n(x) and let us
first prove the following two lemmata.
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5.1. Replacing B by its cylinder approximation B̃. To prepare for the proof
of Theorem 4 and 5 we need two lemmata. The first, Lemma 7, estimates the error
that is made in the return times distribution when replacing the Bowen ball B by its
N -cylinder approximation B̃. The second, Lemma 8 establishes an exponential-like
property for the approximation which then leads to the exponential limiting return
times distribution for the cylinder approximations B̃.

Lemma 7. There exists a constant C8 so that∣∣∣∣∣PB
(
τB >

t

λBµ(B)

)
− PB̃

(
τB̃ >

t

λBµ(B̃)

)∣∣∣∣∣ ≤ C8
tϑn(ε)

µ(B)
.

Proof. Let us first estimate the following term:

I =

∣∣∣∣∣PB̃
(
τB̃ >

t

λBµ(B̃)

)
− PB

(
τB̃ >

t

λBµ(B̃)

)∣∣∣∣∣
which is split into two parts I ≤ I1 + I2. For for the first part we obtain by Lemma 5

I1 =
1

µ(B)

∣∣∣∣∣P
({

τB̃ >
t

λBµ(B̃)

}
∩ B̃

)
− P

({
τB̃ >

t

λBµ(B̃)

}
∩B

)∣∣∣∣∣
≤ µ(∂̃Bε,n(x))

µ(B)

≤ ϑn(ε)

s
.

The second part is by (2)

I2 = P

({
τB̃ >

t

λBµ(B̃)

}
∩B

)∣∣∣∣∣ 1

µ(B̃)
− 1

µ(B)

∣∣∣∣∣ ≤ ϑn(ε)

sµ(B̃)
.

Hence

I ≤ 2
ϑn(ε)

sµ(B̃)
.

Let us next estimate the term

II =

∣∣∣∣∣PB
(
τB >

t

λBµ(B)

)
− PB

(
τB̃ >

t

λBµ(B̃)

)∣∣∣∣∣ ,
which again splits into two parts II = II1 + II2 as follows. The first part is

II1 =

∣∣∣∣∣PB
(
τB >

t

λBµ(B)

)
− PB

(
τB >

t

λBµ(B̃)

)∣∣∣∣∣
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≤ PB

(
t

λBµ(B)
< t <

t

λBµ(B̃)

)

≤ 1

µ(B)

(
t

λBµ(B̃)
− t

λBµ(B)

)
µ(B)

≤ ϑn(ε)
t

sλBµ(B̃)

by (2). For the second part we obtain

II2 =

∣∣∣∣∣PB
(
τB >

t

λBµ(B̃)

)
− PB

(
τB̃ >

t

λBµ(B̃)

)∣∣∣∣∣ ≤ PB

(
τB\B̃ <

t

λBµ(B̃)

)
≤ t

λB

µ(B \ B̃)

µ(B)µ(B̃)

and therefore by Lemma 5

II2 ≤
t

λB

µ(∂̃Bε,n(x))

µ(B)µ(B̃)
≤ tϑn(ε)

sλBµ(B̃)
.

Finally we obtain for some constant C8 that

I + II1 + II2 ≤ C8
tϑn(ε)

µ(B)

where we used that sλB ≥ C7 by Lemma 4 and µ(B)

µ(B̃)
= O(1). �

The following lemma which is similar to Lemma 2 establishes an approximate
exponential-like identity.

Lemma 8. For all ∆, f, g such that f ≥ ∆ > N(n), g ≥ ∆ + τ(B̃) we have∣∣PB̃(τB̃ > f + g)− PB̃(τB̃ > g)P(τB̃ > f)
∣∣ ≤ 2∆µ(B̃ε,n(x)) + 2

α(∆−N(n))

µ(B̃)

Proof. We proceed as in the proof of Lemma 2 to write the left-hand-side as
I + II + III. The only difference is in I:

I =|PB̃(τB̃ > f + g)− PB̃(τB̃ > g ∩ τB̃ ◦ T
g+∆ > f −∆)|

≤PB̃(τB̃ ◦ T
g ≤ ∆)

=
1

µ(B̃)
P(B̃ ∩ {τB̃ ◦ T

g ≤ ∆})

≤P(τB̃ ≤ ∆) +
α(∆−N(n))

µ(B̃)
≤ ∆µ(B̃) +

α(∆−N(n))

µ(B̃)

by the α-mixing property. The estimates of the terms II and III are identical to the
proof of Lemma 2. �
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5.2. Proof of Theorem 4 and 5.

Proof of Theorem 4. We will first show that PB̃(τB̃ > t

λBµ(B̃)
) satisfies the exponen-

tial law. For all t > (τ(B̃) + 2∆)λBµ(B̃), let u = t

λBµB̃
and we have∣∣PB̃(τB̃ > u)− PB̃(τB̃ > τ(B̃) + ∆)e−t

∣∣
≤

∣∣PB̃(τB̃ > u)− PB̃(τB̃ > τ(B̃) + ∆)P(τB̃ > u− (τ(B̃) + ∆))
∣∣

+
∣∣PB̃(τB̃ > τ(B̃) + ∆)P(τB̃ > u− (τ(B̃) + ∆))− PB̃(τB̃ > τ(B̃) + ∆)e−t

∣∣
= I + II

where

I ≤ 2∆µ(B̃) + 2
α(∆−N(n))

µ(B̃)

by Lemma 8. For the second term II we have

II =aB
∣∣P(τB̃ >

t

λBµ(B̃)
− (τ(B̃) + ∆))− e−t

∣∣
≤aB

∣∣P(τB̃ >
t

λBµ(B̃)
− (τ(B̃) + ∆))− e−t+(τ(B̃)+∆)λBµ(B̃)

∣∣+ aB
∣∣e−t − e−t+(τ(B̃)+∆)λBµ(B̃)

∣∣.
To the first term we apply Theorem 1 with the parameter value t′ = t− (τ(B̃) +

∆)λBµ(B̃) and to the second term we apply the Mean Value Theorem. Hence II ≤
c1µ(B̃)ω1 for some ω1 > 0 from Theorem 1. This proves the statement of Theorem 4

for the set B̃. To prove the theorem for the set B we use Lemma 7 and put N(n) =
µ(B)−η for some η ∈ (0, 1/2). Then∣∣∣PB(τB >

t

λBµ(B)
)− PB̃(τB̃ >

t

λBµ(B̃)
)
∣∣∣

≤ C8
tϑn(ε)

µ(B)

=
O(t)ns

| log γNξ |ζµ(B)2

= O(t)nsµ(B)ξζη−2

= O(t)nµ(B)ξζη−2
(
µ(B)−

1
2+κ + µ(B)−η

)
.
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by (3) and as sλB = O(1) and s = α−1(C ′µ(B̃)) + N(n) by Lemma 4. Choosing
η close to 1

2
will achieve that ω2 = ξζη − 2 − max{ 1

2+κ
, η} is positive. Now put

ω = min{ω1, ω2}. �

Proof of Theorem 5. The first part of the proof is identical to the proof of Theorem 4.
For the second part we get different estimates as γn = diam(An) = O(n−a) for some
a > 0. To prove the theorem for the set B we use Lemma 7 and put N(n) = µ(B)−η

for some η ∈ (0, 1/2). Thus∣∣∣PB(τB >
t

λBµ(B)
)− PB̃(τB̃ >

t

λBµ(B̃)
)
∣∣∣

≤ C8
tϑn(ε)

µ(B)

=
O(t)ns

N(n)aζµ(B)2

= O(t)nµ(B)aζη−2
(
µ(B)−

1
2+κ + µ(B)−η

)
.

by (3). A choice of η close to 1
2

will achieve that ω2 = aζη − 2 − max{ 1
2+κ

, η} is
positive. Now put ω = min{ω1, ω2} (ω1 from the proof of Theorem 4). �

6. Maps with Young’s tower

In this section we show how the results of the previous section can be applied to
dynamical systems that can be modelled by a Markov tower as Young constructed
in [29, 30].

We assume that T is a differentiable map on the manifold X. Then one assumes
there is a subset Ω0 ⊂ X with the following properties:
(i) Ω0 is partitioned into disjoint sets Ω0,i, i = 1, 2, . . . and there is a return time func-
tion R : Ω0 → N, constant on the partition elements Ω0,i, such that TR maps Ω0,i

bijectively to the entire set Ω0. We write Ri = R|Ω0,i
. Moreover, it is assumed that

the Ω0,i are rectangles, that is, if γu(x) denotes the unstable leaf through x ∈ Ω0,i

and γs(y) the stable leaf at y ∈ Ω0,i, then there is a unique interestion γu(x)∩ γs(y)
which also lies in Ω0,i. It is also assumed that the Ω0,i satisfy the Markov property.
If γu and γ̂u are two unstable leaves (in some Ωi,0), then the holonomy Θ : γu → γ̂u

is given by Θ(x) = γ̂u ∩ γs(x), x ∈ γu.
(ii) For j = 0, 1, . . . , Ri−1 put Ωj,i = {(x, j) : x ∈ Ω0,i} and define Ω =

⋃∞
i=1

⋃Ri−1
j=0 Ωj,i.

Ω is the Markov tower for the map T . It has the associated partition A = {Ωj,i :
0 ≤ j < Ri, i = 1, 2, . . . } which typically is countably infinite. The map F : Ω → Ω
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is given by

F (x, j) =

{
(x, j + 1) if j < Ri − 1

(F̂ x, 0) if j = Ri − 1

where we put F̂ = FR for the induced map on Ω0.
(iii) The separation function s(x, y), x, y ∈ Ω0, is defined as the largest positive n so
that (TR)jx and (TR)jy lie in the same sub-partition elements for 0 ≤ j < n. That is
(TR)jx, (TR)jy ∈ Ω0,ij for some i0, i1, . . . , n− 1. We extend the separation function
to all of Ω by putting s(x, y) = s(TR−jx, TR−jy) for s, y ∈ Ωj,i.
(iv) Let ν be a finite given ‘reference’ measure on Ω and let νγu be the conditional

measure on the unstable leaves. We assume that the Jacobian JF =
d(F−1
∗ νγu )

dνγu
is

Hölder continuous in the following sense: there exists a γ ∈ (0, 1) so that∣∣∣∣JFRx

JFRy
− 1

∣∣∣∣ ≤ constγs(F̂ x,F̂ y)

for all x, y ∈ Ω0,i, i = 1, 2, . . . .
If the return time R is integrable with respect to ν then by [30] Theorem 1 there

exists an F -invariant probability measure µ (SRB measure) on Ω which is absolutely
continuous with respect to ν.

For each n ∈ N the elements of the nth join An =
∨n−1
i=0 T

−iA of the partition
A = {Ωi,j} are called n-cylinders and form a new partition of Ω, a refinement of the
original partition. The σ-algebra generated by all n-cylinders A`, for all ` ≥ 1, is the
σ-algebra of the system (Ω, µ).

In order to prove Theorem 3 we verify the conditions in Theorem 8.

Lemma 9. Assume that ν(R > k) ≤ p(k) where p(k) is a decreasing sequence in k
that is at least polynomial with power > 1. Then the invariant measure µ is α-mixing
with respect to the partition A, with α(k) ∼ p(k).

Proof. Denote by Cγ the space of Hölder continuous functions ϕ on Ω for which
|ϕ(x) − ϕ(y)| ≤ Cϕγ

s(x,y). If Cϕ is smallest then ‖ϕ‖γ = |ϕ|∞ + Cϕ defines a norm
and Cγ = {ϕ : ‖ϕ‖γ < ∞}. Let L : Cγ → Cγ be the transfer operator defined by

Lϕ(x) =
∑

x′∈T−1x
ϕ(x′)
JT (x′)

, ϕ ∈ Cγ. Then ν is a fixed point of its adjoint, i.e. L∗ν = ν

and h = dµ
dν

= limn→∞ Lnλ is Hölder continuous, where λ can be any initial density
distribution in Cγ. In fact, by [30] Theorem 2(II) one has

(4) ‖Lkλ− h‖L 1 ≤ p(k)‖λ‖γ
where the ‘decay function’ p(k) = O(k−β) if the return times decay polynomially with
power β, that is if ν(R > j) ≤ const.j−β. If the return times decay exponentially,

i.e. if ν(R > j) ≤ const.ϑj for some ϑ ∈ (0, 1), then there is a ϑ̃ ∈ (0, 1) so that

p(k) ≤ const.ϑ̃k.
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As in the proof of [30] Theorem 3 we put λ = LnhχA which is a strictly positive
function. Then η = λ

µ(A)
is a density function as ν(λ) = ν(LnhχA) = ν(hχA) = µ(A).

Since by [16] there exists a constant c1 so that ‖LnχA‖γ ≤ c1 for all A ∈ σ(An) and
n we see that ‖λ‖γ ≤ c1 uniformly in n and A ∈ σ(An). Hence

µ(A ∩ T−k−nB)− µ(A)µ(B) = ν(hχA(χB ◦ T k+n))− ν(hχA)ν(hχB)

= µ(A)(ν(χBLkη)− ν(hχB))

= µ(A)

∫
χB(Lkη − h) dν

=

∫
B

(Lkλ− µ(A)h) dν.

Using the estimates from the L 1-convergence of Lkη − h from (4) yields∣∣µ(A ∩ T−k−nB)− µ(A)µ(B)
∣∣ ≤ µ(A)

∫
χB|Lkλ− h| dν

≤ µ(A)c1‖η‖γp(k)

≤ c3p(k)

as ‖η‖γ = 1
µ(A)
‖λ‖γ ≤ C3

µ(A)
. In particular we can write∣∣µ(A ∩ T−k−nB)− µ(A)µ(B)

∣∣ ≤ α(k)

for all A ∈ σ(An), B ∈ σ(
⋃
j≥1Aj), where α(k) = c3p(k). �

Lemma 10. Let ζ < λ
2
− 1. Then there exists an ε0 so that for every δ < ε0

there exists a set Uδ ⊂ X, of measure O(| log δ |−ζ) so that ϕ(ε, δ, x) = O(| log δ |−ζ)
uniformly in x 6∈ Uδ.

Proof. It was shown in [17] Proposition 6.1 that for all w large enough there exists
a set U ⊂ X such that µ(U) = O((w| log ε |)−ζ) and ϕ(ε, εw, x) = O((w| log ε |)−ζ)
uniformly in x 6∈ U where ζ is any number less than λ

2
− 1. Hence there exists an

ε0 > 0 so that we can write δ = εw with w large enough (larger than 2
u
(D + 1) − 1

where D is the dimension of the manifold X and u is the dimension of the unstable
leaves) for all δ < ε0. Since log δ = w log ε we obtain the statement of the lemma. �

Let us denote by Ω̃j,i the principal parts of Ωj,i. For integers N,m (N >> m) we

put Ω̃j,i = {x ∈ Ωj,i : R(F̂ jx) ≤ s ∀ j = 0, . . . , [N/m]}. In this way we pick out the

return times that are not too long. In particular Ω̃0,i = ∅ if Ri > m. Let us put

Ω̃ =
⋃
i

⋃Ri−1
j=0 Ω̃j,i (disjoint unions).

We also define ω(m) =
√∑

i:Ri>m
Ri ν(Ω0,i) and note that ω(m) = O(m−

λ−1
2 ).
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Lemma 11. [17] There exists a constant C9 and for N, n,m ≥ 1 (N > n,m) there
exist sets VN,m ⊂M such that the non-principal part contributions are estimated as

µ(B ∩ (Ω \ Ω̃)) <
√
n+ 2ω(m)µ(Bε,n)

for any B ⊂ Bε,n(x) and x 6∈ VN,m where

µ(VN,m) ≤ C9

√
n+ 2ω(m).

Proof of Theorem 3. In order to apply Theorem 8 to Bε,n(x)∩Ω̃ we will pick η ∈ (0, 1
2
)

below and put N(n) = [µ(Bε,n(x))−η]. We then choose m = Nα for some α ∈ ( 1
λ−1

, 1)

(see estimate of F below). Then according to Lemma 11 diam(A) ≤ γ
N
m for some

γ < 1 for all n-cylinders A which belong to Ω̃. As in the proof of Theorem 1 we then
conclude that

ϕ(ε, γN(n)−k, T
kx) ≤ c1m

ζ

N(n)ζ
≤ c1m

ζµ(B)ζη

(for some constant c1) provided T kx 6∈ UγN(n)−k for k = 0, . . . , n − 1. Since s =

α−1(C ′µ(B)) +N(n) ≤ c2µ(B)−
1
λ + µ(B)−η, we obtain

ns · ϕ(ε, γN(n)−k, T
kx)

µ(B)
≤ c3n · µ(B)ηζ−1−ηαζ

(
µ(B)−

1
λ + µ(B)−η

)
.

The RHS converges to zero if ηζ − 1 − ηαζ − max{ 1
λ
, η} is positive. To satisfy

Lemma 10 it is required that ζ < λ
2
− 1. Then can choose α ∈ ( 1

λ−1
, 1) in such a way

that the above expression is positive for an η < 1
2

close to 1
2
. This can be done if

λ > 5 +
√

15.
We now proceed as in the proof Theorem 1 to estimate the contribution to the

error made by (B \ B̃)∩ Ω̃. For the portion that lies in Ω \ Ω̃ we use Lemma 11 and
thus obtain combining the two contributions:∣∣P(τBε,n(x) >

t

λBε,n(x)µ(Bε,n(x))
)− e−t

∣∣ ≤ c4

(
tµ(B)a + µ(B)b +

√
N ω(m)µ(B)

)
provided x does not lie in the forbidden set F = VN,m ∪

⋃n−1
k=0 T

−kUγN(n)−k whose
measure is by Lemmata 11 and 10 bounded by

µ(F) ≤ c5

(√
N + 2ω(m) + n| log γN(n) |−ζ

)
≤ c6

(√
N m−

λ−1
2 + nN−ζmζ

)
which goes to zero as n → ∞ since m = Nα and 1

λ−1
< α < 1. Thus µ(F) → 0

as n → ∞ and therefore P(τBε,n(x) >
t

λBε,n(x)µ(Bε,n(x))
) −→ e−t as n → ∞, ε → 0 for

every x 6∈ lim infn→∞,ε→0Fε,n.
�
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