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Abstract

We consider the distributions of the number of visits in a given domain of the phase
space and their limit behavior when the domain shrinks around a point. At first we
perform a numerical analysis of the irrational rotations on the circle. Then we study
a skew map defined on a cylinder which modelizes a shear flow, providing a theoretical
explanation about the distributions found. Our analysis is finally extended to systems
composed of invariant regions, and the results obtained allow us to investigate systems
of higher physical relevance, like the standard map and the Hénon map.

This paper wishes to be the continuation of the previous one published on
Chaos [2], where, among other things, we studied the statistics of the first return
times for systems modeling the physical situation of an integrable motion. We
pursue here our analysis by looking at the distribution of the number of visits, of
which the preceding statistics represents the zeroth order. It is well-known that
such a distribution exhibits a Poissonian behaviour for highly mixing systems. We
consider, as a model of a shear flow on a cylinder, a skew map where almost all
fibers are given by irrational rotations, so at first we investigate the distribution
of the number of visits for irrational rotations. Then we propose for the shear
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flow on the cylinder a theoretical explanation about the power law decay shown
by the distributions numerically computed. This same behaviour is also observed
for the standard map in the integrable region, a new result to our knowledge. We
consider also the situation in which two or more systems are coupled, showing that
some transient effect could hide the real limit distribution. In particular, when a
chaotic and a regular regions are glued together, in the limit of domains shrinking
around a point the distributions follow a modified Poisson law, but before the
limit is reached the polinomial behaviour of the regular component gives the main
contribution for large times. It is our opinion that this analysis could be useful to
understand and classify the complex dynamics in the regions where ergodic and
integrable motions are intertwined, as can happen for the standard map. Finally,
we study the distribution of the number of visits around generic and periodic
points of the Hénon map. [DOI: 10.1063/1.1629191]

1 Introduction

The statistics of the first return times has been intensively studied in the last years, mainly
to characterize the ergodic and statistical properties of dynamical systems. In two previous
papers [1, 2], we considered such a statistics for a skew map defined on a cylinder and describing
a shear flow. In this article we wish to extend our investigation to successive return times,
with the aim to investigate the distributions of the number of visits for domains of the phase
space which shrink around a point.

Let T be a transformation on the space Ω and µ be a probability invariant measure on
Ω. Denoting by χA the characteristic function of a measurable set A ⊆ Ω, we can define the
“random variable” ξA in x (the symbol b . c represents the integer part)

ξA(t; x) =

b〈τA〉 tc∑
j=1

(
χA ◦ T j

)
(x). (1)

The value of ξA(t; x) measures the number of times the point x ∈ A returns into A within the
iteration b〈τA〉 tc. Here 〈τA〉 is the conditional expectation of the first return time τA(x) of the
point x, namely

τA(x) = min
({

k ∈ N : T k(x) ∈ A
}
∪ {+∞}

)
(2)

and

〈τA〉 =

∫
A

τA(x) dµA, (3)

where µA is the conditional measure with respect to A for any measurable set B ⊆ Ω

µA(B) =
µ(B ∩ A)

µ(A)
. (4)

In what follows, we will be interested in the distribution of the number of visits

Fk,A(t) = µA

(
x ∈ A : ξA(t; x) = k

)
(5)
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in the limit µ(A) → 0, denoting the limit distribution, whenever it exists, by

Fk(t) = lim
µ(A)→0

Fk,A(t). (6)

Of particular interest is the distribution of order k = 0: in this case Eq. (5) gives the statistics
(with respect to t) of the first return times which we quoted at the beginning

F0,A(t) = µA

(
x ∈ A : τA(x)/〈τA〉 > t

)
; (7)

we will set F (t) ≡ F0(t) the respective limit distribution, if it exists. Correspondingly, we
define the distribution of the first return times as

Gr,A(t) = µA

(
x ∈ A : τA(x)/〈τA〉 ≤ t

)
, (8)

calling Gr(t) the limit distribution, when it exists; of course Gr(t) = 1− F (t).
We recall that, for ergodic measures, 〈τA〉 is simply equal to µ(A)−1, as prescribed by

Kac’s theorem. The limit distributions Fk(t) have been computed analytically for dynamical
systems with strong mixing properties and whenever the set A is chosen as a ball or a cylinder
(originating from a dynamical partition of Ω) shrinking around µ-almost all points of Ω [3, 4,
5, 6, 10, 12, 13, 9]; in these strong mixing situations the asymptotic laws are Poissonian

Fk(t) =
e−t tk

k!
. (9)

The use of cylinders around arbitrary points requires different normalizations of the successive
return times; see for instance [10] and [4] for a careful analysis of the statistics of the first
return times around periodic points.

We will study the distributions of the number of visits for our skew map defined on the
cylinder C = T× [0, 1]

R :

{
x′ = x + y mod 1
y′ = y

(10)

which is not ergodic with respect to the invariant Lebesgue measure. As we argued in [2],
by perturbing this simple map we obtain a tranformation that is integrable only for a subset
of C whose Lebesgue measure approaches 1 as the amplitude of the perturbation vanishes,
according to KAM theory.

It is interesting to note that our skew map represents a shear of the linearized dynamics
at the fixed point of the following class of area preserving maps on T2 recently investigated in
[23] {

x′ = x + h(x) + y
y′ = h(x) + y

mod 1, (11)

where h is a smooth symmetric function vanishing at zero with its first derivative like, for
example, h(x) = x − sin(x). These maps are not uniformely hyperbolic and the authors
showed for them in [23] a polinomial decay of the correlations. Moreover, they argued that
non-uniform hyperbolicity produces “regions in which the motion is rather regular and where
the systems spend a substantial fraction of time (sticky regions)” [23]. This is also the physical
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framework which motivated our previous work [2] and this one too, as we will point out again
in Sec. 4. Furthermore, the transformation (10) describes the flow on a square billiard [22].

Considering an arbitrary measurable domain A ⊆ C of positive Lebesgue measure, the
expectation (3) can be computed explicitly for the skew map

〈τA〉 =
µy(Iy)

µ(A)
, (12)

where µx, µy represent the Lebesgue measure along the x-axis and y-axis, respectively, and

Iy = {y : µx(Ay) > 0} (13)

with
Ay = {(x′, y′) ∈ A : y′ = y} . (14)

By choosing the set A as a square of size ε “around” the fixed point (0, 0), A = [0, ε]× [0, ε],
we proved in [2] that 〈τA〉 = 1/ε and that the limit law F (t) is

F (t) =



1 if t = 0

1

2
if 0 < t < 1

1

2t2
if t ≥ 1

. (15)

Of course, the same result holds for each of the fixed points (x, 0) since the map enjoys a
symmetry for translations. Furthermore, the algebraic decay for large value of t was numerically
checked for square domains around arbitrary points of the cylinder.

Before going to compute the distributions of the number of visits, we observe that for almost
all the ordinates y, the dynamics along the fiber placed at y is the irrational rotation x′ =
x + y mod 1. Therefore the first natural step should be to inquire whether limit distributions
exist for irrational rotations. Since, as far as we know, surprisingly there is not an answer to
this question yet, in the next section we will investigate numerically a special case, based on
the analytical work of Coelho and De Faria [7] about the statistics of first entry times. Then
we will return to our skew map, giving an heurisitic but quantitative argument to claim the
existence of a limit distribution. Various applications will be presented in Sec. 4, where in
particular we will study the behaviour of such a distribution when two invariant regions are
coupled. The distribution of the number of visits will be also analyzed for the Hènon map.

2 Irrational rotations

Coelho and De Faria [7] were able to characterize the limit laws for the distribution of the first
entry times for irrational rotations on the circle, provided the set A is chosen in a descending
chain of renormalization intervals (see also [8] for further improvements and [14] for an inde-
pendent related result). The entry time is defined by considering the first entrance τA(x) of a
point x ∈ Ω into the set A; the corresponding distribution is given by

Ge,A(t) = µ
(
x ∈ Ω : τA(x)/〈τA〉 ≤ t

)
. (16)
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We call Ge(t) the limit distribution for µ(A) → 0, when it exists.
Let us now consider in detail one of the two asymptotic laws found in [7]. Let Rα(x) =

x + α mod 1 be an irrational rotation with rotation number α. Without loss of generality, we
can consider in what follows 0 < α < 1; thus the rotation number has the continued fraction
expansion α = [0, a1, a2, a3, . . .]. It is well known that an = b1/Hn−1(α)c, where H : [0, 1[→
[0, 1[ is the Gauss transformation defined by H(0) = 0, H(x) = {1/x} for x > 0 ({ . } denotes
the fractional part). The truncated expansion of order n of α is given by pn/qn = [0, a1, . . . , an],
where pn and qn verify the recursive relations

pk = ak pk−1 + pk−2

qk = ak qk−1 + qk−2
(17)

with p−2 = 0, p−1 = 1 and q−2 = 1, q−1 = 0. Moreover, by setting bj = b1/Hj−1(β)c for j ≥ 1,
with β ∈ [0, 1[, we can construct the following quantities for n ≥ 1

Γn(α, β) = (Hn(α), [0, an, an−1, . . . , a1, b1, b2, . . .]); (18)

of course the convergent subsequences of Γn(α, β) do not depend on β.
Now, let us consider how to construct the domains A used to get the distribution of the first

entry times, that is the sets where the points of the circle will enter. We choose an arbitrary
point z on the circle and define Jn as the closed interval of endpoints Rqn−1

α (z) and Rqn
α (z). The

sequence of sets A shrinking to z is taken then as the descending chain of intervals Jn. Since
the map Rα enjoys a symmetry for translations, it is clear that the choice of the point z does
not matter; what is important is the sequence of the measures of the shrinking intervals.

Coelho and De Faria proved in particular that for each subsequence σ = {ni} of N, the
distribution functions Ge,Jni

(t) converge to a continuous piecewise linear function Ge(t) if

Γni(α, β)
ni→∞−→ (θ, ω) with θ ∈ [0, 1[ and ω ∈ ]0, 1]. Since we are mostly interested in return

times, we would like to know whether it is possible to get the distribution of the first return
times Gr(t). This can be done by applying a very recent result by Lacroix et al. [11] which
establishes the following relation between the two distributions

Ge(t) =

∫ t

0

(1−Gr(s)) ds; (19)

in the case considered we have

Gr(t) =



0 if 0 ≤ t <
(1 + θ)ω

1 + θω

ω

1 + ω
if

(1 + θ)ω

1 + θω
≤ t <

1 + θ

1 + θω

1 if t ≥ 1 + θ

1 + θω

. (20)

Consequently, we immediately obtain the statistics of the first return times F (t) = 1−Gr(t),
which represents the zero order (k = 0) distribution of the number of visits.

This result allows us to hope that the distribution for higher orders also exists. So we
carried out a numerical investigation taking as rotation number the golden ratio γ =

√
5−1
2

,
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Figure 1: Distribution of the number of visits
Fk,J20(t) of order k = 1, 2, 3.

Figure 2: Distribution of the number of visits
Fk,J20(t) of order k = 3, 4, 5.

which exhibits the very simple continued fraction expansion γ = [0, 1, 1, . . .]. It is easy to see
that, in this case, Γn(γ, ·) converges to (θ, ω) = (γ, γ). The analysis has been performed for
several orders k, computing for each of them the distribution Fk,Jn(t), with n form 10 to 20.
Of course, it is not possible to deal with limit distributions by means of numerical methods;
nevertheless the results obtained strongly suggest the existence of the limit distribution Fk(t).
In fact, we found that the distributions with the same order k are very close to each other
regardless of the value of n, and this despite the presence of statistical fluctuations and effects
due to the finite size of the intervals Jn (the measure of Jn goes from about 2 · 10−2 for n = 10
to 2 ·10−4 for n = 20). Since we are interested in the limit for µ(A) → 0, in Fig. 1, 2 are shown
only the distributions referring to the smaller interval, namely J20; however, the distributions
of the same order computed for different values of n would appear practically indistinguishable
in the graph.

It is worthwhile to note some of the features of the distributions Fk,Jn(t) numerically ob-
tained. First, their support is an interval and, for any k, it can be partitioned in three subinter-
vals I

(l)
k (the leftmost), I

(c)
k (cental), I

(r)
k (the rightmost) in such a way that Fk,Jn(t) is constant

on each of these subintervals; in particular Fk,Jn(t) = 1 if t ∈ I
(c)
k . Furthermore, the intervals

I
(r)
k and I

(l)
k+1 practically coincide (in this regard, the distribution with k = 3 is reported in both

figures to clearly show that this is true even for I
(r)
2 , I

(l)
3 and I

(r)
3 , I

(l)
4 ). For every distribution

studied we have that µ(I
(l)
k ) ' µ(I

(r)
k ) ' 0.447, and µ(I

(c)
k ) ' 0.724 except for k = 2 and

k = 5 where µ(I
(c)
k ) ' 0.276. Interestingly enough, the measure of the support of Fk,Jn(t) for

k = 1, 3, 4 is about 1.618, that is near to 1 + γ. As an example, we write the distributions
Fk,J20(t) of order one and two (in the interval in which they differ from zero)

F1,J20(t) =


0.38 if 0.72 ≤ t < 1.17

1 if 1.17 ≤ t < 1.89

0.24 if 1.89 ≤ t < 2.34

(21)

and

F2,J20(t) =


0.76 if 1.89 ≤ t < 2.34

1 if 2.34 ≤ t < 2.62

0.85 if 2.62 ≤ t < 3.06

, (22)

It is our opinion that it would be interesting to get an analytic proof for the existence of the
limit distributions Fk(t) and an explanation of their properties.

3 Shear flow

The distribution Gr(t) above found for the irrational rotations on the circle was, as we said,
one of the two possible distributions that can be obtained, for each k, by looking at the
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renormalization intervals Jn. On the other side, nothing is known if one consider, for example,
intervals of length ε going continuously to zero. What is surprising is that for our skew map,
which is horizontally almost everywhere foliated by irrational rotations, a limit distribution
exists for the first return time when we shrink the square domain Aε = [0, ε] × [0, ε] toward
the fixed point (0, 0); thus one could wonder if, in such a situation, the limit distributions of
the number of visits exist for a generic order k > 0. In this case however a geometric proof,
as was performed for the first return, is exceedingly complicated; nevertheless the numerical
computations suggest that a limit law still exists, as we will see in a moment. To understand
this fact, we present here an heuristic, but quantitative, argument which produces predictions
very close to the numerical observations.

In this respect, we have to consider another equivalent characterization of the distribution
of the number of visits. Let us begin to introduce the k-th return time in A of a point x ∈ A

τ k
A(x) =


0 if k = 0

τ k−1
A (x) + τA

(
T τk−1

A (x)(x)
)

if k ≥ 1
(23)

(note that τ 1
A(x) = τA(x)). We then observe that Eq. (5) can be rewritten as [5]

Fk,A(t) = µA

(
x ∈ A :

τ k
A(x)

〈τA〉
≤ t ∧ τ k+1

A (x)

〈τA〉
> t

)
= µA

(
x ∈ A :

τ k
A(x)

〈τA〉
≤ t

)
− µA

(
x ∈ A :

τ k+1
A (x)

〈τA〉
≤ t

)
. (24)

Since
τ k
A = τA + (τ 2

A − τA) + . . . + (τ k
A − τ k−1

A ), (25)

if we define Pk,A(t) as the distribution of the sum, normalised by 〈τA〉−1, of the differences of
consecutive return times until the k-th return, the preceding equation reads

Fk,A(t) = Pk,A(t)− Pk+1,A(t). (26)

We remark that the distribution of the difference between two consecutive return times (nor-
malised by 〈τA〉−1) follows the same law than the distribution of the first return [5], because
the measure µA is invariant with respect to the induced application on A and

τ k
A − τ k−1

A = τA ◦ T τk−1
A . (27)

If the random variables τA/〈τA〉, (τ 2
A−τA)/〈τA〉, . . . , (τ k

A−τ k−1
A )/〈τA〉 were i.i.d. with the same

distribution function Gr,A(t), it is well known that the distribution function of their sum would
be the following convolution product

Pk,A(t) = Gr,A(t) ∗Gr,A(t) ∗ . . . ∗Gr,A(t)︸ ︷︷ ︸
k times

. (28)

In the case of highly mixing systems (for instance φ, α and (φ, f) mixing systems, see [5, 9, 10])
for which the limit distribution of the first return times Gr(t) is given by 1−e−t, the differences
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of the normalised successive return times become asymptotically independent when µ(A) → 0;
the strategy adopted in [5] to obtain the Poisson law

Pk,A(t)− Pk+1,A(t) −→ tk e−t

k!
, (29)

(for a suitable choice of the sets A, as said in Sec. 1) was just based on this fact.
Now we proved in [2] that, although our skew map is not ergodic, it enjoys a “local”

mixing-like property: for square domains Aε = [0, ε]× [0, ε] we showed that∣∣µε(Aε ∩ T n(Aε))− µ2
ε(Aε)

∣∣ = O(n−1) , (30)

where µε = µ/ε. This suggests to try to get the distributions of the number of visits by assuming
that the differences of the normalised successive return times are asymptotically independent.
We know that the limit statistics of the first return times F (t), obtained for the sets Aε when
ε → 0, is given by Eq. (15). Being Gr(t) = 1−F (t) the corresponding limit distribution, under
the preceding assumption we can write

Fk(t) = Pk(t)− Pk+1(t) (31)

with
Pk(t) = Gr(t) ∗Gr(t) ∗ . . . ∗Gr(t)︸ ︷︷ ︸

k times

. (32)

In particular, we have that

F1(t) = Gr(t)−
∫ +∞

−∞
Gr(t− s) dGr(s), (33)

and a rather straightforward computation of the Stieltjes integral gives

F1(t) =



0 if t = 0

1/4 if 0 < t < 2

1

4t2
+

1

4(t− 1)2
+

3

2t3
+

3 log(t− 1)

t4
+

6− 7t

4t3(t− 1)2
if t ≥ 2

. (34)

Note that when t is large, F1(t) behaves like 1/2 t−2. With a similar but more cumbersome
computation we can obtain F2(t)

F2(t) =



0 if t = 0

1/8 if 0 < t < 1

1

4
− 1

8t2
if 1 ≤ t < 2

O
(
t−2

)
if t � 2

(35)

Using a recursive argument it is possible to show two interesting features of the distributions
Fk(t):
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Figure 3: Distribution of the number of visits of
order k = 1 for the domain Aε = [0, ε]× [0, ε], with
ε = 10−2. The dotted line represents the function
given by Eq. (34).

Figure 4: Distribution of the number of visits of
order k = 2 for the domain Aε = [0, ε]× [0, ε], with
ε = 10−2. The dashed line represents the function
1/2 t−2.

Figure 5: Distribution of the number of visits of
order k = 1, 2, 5, 10, 20 computed for the domain
A = [0, ε]×[y0, y0+ε], with y0 = 0.35 and ε = 10−2.
The dashed line represents the function 1/2 t−2.

Figure 6: Distributions of the best-fit parameter
β, obtained through a least-squares method in the
range 30 ≤ t ≤ 100 from the distributions of the
number of visits of order k = 1, 2, 3 for twenty
domains of side ε = 10−2. The arrows represent the
position of the mean value for each distribution.

– for 0 < t < 1, the distributions present a plateau whose height is given by 1/2k+1. This
is the only explicit dependence on k that we can easily detect.

– for t →∞ all the Fk(t) exhibit the same behaviour, decaying like 1/2 t−2.

We compared these distributions, computed under the assumption that the differences of the
normalised successive return times are asymptotically independent, with the ones obtained
through the numerical analyses. Although there is some discrepancy between them, nonetheless
the qualitative features described above still seem to persist. In particular, both types of
distribution show an initial plateaux, even if the actual one decreases to zero much faster for
k > 1, and what is more interesting, all the numerical distributions appear to decay like 1/2 t−2

after a transitory peak in the spectrum, see Fig. 3, 4. The discrepancy between the two kind of
distribution could be reasonably due to the presence of some sort of weak correlation between
the differences of successive returns. We met an analogous situation in the previous Section,
where the same asymptotic independence assumption was made for the irrational rotations on
the circle: again we did not recover the numerical distributions for k = 1, 2, although we were
able to depict the qualitative behaviour of the limit laws. Note that this could be in agreement
with a result of Coelho and De Faria [7], which shows that for θ > 0 the limit joint distributions
of the differences of successive entry times are not given by the product of the individual limit
distributions.

We also investigated the behaviour of the distributions of the number of visits for sets
A = [0, ε]×[y0, y0+ε] with y0 > 0, using a least-squares method to fit the numerical distributions
obtained for several values of y0 and ε against the function α t−β. We found that an asymptotic
power law decay preceded by a peak seems to hold even for such domains, as shown in Fig. 5.
Note how the peaks narrow and shift toward larger t when k increases, while their height
slightly decreases. However (Fig. 6) in this more general case the exponent β is usually greater
than 2, and the mean value of its distribution appears to be correlated to the order k. Even for
rectangular domains like A = [x0, x0 + ε]× [y0, y0 + δ], the distributions computed numerically
present features analogous to the ones described above. In particular the mean return time is
〈τA〉 = 1/ε, while their decay follows a power law with an exponent greater but near to 2.

In conclusion, we think that the inverse square decay in t, whatever the order k, is tipical
for the fixed points (which lie along the x-axis) of our skew map, while as soon as we consider

9



other points the exponent β changes weakly with k. We wish to remark that the differences
between the distributions for periodic and generic points seems a general fact of recurreces, as
we will also argue in the next Sections.

4 Mixed dynamical systems

We studied the skew map both in [2] and in this paper mainly for two reasons. First, we tried
to understand, by means of a very simple model, why the statistics of the first return times
exhibits a power law decay in systems which present regular components, as it was pointed out,
for example, in [16, 17, 18, 19] (see also [20, 21] for an overview of recurrences in dynamical
systems).

The second reason was to investigate whether this algebraic decay could be related to some
finite size effect. In this respect, we considered in [2] a systems whose phase space was parti-
tioned into two invariant regions, obtained by coupling the skew map, which models a shear
flow, with some mixing map whose distribution of first returns decays exponentially. We were
able to rigorously prove the following fact: for a particular domain A that intersect the bound-
ary of the two invariant regions and whose measure goes to zero, the limit statistics of the first
return times is simply ruled by the one of the mixing region, thus being exponential. Neverthe-
less, as long as the measure of A is finite (which is the only situation that can be analyzed by
numerical investigations), the exponential and power laws are linearly superposed and weighted
by coefficients proportional to the relative sizes of the chaotic and regular components of A; in
this case the polynomial part provides asymptotically the main contribution. The proof relies
on the fact that, for the particular domain considered, we know analytically the statistics of
the first return times, and this allow us to understand how the statistics converges to its limit
value. Unfortunately we do not have such a knowledge for the distributions of order k > 0.

Here it will be presented a general result about the linear weighted superposition of the
distribution of the number of visits when two invariant regions are coupled, which generalizes
what we previously proved for the statistics of first return [2]. Such a result will be numerically
checked for a one-dimensional system composed by two mixing maps. A similar investigation
will also be performed for a two-dimensional system made by coupling our skew map with the
Arnold’s cat map and then for the so called ‘standard map’.

The last part of our work is dedicated to show some results about the distributions of the
number of visits for the Hénon map. Although this map is not area preserving, like the others
considered above, it is a very famous example of a chaotic two-dimensional system which is of
interest from a physical point of view too.

4.1 Distribution of the number of visits

Let T be a map acting on the measurable space Ω and µ a T -invariant measure. Suppose
moreover that the dynamical system (Ω, T, µ) splits into two invariant components (Ω1, T1, µ1)
and (Ω2, T2, µ2), where

Ω = Ω1 ∪ Ω2, µ(Ω1 ∩ Ω2) = 0; (36)

T1, T2, defined over Ω1, Ω2 respectively, are such that they satisfy the following conditions

T1 = T|Ω1\(Ω1∩Ω2), T2 = T|Ω2\(Ω1∩Ω2), (37)
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that is they coincide with T except on the zero measure boundary Ω1 ∩ Ω2.
We wish to consider the behaviour of the distribution of the number of visits for points

belonging to a neighborhood of points on the common boundary of the invariant regions. To
this end we take a neighborhood A of a point on the boundary, such that µ(A) > 0 and
we denote with A1 and A2 the two different components of A, that is A = A1 ∪ A2 with
A1 = A ∩ Ω1 and A2 = A ∩ Ω2. We choose this neighborhood such that the relative weights

w1(A) =
µ(A1)

µ(A)
, w2(A) =

µ(A2)

µ(A)
(38)

have a finite limit when µ(A) → 0, namely we will assume that the following limits exist and
are different from zero

w1 = lim
µ(A)→0

w1(A), w2 = lim
µ(A)→0

w2(A). (39)

By a procedure like the one we used in [2], it is possible to easily prove that the mean return
time in A is related to the ones in A1 and A2 in the following way

〈τA〉 = w1(A) 〈τA1〉+ w2(A) 〈τA2〉. (40)

Let now Fk,A1(t) and Fk,A2(t) be the distribution of the number of visits in A1 and A2

respectively

Fk,Ai
(t) = µAi

(
x ∈ Ai : ξAi

(t; x) = k
)

, i = 1, 2. (41)

It is straightforward to show that

Fk,A(t) = w1(A) Fk,A1(w
′
1(A) t) + w2(A) Fk,A2(w

′
2(A) t) (42)

where

w′
1(A) =

〈τA〉
〈τA1〉

, w′
2(A) =

〈τA〉
〈τA2〉

. (43)

Assuming that the limits

Fk,1(t) = lim
µ(A)→0

Fk,A1(t), Fk,2(t) = lim
µ(A)→0

Fk,A2(t) (44)

and

w′
1 = lim

µ(A)→0

〈τA〉
〈τA1〉

, w′
2 = lim

µ(A)→0

〈τA〉
〈τA2〉

(45)

are well defined, it is possible to prove, in the same way as we did for the distribution of the
first return times, that

Proposition 4.1 Under the existence of (39), (44) and (45), the limit distribution of the
number of visits exists and is given by

Fk(t) = w1 Fk,1(w
′
1 t) + w2 Fk,2(w

′
2 t) (46)

in the points of continuity of both Fk,1 and Fk,2.
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4.2 Coupling of chaotic trasformations

In order to check Eq. (46), we consider a one-dimensional map T from the interval Ω = [−1, 1]
into itself, defined in such a way that the two subintervals Ω1 = [−1, 0] and Ω2 = [0, 1] are
invariant with respect to T :

T (x) =

 T1(x) if −1 ≤ x < 0

T2(x) if 0 ≤ x ≤ 1
(47)

where

T1(x) =


−3x− 3 if −1 ≤ x < −2

3

3x + 1 if −2
3
≤ x < −1

3

−3x− 1 if −1
3
≤ x ≤ 0

(48)

and

T2(x) =


3x if 0 ≤ x < 1

3

2− 3x if 1
3
≤ x < 2

3
.

3x− 2 if 2
3
≤ x ≤ 1

(49)

Note that T preserves the Lebesgue measure and is discontinuous in the point x = 0, which
is a periodic point of period two for T1 and a fixed point for T2. Thus, in order to deal with
Proposition 4.1, we need to know the distributions of the number of visits around periodic
points. Since the two mixing maps T1 and T2 are conjugated with a Bernoulli shift on three
symbols with equal weights, we can use a general formula recently proved in [15] which gives
the limit distribution of order k for cylinders Cn around periodic points of period P

Fk(t) = lim
n→∞

µCn

(
x ∈ Cn : ξCn(t; x) = k

)
= (1− pP ) e−(1−pP )t

k∑
j=0

(
k

j

)
pP (k−j) (1− pP )2j

j!
tj , (50)

where p is the ratio of the measures of the cylinders Cn+1 and Cn. Note that for k = 0 this
formula coincides with the one found by Hirata [4]

F0(t) = (1− pP ) e−(1−pP ) t. (51)

For example, if we consider a sequence of shrinking cylinders Cn centered around the point
x = 0 (therefore ω1 = ω2 = 1/2 and, by Kac’s theorem, w′

1 = w′
2 = 1), the distribution of the

number of visits for k = 1 should be well described by the following function

F1(t)
∣∣∣
x=0

=
1

2
e−(1−p2)t (1− p2)

[
p2 + (1− p2)2 t

]
+

+
1

2
e−(1−p)t (1− p)

[
p + (1− p)2 t

]
, (52)

12



Figure 7: Distributions of the number of visits of order k = 1, 2 computed for the map given by
Eq. (47) in the interval A = [−ε, ε] with ε = 5 ·10−4. The dashed lines represent the theoretical
predictions; in particular the one for k = 1 is given by formula (52).

where in this case p = 1/3. As shown in Fig. 7, the agreement of the numerically computed
distributions with the theoretical expectations is really good. As a final remark, we stress
the fact that the distributions (50) can be obtained by convoluting F0(t) according to the
procedure described in Sec. 3, under the assumption that the differences of the normalized
successive return times are asymptotically independent.

4.3 Coupling of regular and mixing maps

We wish now to couple our skew map (10) with the hyperbolic automorphisms of the torus
(Arnold’s cat map) by constructing a map T on the two-dimensional space Ω = Ω1∩Ω2, where
Ω1 = T × [0, 1] and Ω2 = T × [−1, 0[ , so that Ω is obtained by gluing together the cylinder
Ω1 with the torus Ω2. The transformation T1 = T|Ω1 is represented by the skew map, while
T2 = T|Ω2 is the hyperbolic automorphism

T2 :

{
x′ = 2x + y mod 1
y′ = (x + y mod 1)− 1 .

(53)

Let us consider an arbitrary point P = (x, 0) along the common boundary, taking the
square domain A = [x − ε/2, x + ε/2] × [(λ − 1)ε, λε] of side ε, with 0 < λ < 1 fixed, as
the neighborhood around P . Following the notations introduced in Sec. 4.1, we have A1 =
[x− ε/2, x + ε/2]× [0, λε] and A2 = [x− ε/2, x + ε/2]× [(λ− 1)ε, 0]; therefore using Eq. (38)
and Eq. (43) it is straightforward to show that

w1(A) = λ, w2(A) = 1− λ (54)

and

w′
1(A) = λ +

1

ε
, w′

2(A) = (1− λ)(1 + λε) . (55)

Although we do not exactly know the distribution of the number of visits Fk,A1(t) in A1,
nevertheless the numerical computations of Sec. 3, supported by the heuristic explications
presented there, strongly suggest that Fk,A1(t) will dacay like α t−β, at least for A sufficiently
small, with β slightly greater than 2. Similar considerations can be done for Fk,A2(t): since the
cat map, which is an Anosov diffeomorphism, enjoys the Poisson distribution (if we take balls
or cylinders converging around almost all points) it is sensible to expect that the distribution
Fk,A2(t) will approach the function e−t tk/k! when µ(A) � 1. Thus, using Eq. (42), we can
write

Fk,A(t) = w1(A)
α

(w′
1(A) t)β

+ w2(A)
(w′

2(A) t)k

k!
e−w′2(A) t (β ' 2). (56)

This formula, despite the approximations employed in order to obtain it, describes quite well
(for t sufficiently large) the distributions of the number of visits for domains that intersect the
boundary, as shown in Fig. ?? and ??. Note that a power law tail appears when the first
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term in Eq. (56) gives the main contribution. In particular, since the values of the normalized
time t for which the polynomial decay prevails increase as the measure of A decreases (but is
still different from zero), this means that if we numerically compute the distributions of the
number of visits for a very small domain, we need to reach large values of t to see the power
law tail.

Figure 8: Distribution of the number of visits of order k = 1 computed for a domain of side
ε = 0.01 and λ = 0.5. The dashed line represents the theoretical formula (56) with α = 0.5
and β = 2.05.

We wish to stress that the appearence of this power law tail is a consequence of the fact that
µ(A) 6= 0. Therefore, since it is not possible to deal with the limit of zero measure domains
while performing a numerical analysis of the distributins, one should take into account the
presence of these finite size effects before going to conclusions about the behaviour of the limit
distributions from the numerical results, as we pointed out in our previous work [2].

Now it would seem that we could directly turn to Proposition 4.1 to get the limit distribution
Fk(t), but unfortunately it happens that one of the assumptions required for the existence of
Fk(t) fails, since w′

1(A) has not a finite limit when µ(A) = ε2 → 0. We were able to overcome
this difficulty in the specific case presented in [2] because we knew how the statistics of the first
return times for the skew map approached the limit law: this allowed us to directly prove that
the behaviour of the mixing region prevails when µ(A) → 0. Here we observe that, supposing
the quantity α keeps a finite positive value, the limit of Eq. (56) for µ(A) → 0 simply reads

Fk(t) = w2
(w2 t)k

k!
e−w2 t , (57)

since limε→0 w′
2(A) = w2. As you can see, even if the power law contribution disappears from

the distribution in the limit of zero measure domains, nevertheless the presence of the regular
component of A is still revealed by the fact that the coefficient w2 is different from 1.

XXX Aggiungere figura con coda spostata. XXX

4.4 Standard map

In this section we will investigate the distributions of the number of visits for the standard
map  y′ = y − η

2π sin(2πx)

x′ = x + y′
mod 1, (58)

choosing the coupling parameter η = 3, such that the boundaries between the integrable orbits
and the chaotic region are as sharp as possible, compared to the size of the sets used to compute
the distributions for different orders k. We will consider three cases: domains wholly contained
in the regular region, domains in the chaotic ‘sea’ and domains which overlap both.

4.4.1 Regular region

The numerical distributions obtained for domains wholly contained in the regular region seem
to follow, for large values of the normalized time t, a power law, as shown in Fig. ??. The
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least-squares fit estimate of the exponent gives a value near 2, usually between 1.95 and 2.05;
there is moreover some indication that the exponent increases slightly with the order k.

4.4.2 Chaotic region

The behaviour of the distributions of the number of visits for domains included in the chaotic
component of the phase space appears at first surprising. In fact, the computed mean return
time is given, with a very good approximation, by the ratio of the measure of the chaotic region
(which is about 0.88 with the choice η = 3 for the coupling parameter) and the measure of the
considered domain, thus being in agreement with the value that would be provided by Kac’s
theorem (which holds for ergodic systems) if it could be applicable here. On the other hand,
the distributions obtained reveal a departure from the expected Poisson law for sufficiently
large values of t, showing an algebraic decay with an exponent near 2, see Fig. ??.

The reasons for such a rather unexpected feature could sensibly be due to the fact that
orbits originating even from points far away from the regular region usually approach it. In
this way, the overall chaotic motion would be appreciably influenced by the regular component,
leading to the appearence, in the distributions of the number of visits, of a power law decay
which is typical of integrable systems. In this regard, it is interesting to note that Poincaré
recurrences seem to provide a tool capable to capture some of the properties of the dynamics
in a more “sensitive” way with respect to other quantities that could be used for the same
purpose, like the mean return time into a given domain above seen.

4.4.3 Mixed regions

Considering the results of Sec. 4.1, it is reasonable to expect that the asymptotic behaviour
of the distributions of the number of visits for domains that intersect the boundary between
the regular and the chaotic regions should be given by a linear superposition of a power law
(the contribution, above all, of the integrable orbits) and a Poisson distribution (from the
chaotic sea). In order to test this conjecture we tried to fit the distributions computed for a
given domain A against the following function, which should sensibly represent their behaviour
(from now on, to semplify the notations, we drop the explicit dependence on A)

F (t) = w1 S(α, β; w′
1t) + w2 P (k; w′

2t), (59)

where

P (k; t) =
e−t tk

k!
, S(α, β; t) = α t−β. (60)

¿From Eq. (38), (40) and (43) we have that the quantities w1, w2, w′
1 and w′

2 are related in the
following way

w1 + w2 = 1,
w1

w′
1

+
w2

w′
2

= 1; (61)

so, for instance, in Eq. (59) w2 and w′
2 can be expressed in terms of w1 and w′

1

w2 = 1− w1, w′
2 =

1− w1

1− w1/w′
1

. (62)

Using then w1, w′
1, α and β as fit parameters, we generally found a very good agreement

between the numerical distributions and the formula (59), despite the fact that P (k, t) and
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Henon G1
Figure 9: Distributions of the number of visits
Fk,A(t) of order k = XXX computed for a cir-
cular domain of radius XXX around a generic
point. The dotted lines represent the correspond-
ing Poisson laws.

Henon G2
Figure 10: Distributions of the number of vis-
its Fk,A(t) of order k = XXX computed for a
circular domain of radius XXX around a generic
point. The dotted lines represent the correspond-
ing Poisson laws.

S(α, β, t) do not take into account the domain’s finite size effects: in this respect X Fig. XXX
shows a distribution of order k = 3 with the corresponding fit function. X

It is worthwhile to mention that, for a given domain, the value w1 obtained from the fit
procedure generally is slightly greater than the geometrical estimate of the relative measure of
the regular share of such a domain. This discrepancy seems reasonably caused by the fact that
besides the points belonging to the regular share, which are responsible for the power law decay,
there is a further contribution from the chaotic component, whose dynamics is influenced in
some way by the integrable orbits, as seen in Sec. 4.4.2, so that the effective relative size of
the regular component appears to be greater than expected.

5 Hénon dissipative map

In this section we will consider the following map, defined on R2, which was introduced by
Hénon [24] as a simplification of the three-dimensional Lorenz’s flow x′ = 1 + y − ax2

y′ = bx

, (63)

where a = 1.4 and b = 0.3. In order to compute the distributions of the number of visits Fk,A(t)
we employed the so called physical measure (also known as SBR-measure), supposing it is well
defined, despite the fact that no rigorous proof about its existence and its statistical properties
has been given till now. The numerical analyses were performed by taking the domain A as a
little ball centered both around generic and periodic points.

In the case of generic points, the distributions show a very good agreement with the Poisson
law (9), see Fig. 9, 10. Since the Hénon map is not uniformly hyperbolic, we could not have
taken for granted this result.

To investigate the distributions of the number of visits for periodic points we computed the
periodic orbits of the Hénon map for every period from one to ten through a bisection method
[25]. The decision to limit our study up to points of period ten was motivated by our believe
that the lower periods are the ones with a stronger influence on return times. As expected,
when A is a little ball centered around a periodic point, the Poisson law (9) does no more fit
the numerical results, as is clear from Fig. 11 which shows some of the distributions computed
for a point of period two. Instead, for every periodic point considered, the distributions of
order k = 0 are very well described by the function [4]

F0(t) = αe−αt , (64)
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Henon P1
Figure 11: Distributions of the number of visits
Fk,A(t) of order k = XXX computed for a cir-
cular domain of radius XXX around a periodic
point of period two.

Henon P2
Figure 12: Distributions of the number of visits
Fk,A(t) of order k = XXX computed for a cir-
cular domain of radius XXX around a periodic
point of period two.

where α depends on the period P in a way which is still not completly understood: it grows
with the period, being about 1/2 for P = 1 and becoming approximately 1 as soon as P is
greater than 8÷ 10. Supposing that the normalized differences of successive return times are
indipendent random variables, we can use a procedure similar to the one employed in Sec. 3
to compute Fk(t)

Fk(t) = αe−αt

k∑
j=0

(
k

j

)
(1− α)k−j α2j

j!
tj. (65)

As Fig. 12 shows, the numerical distributions obtained around periodic points agree in a very
good way with this expression. It is easy to see that Eq. (65) becomes equal to Eq. (50) by the
simple substitution α → (1− pP ) (here we refer to the notations introduced in Sec. 4.2). XXX
Eventuali altre considerazioni qui!!! XXX. Moreover, note that Fk(t) reduces to formula (9)
when α = 1. Since α approaches 1 as the period increases, this means that the distributions
for high periods are practically undistinguishable from those concerning generic points, which
are just described by Eq. (9).

Our work on Hénon map tells us the following remarkable facts. First, the distributions of
the number of visits computed for generic points agree with the Poisson law (9) in an excellent
way, as usually happens for systems with strong mixing properties (see [5]). Second, the effect
that periodic points exercise on return times decreases with the period, thus confirming our
hypothesis that lower periods have bigger effects, and is self-consistent, because an aperiodic
orbit can be seen like an orbit with an infinite period. Furthermore, the distributions computed
for periodic points follow very well the behaviour predicted by assuming that the differences
of successive return times are indipendent. The importance of these features becomes more
apparent if we consider that they hold for a system whose ergodic proprieties are not know
analytically; in particular, they suggest that the Hénon map enjoys a rapid decay of the
correlations.

The connection between these results and the work of Hirata [4] still remains an interesting
open question.

6 Conclusions
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