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1. Introduction

Given a map T : Ω→ Ω on a space Ω which could be a manifold or simply a measure
space. We look at longterm behaviour of orbits {T jx : j} for generic points x ∈ Ω. For
instance, if A ⊂ Ω is a subset and we can observe the frequency with which a point returns
to A. That is, if we put Nn(x) = |{j : 0 ≤ j ≤ n− 1, T j ∈ A}| for the number of hits in
A the point x takes along the orbit segment of length n then we would like to find the

limit D(x) = limn→∞
Nn(x)
n

if it exists.

1.1. Example. Let us consider the irrational rotation on the unit interval (or circle). Let
α ∈ (0, 1) \ Q be irrational and define Rα : [0, 1) → [0, 1) (here we use Ω = [0, 1) which
mod 1 is the circle T1) by

Rαx = x+ α mod 1.

Its iterates are Rj
α = x+ jα mod 1. We will later find out that for L 1-functions f one

has 1
n

∑n−1
j=0 f(Rj

αx) →
∫
f dx as n → ∞ almost surely (pointwise ergodic theorem). In

particular we can choose f = χ(a,b), the characteristic function of the interval A = (a, b)

(0 ≤ a < b ≤ 1). Since Nn(x) =
∑n−1

j=0 χ(a,b)R
j
αx we obtain D(x) = b− a almost surely.

The following interesting application is due to Arnold. Let Γ = {2j : j = 0, 1, 2, . . . }
be the powers of 2, i.e.

Γ = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072 . . . }.
We look at their first digit (in base 10 expansion) and obtain the sequence

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1 . . .

and want to know what is the frequency of a digit occurring in first position. Let k ∈
{1, 2, . . . , 9} be one of the ten digits and

Nk(n) = |{j : 0 ≤ j ≤ n− 1, the decimal expansion of 2j begins with the first digit k}|.

What is the limit of Nk(n)
n

as n goes to infinity? If the decimal expansion of 2j begins with
k then

2j = ka1a2a3 · · · am = k · 10m + a1 · 10m−1 + a2 · 10m−2 + · · · am−1 · 10 + am

for some m where ai ∈ {0, 1, . . . , 9}. Thus

2j = k · 10m + rj

where the remainder rj ≥ 0 has at most m digits and is therefore less than 10m. Therefore
k · 10m ≤ 2j < (k + 1)10m and taking logarithms to the base 10 yields

log10 k +m ≤ j log10 2 < log10(k + 1) +m

and if we put α = log10 2 (which is an irrational number), then we get

log10 k ≤ Rj
α(0) < log10(k + 1)

as j log10 2 = Rj
α(0) and Rα is the irrational rotation by α on the unit interval. Thus

Nk(n) =
n−1∑
j=0

χ[log10 k,log10(k+1))(R
j
α(0))
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and by the result mentioned above

Dk = lim
n→∞

Nk(n)

n
= log10(k + 1)− log10 k = log10

k + 1

k
.

In particular D1 = log10 2, D2 = log10
3
2
, . . . , D9 = log10

10
9

and of course
∑9

k=0 Dk = 1.
Naturally this game can be played with any base d expansion for which logd 2 is irrational
(don’t use the binary expansion d = 2).

1.2. Poincaré recurrence theorem.

Theorem 1. (Poincaré recurrence theorem) Let T : Ω → Ω and µ be a T -invariant
probability measures. For U ⊂ Ω put τU(x) = min{k ≥ 1 : T kx ∈ U} for the return time
of x ∈ Ω (we have τU(x) =∞ if the forward orbit of x never intersects U). If µ(U) > 0,
then τU(x) <∞ for almost every x ∈ U .

Proof. Let U ⊂ Ω have positive measure and put Un =
⋃∞
j=n T

−jU for the set of
points x ∈ Ω that enter U at least once after time n. Obviously U0 ⊃ U1 ⊃ U2 ⊃ · · · .
We also have Un = T−1Un+1 which implies by invariance of the measure that µ(Un) =
µ(T−1Un+1) = µ(Un+1) and consequently µ(U0) = µ(Un) ∀ n. Now W =

⋂∞
n=1 Un =

{x ∈ Ω enters U infinitely often} and V = W ∩ U = {x ∈ U enters U infinitely often}.
Since µ(U0) = µ(Un) we obtain that µ(W ) = µ(U0) and since U ⊂ U0 we conclude that
µ(V ) = µ(U).

The recurrence statement is not true if the measure is infinite. As an example one can
take the Lebesgue measure on R and the map T : R→ R given by Tx = x+ 1. No set of
positive measure is recurrent.

2. Ergodic theorems

Let (Ω, T, µ) be a dynamical system that consists of a space Ω, a map T : Ω→ Ω and
a T -invariant probability measure µ on Ω (µ is T -invariant if µ(U) = µ(T−1U) for all
measurable U ⊂ Ω).

For a real valued (or complex valued) function f on Ω we write fn =
∑n−1

j=0 f ◦ T j (nth

ergodic sum) and put 1
n
fn for the time average along orbit segments of lengths n. If n

goes to infinity then we obtain the time average of f over an orbit. Ergodic theorems
are concerned with the existence of the limit and its value. Ergodic theorems relate these
time averages to spacial average

∫
Ω
f(x) dµ(x). We first prove the von Neuman Mean

Ergodic Theorem which was published in 1932.

Theorem 2. (Mean Ergodic Theorem) Let S = {g ∈ L 2 : g◦T = g} and P the projection
from L 2 to S. Then for all f ∈ L 2 one has

1

n
fn → Pf

as n→∞ in L 2.

Proof. Let us define the Koopman operator U : L 2 → L 2 by Uf = f ◦ T . If T is
invertible then so it U . Let us note that U is an isometry on L 2. This is because by
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T -invariance of µ one has

(Uf, Ug) =

∫
Ω

(Uf)(x)(Ūg)(x) dµ(x)

=

∫
Ω

(fḡ) ◦ T (x) dµ(x)

=

∫
Ω

(fḡ)(x) dµ(x)

= (f, g).

This identity also implies that (f, g) = (Uf, Ug) = (U∗Uf, g) for all f, g ∈ L 2. Hence
U∗U is the identity operator on L 2.

Let us now put W = {Ug − g : g ∈ L 2}. We claim that W⊥ = S. To show that
S ⊂ W⊥ let f ∈ L 2 and g ∈ W . That is Uf = f and there exists an h ∈ L 2 so that
g = Uh− h. Then

(f, g) = f, Uh− h) = (f, Uh)− (f, h) = (Uf, Uh)− (f, h) = (f, h)− (f, h) = 0

and therefore f ∈ W⊥. Since f ∈ S was arbitrary, we obtain S ⊂ W⊥. To get the
inclusion W⊥ ⊂ S let f ∈ W⊥ which means (f, g) = 0 for all g ∈ W . Since g = Uh − h
for some h ∈ L 2 we get (f, Uh−h) = 0 implies that (f, Uh) = (f, h) and (U∗f, h) = (f, h).
Since h was arbitrary we get U∗f = f . With this we now get

‖Uf − f‖2 = (Uf − f, Uf − f)

= (Uf, Uf)− (f, f)− (Uf, f)− (f, Uf)

= 2‖f‖2 − (f, U∗f)− (U∗f, f)

= 2‖f‖2 − 2(f, f) = 0.

Hence f ∈ S.
Now if f ∈ S, then 1

n
fn = 1

n

∑n−1
j=0 U

jf = 1
n
nf = f = Pf as U jf = f . If g =

Uh − h ∈ W , then
∑n−1

j=0 U
jg =

∑n−1
j=1 (U j+1h − U jh) = Unh − h which implies that

1
n

∑n−1
j=0 U

jg = 1
n
(Unh− h)→ 0 = Pg as n→∞

We have L 2 = S ⊕ W̄ . Let g ∈ W̄ , then there exists a sequence gi ∈ W which in L 2

converges to g. Let ε > 0 and i so that ‖g − gi‖2 < ε. Then

1

n
‖
n−1∑
j=0

U jg‖2 ≤
1

n

n−1∑
j=0

‖U j(g − gi)‖2 +
1

n
‖
n−1∑
j=0

U jgi‖2 < 2ε

as U is an isometry and we can choose n large enough so that the second sum is less than
ε. Since ε > 0 was arbitrary we get that 1

n

∑n−1
j=0 U

jg → 0 in L 2 as n→∞. For arbitrary

F ∈ L 2 we write F = f + g where f ∈ S and g ∈ W̄ . Then 1
n
F n = 1

n
fn + 1

n
gn → f as

f = PF .

Corollary 3. (Mean Ergodic Theorem in L 1) Let f ∈ L 1, then 1
n
fn → f ∗ in L 1 as

n→∞, where f ∗ ∈ L 1 is a T -invariant function.

Proof. We use the fact that bounded L 1 functions are dense in L 1 and are in L 2. In
other words, the set L 1

b = {g ∈ L 1 : ‖g‖∞ <∞} is dense in L 1 and also lies in L 2. If
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g ∈ L 1
b , then by the Mean Ergodic Theorem 1

n
gn → g∗, where g∗ ∈ S ⊂ L 2 (g∗ = Pg).

Also, as ‖gn‖∞ ≤ n‖g‖∞, we get ‖ 1
n
gn‖∞ ≤ ‖g‖∞ which implies that ‖g∗‖∞ ≤ ‖g‖∞ <∞.

Since ‖ · ‖1 ≤ ‖ · ‖2 we get that 1
n
gn converges in L 1 to g∗.

Now let f ∈ L 1 and ε > 0, then there exists a g ∈ L 1
b so that ‖f−g‖1 < ε and ‖ 1

n
gn−

g∗‖1 < ε for all n big enough. As ‖ 1
n
fn− 1

n
gn‖1 < ε for all n, we obtain ‖ 1

n
fn− g∗‖1 < 2ε

for all n big enough. Eliminating g∗ from the estimates yields ‖ 1
n
fn− 1

m
fm‖1 < 4ε for all

n,m big enough. This means that { 1
n
fn : n = 1, 2, . . . } is a Cauchy sequence which has

a limit f ∗ in L 1. Obviously f ∗ is T -invariant.

The Mean Ergodic Theorem is strengthened considerably by the Pointwise Ergodic The-
orem which is due to Birkhoff and was published in 1931 although it was preceded by von
Neuman’s MET which appeared later.

Theorem 4. (Pointwise Ergodic Theorem) For f ∈ L 1, then the limit

lim
n→∞

1

n
fn(x) = f ∗(x)

exists almost everywhere, where f ∗ ∈ L 1 is T -invariant and satisfies
∫

Ω
f ∗ dµ =

∫
Ω
f dµ.

The main ingredient in the proof of the PET is the following result:

Theorem 5. (Maximal Ergodic Theorem, Garsia 1965) Put E(f) = {x ∈ Ω : supn≥1 f
n(x) >

0}. Then
∫
E(f)

f dµ ≥ 0.

Corollary 6. If Eα(g) = {x ∈ Ω : supn≥1
1
n
gn(x) > α}, then

∫
Eα(g)

g dµ ≥ αµ(Eα(f)).

Proof. We put f = g−α which implies that fn = gn−nα and thus gives us E(f) = Eα(g)
and therefore by the Maximal Ergodic Theorem

0 ≤
∫
E(f)

f dµ =

∫
Eα(g)

(g − α) dµ =

∫
Eα(g)

g dµ− αµ(Eα(g)).

Corollary 7. If A ⊂ E(f) is T -invariant, i.e. T−1A = A, then
∫
A
f dµ ≥ 0.

Proof. Let χA be the characteristic function of A. As A is T -invariant χA ◦T j = χA and
therefore

(fχA)n =
n−1∑
j=0

(χAf) ◦ T j = χAf
n

which leads to

E(fχA) = {x ∈ Ω : sup
n≥1

(fχA)n(x) > 0}

= {x ∈ Ω : χA(x) sup
n≥1

fn(x) > 0}

= E(f) ∩ A = A

as A ⊂ E(f). Thus by the Maximal Ergodic Theorem∫
A

f dµ =

∫
E(fχA)

fχA dµ ≥ 0.
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Combining the last two corollaries yields the following result.

Corollary 8. If A ⊂ Eα(f) is T -invariant, then
∫
A
f dµ ≥ αµ(A).

Proof of the Pointwise Ergodic Theorem. Put

f+(x) = lim sup
n→∞

1

n
fn(x)

f−(x) = lim inf
n→∞

1

n
fn(x).

Obviously f−(x) ≤ f+(x) and the two functions are T -invariant. We have to show that
f−(x) = f+(x) almost surely, i.e. we have to show that the set E = {x ∈ Ω : f−(x) <
f+(x)} has zero µ-measure. Let α < β and put Eα,β = {x ∈ Ω : f−(x) < α, f+(x) > β}.
Since the functions f−, f+ are T -invariant, the set Eα,β too is T -invariant. We will prove
that µ(Eα,β) = 0. Put E+

β = {x ∈ Ω; f+(x) > β}. One has Eα,β ⊂ E+
β ⊂ E(f − β) since

if x ∈ E+
β then 1

k
fk(x) > β for some k ∈ N. Hence fk(x) − kβ > 0 which implies that

x ∈ E(f − β). Thus by the above corollaries∫
Eα,β

(f − β) dµ ≥ 0

which implies ∫
Eα,β

f dµ ≥ βµ(Eα,β).

Similarly one shows that
∫
Eα,β
≤ αµ(Eα,β). One therefore gets that

βµ(Eα,β) ≤
∫
Eα,β

f dµ ≤ αµ(Eα,β)

which for α < β can only be satisfied if µ(Eα,β) = 0. To represent E as a countable union,
one restricts to rational values for α and β. Thus, since

E =
⋃

α<β;α,β∈Q

Eα,β

we get that µ(E) = 0. Thus the limit exists. From the Mean Ergodic Theorem we
know that 1

n
fn converges in L 1 to the limit f ∗. Since

∫
1
n
fn dµ =

∫
f dµ we get that∫

f ∗ dµ =
∫
f dµ.

Proof of the Maximal Ergodic Theorem. Put FN(x) = max0≤k≤N f
k(x) where

we use the convention that f 0 = 0. Thus FN ≥ 0 and forms an increasing sequence:
· · · ≤ FN ≤ FN+1 ≤ . . . . The sets EN = {x ∈ Ω : FN(x) > 0} form a nested sequence
which gives E =

⋃
N EN . Note that FN(x) = 0 for x 6∈ EN . Now

FN(Tx) + f(x) = f(x) + max
0≤k≤N

fk(Tx) ≥ f(x) + fk(Tx) = fk+1(x)

for any k = 0, . . . , N . Thus f(x) ≥ fk(x) − FN(Tx) for k = 1, 2, . . . , N + 1, and for
x ∈ EN one has FN(x) = max1≤k≤N f

k(x) which then gives f(x) ≥ FN(x) − FN(Tx).
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Hence, since FN = 0 on Ω \ EN and is otherwise non-negative we get∫
EN

f dµ ≥
∫
EN

FN dµ−
∫
EN

FN ◦ T dµ

=

∫
Ω

FN dµ−
∫
EN

FN ◦ T dµ

≥
∫

Ω

FN dµ−
∫

Ω

FN ◦ T dµ = 0

by invariance of the measure. By the Dominated Convergence Theorem one now gets∫
EN

f dµ→
∫
E
f dµ ≥ 0.

Theorem 9. (Mean Ergodic Theorem in L p) Let p ∈ [1,∞), then if f ∈ L p there exists
an f ∗ ∈ L p, T -invariant, so that 1

n
fn → f ∗ in L p.

Proof. Let f ∈ L p and ε > 0. We approximate f by a bounded function g ∈ L p so
that ‖f − g‖p < ε. Then
(i) ‖ 1

n
fn − 1

n
gn‖p ≤ ‖f − g‖p < ε for all n.

(ii) g∗ = limn
1
n
gn exists by the Pointwise Ergodic Theorem and is moreover a bounded

function (‖g∗‖∞ = ‖g‖∞ <∞).
(iii) f ∗ = limn

1
n
fn exists because one can approximate for every k ∈ N one has

fk(x) =

{
f(x) if |f(x)| < k
0 if |f(x)| ≥ k

now let k →∞.
(iv) ‖f ∗ − g∗‖p ≤ ‖f − g‖p < ε, since by Fatou’s lemma

lim inf
n→∞

∫ ∣∣∣∣ 1n(fn − gn)

∣∣∣∣p dµ ≤ ∫ lim inf
n→∞

1

n
|fn − gn|p dµ =

∫
|f ∗ − g∗|p dµ < εp.

Hence ‖ 1
n
fn − f ∗‖p < 3ε for n big enough.

3. Ergodicity

Here we want to focus on ‘primitive’ measures, which are probability measures that are
minimal in the sense that they don’t have genuine invariant subsets.

Definition 10. Let (Ω,B, µ) be a probability space (B a σ-algebra) and T : Ω → Ω a
measure preserving map. We say µ is ergodic if for all T -invariant A ∈ B µ(A) is either
0 or 1.

Consequences:
(I) µ ergodic ⇐⇒ if µ(B4T−1B) = 0 then µ(B) = 0, 1.

Proof. “⇒”: Assume µ(B4T−1B) = 0 and put Cn =
⋃∞
k=n T

−kB. Then Cn ⊃ Cn+1 ⊃
· · · and T−1Cn = Cn+1. Hence C =

⋂
nCn is T -invariant, i.e. T−1C = C. Now note that

B4Cn = B4
∞⋃
j=n

T−jB ⊂
∞⋃
j=n

(B4T−jB)
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and since B4T−jB ⊂
⋃j−1
k=0(T−kB4T−k−1B) ⊂

⋃j−1
k=0 T

−k(B4T−1B) we conclude that
µ(B4T−jB) = 0. Consequently µ(B4Cn) = 0 which implies µ(B4C) = 0. Since C is
T -invariant we get by ergodicity that µ(C) = 0, 1 and thus µ(B) = 0, 1.

“⇐”: If C is T -invariant then put B = C. Clearly µ(B4C) = 0.
(II) µ ergodic ⇐⇒ every T -invariant function f is a constant (almost everywhere).

Proof. “⇒”: Assume µ is ergodic and let f be invariant, i.e. f ◦ T = f . For any real
α put Eα = {x ∈ Ω : f(x) < α}. Clearly Eα is a T -invariant subset of Ω and since µ is
ergodic its measure is either 0 or 1. Thus f is constant almost surely.

“⇐”: Let A ∈ B be T -invariant and χA its characteristic function. Then χA ◦T = χA.
By assumption χA is constant, which means χA is either 0 or 1 almost surely. Hence µ is
ergodic.

(III) µ is ergodic ⇐⇒ For all f ∈ L 1, then 1
n
fn(x)→ µ(f) almost surely.

Proof. ”⇒”: If f ∈ L 1 then by the Pointwise Ergodic Theorem 1
n
fn → f ∗ where f∗

is T -invariant and satisfies µ(f ∗) = µ(f). It now follows from (II) f ∗ is a constant and
therefore equal to µ(f).

“⇐”: Let U ⊂ Ω be a T -invariant set and put f = χU . Then fn = χnU = nχU = f which
implies that limn→∞

1
n
χnU = χU = µ(χU) = µ(U) almost surely by the Pointwise ergodic

theorem. Thus χU is almost surely either equal to 0 or equal to 1. Hence µ(U) = 0, 1 and
since U was an arbitrary invariant set we conclude that µ is ergodic.

(IV) µ ergodic ⇐⇒ for all U, V ∈ B one has 1
n

∑n−1
j=0 µ(U ∩ T−jV )→ µ(U)µ(V ).

Proof. “⇒”: Assume µ is ergodic and let U, V ∈ B. Put f = χU and use the pointwise
ergodic theorem: 1

n
χnU →

∫
χU dµ = µ(U) almost surely. Thus 1

n
χnUχV → µ(U)χV .

Integration yields (by the Dominated Convergence Theorem)

1

n

∫
χnUχV dµ→

∫
µ(U)χV dµ = µ(U)µ(V ).

“⇐”: Assume that 1
n

∑n−1
j=0 µ(U ∩ T−jV ) → µ(U)µ(V ) and let U be a T -invariant

subset. With V = U we obtain

µ(U) =
1

n

n−1∑
j=0

µ(U ∩ T−jU)→ µ(U)2

and therefore µ(U) = 0, 1 which means µ is ergodic.
(V) µ ergodic ⇐⇒ for all A ∈ B with µ(A) > 0 one has

⋃∞
j=0 T

−jA = Ω (up to

nullsets).
Proof. “⇒”: Assume µ is ergodic, let A ⊂ Ω, µ(A) > 0, and put U =

⋃∞
j=0 T

−jA.

Clearly T−1U ⊂ U and µ(T−1U) = µ(U) as µ is T -invariant. Hence T−1U = U (up to
nullsets) and therefore µ(U) = 1 by ergodicity of µ as µ(U) ≥ µ(A) > 0.

“⇐”: Let A ⊂ Ω be T -invariant. If µ(A) > 0 then by assumption U =
⋃∞
j=0 T

−jA has

full measure. But since T−jA = A we have U = A and therefore µ(A) = 1.
(VI) µ ergodic ⇐⇒ For all U, V ∈ B with µ(U), µ(V ) > 0 there exists a j so that

µ(U ∩ T−jV ) > 0.
Proof. “⇒”: If µ is ergodic then by (V)

⋃∞
j=0 T

−jV = Ω if µ(V ) > 0. Thus U ⊂⋃∞
j=0 T

−jV which implies that µ(U ∩ T−jV ) > 0 for some j provided µ(U) > 0.
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“⇐”: Let A ⊂ Ω be T -invariant, i.e. T−1A = A, T−1Ac = Ac. With U = A, V = Ac

we get by assumption µ(U ∩ T−jV ) = µ(A ∩ T−jAc) > 0 for some j. This is impossible
if µ(A), µ(Ac) > 0.

4. Examples

4.1. Bernoulli shift. Let A = {1, 2, . . . ,M} be an alphabet and put Σ = AN0 = {~x =
(x0x1x2 . . . ) : xj ∈ A} for the set of infinite sequences composed from the alphabet A.
The map σ : Σ → Σ is given by (σ~x)j = (~x)j+1 and called the shift transformation. The
topology is generated by the following metric: Let ϑ ∈ (0, 1) and put d(~x, ~y) = ϑn(~x,~y),
where n(~x, ~y) = min{|j| : xj 6= yj}. A basis for the topology (and the Borel σ-algebra)
consists of cylinder sets U(x1x2 . . . xn) = {~y ∈ Σ : y1 . . . yn = x1 . . . xn} and their shifts.
Notice that balls in Σ are open-closed and that every ~y ∈ Bε(~x) lies in the centre of the
ball, i.e. Bε(~y) = Bε(~x) ∀ ~y ∈ Bε(~x).

Let ~p = (p1, p2, . . . , pM) be a positive probability vector, i.e. pj > 0 and
∑

j pj = 1.
Then we have a probability measure µ on Σ which on cylinder sets is given by

µ(U(x1x2 · · ·xn)) = px1px2 · · · pxn .

It is clear that µ is σ-invariant since

σ−1U(x0 . . . xn−1) =
M⋃
a=1

U(ax0 . . . xn−1)

(disjoint union of (n+ 1)-cylinder sets. Hence

µ(σ−1U(x0 . . . xn−1)) =
M∑
a=1

µ(U(ax0 . . . xn−1)) =
M∑
a=1

papx0 · · · pxn−1 = µ(U(x0 . . . xn−1))

as
∑

a pa = 1.

Lemma 11. The Bernoulli measure µ is ergodic.

Proof. By (V) it is enough to show that for V,W ⊂ Σ (both with positive measure) one
has µ(V ∩ σ−jW ) > 0 for some j. This is shown for generators of the σ-algebra. Assume
V = U(x1 . . . xn), W = U(y1 . . . ym) are cylinder sets. Then

V ∩ T−jW =
⋃

z1···zj−n

U(x1 · · ·xnz1 · · · zj−ny1 · · · ym)

is a disjoint union where the union is over all z1 · · · zj−n ∈ Aj−n. Thus for j ≥ n

µ(V ∩ T−jW ) =
∑

z1...zj−n

px1 · · · pxnpz1 · · · pzj−npy1 · · · pym

= px1 · · · pxnpy1 · · · pym
= µ(V )µ(W ) > 0

as
∑

zk
pzk = 1. Hence µ is ergodic. In fact we have proven a much stronger result here.
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4.2. Irrational rotation. Let Ω = [0, 1) and α ∈ (0, 1) an irrational number and define
the map T : Ω → Ω by Tx = x + α mod 1. Obviously T is invertible. Let λ be the
Lebesgue measure on [0, 1). Since dT

dx
= 1 one has that T preserves λ, i.e. T ∗λ = λ.

Lemma 12. λ is ergodic.

Proof. We use the fact that λ is ergodic iff every T -invariant function f ∈ L 1 is constant
almost everywhere. Since L 2 is dense in L 1 it is sufficient to prove it for f ∈ L 2. If
f ∈ L1 is T -invariant then so are the approximating functions fn which are defined by
putting fn(x) = f(x) if |f(x)| ≤ n and equal to 0 if |f(x)| > n. This follows from the
T -invariance of the sets {x : |f(x)| ≤ n} are T -invariant. We write f as a Fourierseries:

f(x) =
∑∞

n=−∞ ane
2πinx, where an =

∫ 1

0
f(t)e−2πint dt are the Fourier coefficients. Since

f(Tx) =
∞∑

n=−∞

ane
2πin(x+α mod 1) =

∞∑
n=−∞

ane
2πinαe2πinx

we get by uniqueness of the Fourier expansion that an = ane
2πinα for every n ∈ Z. Since

α is irrational, e2πinα 6= 1 for all n 6= 0 and thus an = 0 for all n 6= 0. Hence f(x) = a0 is
a constant and therefore λ is ergodic.

4.3. Affine expanding maps on the interval. Let Ω = [0, 1) and d ≥ 2 an integer
(degree). Then we define the map T on Ω by Tx = dx mod 1. Clearly T is not invertible
and every point x has d preimages. In fact T−1x = {x

d
+ j

d
: j = 0, 1, 2, . . . , d− 1}. Again

let λ be the Lebesgue measure.

Lemma 13. λ is T -invariant.

Proof. We show that λ(T−1I) = λ(I) for intervals I = [a, b), 0 ≤ a < b < 1. We have

that T−1I =
⋃̇j−1

j=0Ij (disjoint union), where Ij = [a
d

+ j
d
, b
d

+ j+1
d

). Thus

λ(T−1) =
d−1∑
j=0

λ(Ij) =
d−1∑
j=0

((
b

d
+
j + 1

d

)
−
(
a

d
+
j

d

))
= b− a = λ(I).

Since this is true for any 0 ≤ a < b < 1 one sees that λ is T -invariant.

Lemma 14. λ is ergodic

Proof. As above we show that any T -invariant f ∈ L 2 must be a constant. We use
the Fourier expansion f(x) =

∑∞
n=−∞ ane

2πinx where the coefficients an satisfy Parseval’s

identity
∑

n |an|2 =
∫ 1

0
|f(t)|2 dt <∞. We have

f(Tx) =
∞∑

n=−∞

ane
2πin(dx mod 1) =

∞∑
n=−∞

ane
2πindx

and comparing coefficients with f(x) =
∑∞

n=−∞ ane
2πinx we see that an = adn. Iterating

yields an = adn = ad2n = ad3n = · · · . By Parseval’s identity we conclude that an = 0 for
all n 6= 0 and hence f(x) = a0 is a constant. Since L 2 is dense in L 1 we obtain the same
result for f ∈ L 1 and therefore λ is ergodic.
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We use this result to show a well-known result on the distribution of digits in a base d
expansion of real numbers (d ≥ 2). For x ∈ [0, 1) let

x = 0.a1a2a3 · · · =
∞∑
j=1

aj
dj

be its base d expansion. We are interested in the distribution of the digits aj ∈ {0, 1, 2, . . . , d−
1}.

Theorem 15. (Borel’s law on the normality of numbers) For λ-almost every x ∈ [0, 1)
the density

Dk(x) = lim
n→∞

|{j : 0 ≤ j < n, aj = k}|
n

exists and equals 1
d

for all k ∈ {0, 1, . . . , d− 1}.

Proof. Let k ∈ {0, 1, . . . , d− 1} and put

χk(x) =

{
1 if x ∈

[
k
d
, k+1

d

)
0 otherwise

.

One has χk(x) = 1 if a1 = k and 0 otherwise and similarly χk(Tjx) = 1 iff aj = 1, where
T is the affine stretching map from the previous example and aj are the digits in the base
d expansion of x. Thus

|{j : 0 ≤ j < n, aj = k}| =
n−1∑
j=0

χk(T
jx)

and the limit Dk(x) = limn→∞
1
n
χnk(x) exists almost surely by the pointwise ergodic

theorem and equals
∫ 1

0
χk(x) dλ(x) = 1

d
.

4.4. Gauss map. Again we use the unit interval and put Ω = (0, 1]. The Gauss map T
on Ω is defined by Tx = 1

x
mod 1 and is related to the continued fraction expansion of

real numbers. Any x ∈ Ω can be written as a continued fraction expansion

x =
1

a1 + 1
a2+ 1

a3+···

where the integers aj ∈ N are uniquely determined by x. We also write x = [a1, a2, a3, . . . ]
and note that the sequence is finite if and only if x is a rational number. The rational
numbers

pn
qn

= [a1, a2, . . . , an]

which are the truncated continued fraction expansions are the approximants of x and
satisfy the recursion formulas

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

with the initial values p0 = 0, p1 = 1, q0 = 1, q1 = a1. The golden mean has the continued
fraction expansion 1

2
(
√

5 − 1) = [1, 1, 1, . . . ] and the sequence {pn} are the Fibonacci
numbers.
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If we denote by n(x) for x ∈ Ω the function with values in N that is given by Tx =
1
x
− n(x) then we can solve for x and obtain x = 1

Tx+n(x)
. Iteration yields

x =
1

n(x) + 1
n(Tx)+ 1

n(T2x)+ 1
n(T3x)+...

which implies that aj = n(T j−1x). The Gauss measure µ on (0, 1] is the probability
measure µ which has the density 1

log 2
1

1+x
, i.e.

µ([a, b]) =
1

log 2

∫ b

a

dx

1 + x
=

1

log 2
log

1 + b

1 + a

for 0 < a < b ≤ 1.

Lemma 16. The Gauss measure is invariant under the Gauss map.

Proof. Clearly T is not invertible, in fact

T−1x =

{
1

x+ j
: j = 1, 2, . . .

}
since y ∈ T−1x means that x = Ty = 1

y
− j for some j ∈ N and therefore y = 1

x+j
. Hence,

if I = (a, b], 0 ≤ a < b ≤ 1, is an interval, then T−1I =
⋃̇∞
j=0Ij, where Ij =

[
1
b+j

, 1
a+j

)
(notice that T reverses orientation). Therefore

µ(T−1I) =
∞∑
j=1

µ(Ij)

=
∞∑
j=1

1

log 2
log

1 + 1
a+j

1 + 1
b+j

=
∞∑
j=1

1

log 2
log

a+ j + 1

b+ j + 1

b+ j

a+ j

=
1

log 2

∞∑
j=1

(
log

a+ j + 1

b+ j + 1
− log

a+ j

b+ j

)
=

1

log 2
log

b+ 1

a+ 1
= µ(I).

Lemma 17. The Gauss measure µ is ergodic.

Proof. We use that ergodicity is equivalent to the fact when for every U, V ⊂ Ω of
positive measures one has µ(U ∩ T−jV ) > 0 for some j ∈ N. It is enough to consider the
case when U, V are intervals since the Borel σ-algebra is generated by intervals.

Denote by ψj the inverse branches of T , that is ψj(x) = 1
x+j

where we also put ∆j =

ψj(Ω) =
[

1
j+1

, 1
j

)
for its range. Iterating the inverse maps yields inverse branches of



NOTES FOR MATH 625, FALL 2018 13

higher powers of T . We denote ψa1a2...an = ψan ◦ · · · ◦ψa2 ◦ψa1 for the inverse branches of
T n where aj ∈ N. Its range is ∆a1a2...an = ψa1a2...an(Ω) and (0, 1] =

⋃
a1a2...an

∆a1a2...an is a
disjoint union. Since T is an expanding map we conclude that

Dn = sup
(a1,a2,...,an)∈Nn

diam(∆a1a2...an)→ 0.

Assume U, V are intervals and let n be large enough so thatDn <
1
2

min{diam(U), diam(V )}.
Then there exist n-words b1b2 · · · bn, a1a2 · · · an ∈ Nn so that ∆b1b2...bn ⊂ V and ∆a1a2...an ⊂
U . Since ψ′b1b2···bn > 0 we conclude that µ(ψb1b2···bn(V )) > 0 (µ(V ) > 0 by assumption)
and thus since

∆a1a2...an = ∆a1a2...an ∩ ψb1b2···bn(∆b1...bn) ⊂ U ∩ ψb1b2···bn(V ) ⊂ U ∩ T−nV

we obtain µ(U ∩ T−nV ) > 0. This proves that µ is ergodic.

Theorem 18. Let x ∈ (0, 1] and [a1(x), a2(x), a3(x), . . . ] its continued fraction expansion.
Then for every k ∈ N the limit

Dk(x) = lim
n→∞

|{j : 1 ≤ j ≤ n, aj(x) = k}|
n

=
1

log 2
log

(1 + k)2

k(k + 2)

exists µ-almost everywhere.

Proof. We use the BET and ergodicity of µ. If we again denote by n(x) the integer
part of 1

x
, i.e. Tx = 1

x
− n(x), then for x ∈ [ 1

k+1
, 1
k
) one has n(x) = a1(x) = k. Similarly

aj(x) = n(T j−1x). We now put

χk(x) =

{
1 if x ∈ [ 1

k+1
, 1
k
)

0 otherwise

and get

|{j : 1 ≤ j ≤ n, aj(x) = k}| =
n∑
j=1

χk(T
j−1x) = χnk(x).

By the pointwise ergodic theorem we get for the limit:

Dk(x) = lim
n→∞

1

n
χnk(x)

=

∫ 1

0

χk(x) dµ(x)

=
1

log 2

∫ 1
k

1
k+1

dx

1 + x

=
1

log 2
log

1 + 1
k

1 + 1
k+1

=
1

log 2
log

(k + 1)2

k(k + 2)
.

The asymptotic is Dk(x) ∼ 1
log 2

1
k2+2k

.
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Lemma 19. The limit

lim
n→∞

(a1(x)a2(x) · · · an(x))
1
n =

∞∏
j=1

(
(j + 1)2

j(j + 2)

) log j
log 2

exists for Lebesgue almost every x.

Proof. Define the function f : (0, 1)→ R+ by putting f(x) = log j for x ∈
(

1
j+1

, 1
j

)
, j =

1, 2, . . . . Clearly f ∈ L 1(µ) because
∫ 1

0
f(x) dx =

∑
j

(
1
j
− 1

j+1

)
log j ≤

∑
j

log j
j2

< ∞.

Then by the pointwise ergodic theorem

1

n

n∑
j=1

log aj(x) =
1

n

n∑
j=1

f(T j−1x) =
1

n
fn(x) −→ µ(f)

as n→∞ since µ is ergodic. For the value of the integral on the RHS we obtain

µ(f) =
∑
j

µ((
1

j + 1
,
1

j
))

=
∑
j

log j

log 2

∫ 1
j

1
j+1

dx

1 + x

=
∑
j

log j

log 2
log

1 + 1
j

1 + 1
j+1

=
∑
j

log j

log 2

(j + 1)2

j(j + 2)
.

Exponentiation yields the statement in the lemma.

4.5. Subshift of finite type (SFT). Let A = {1, 2, . . . ,M} be a finite alphabet and A
a 0, 1-valued M ×M -matrix. Then we put

Σ =
{
~x ∈ AZ : Axi,xi+1

= 1 ∀ i
}

The map is the left shift σ : Σ → Σ as above. The metric is the same as above for the
Bernoulli shift, that is d(~x, ~y) = ϑn(~x,~y) (ϑ < 1) where n(~x, ~y) is the smallest |j| for which
xj 6= yj.

For instance the two element alphabet A = {0, 1} and the transition matrix A =(
1 1
1 0

)
give rise to the subshift Σ that consists of all doubly infinite sequences composed

of 0s and 1s so that never any two 1s are consecutive since the transition matrix A allows
for the 2-words 00, 01, 10 but disallows 11.

Let P be a stochastic matrix, that is P1 = 1 (1 = (1, 1, . . . , 1)) and ~pP = ~p for a
left eigenvector ~p = (p1, . . . , pM) which is positive and satisfies

∑
j pj = 1. This defines a

σ-invariant measure on Σ by putting on cylindersets

µ(U(x1x2 . . . xn)) = px1Px1x2Px2x3 · · ·Pxn−1xn .
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Lemma 20. The limit Q = limn→∞
1
n

∑n−1
k=0 P

k exists and moreover Q is a stochastic
matrix. Also PQ = QP = Q = Q2.

Proof. If we put

χi(x) =

{
1 if x ∈ U(i)
0 otherwise

then µ(χi) = µ(U(i)) = pi. By the pointwise ergodic theorem limn→∞
1
n
χni (x) = χ̃i(x) µ-

almost surely where χ̃i is σ-invariant and satisfies µ(χ̃i) = µ(χi). Integrating limn
1
n
χni χj =

χ̃iχj yields

lim
n→∞

1

n

n−1∑
k=0

∫
Σ

χi ◦ T k χj dµ =

∫
Σ

χ̃iχj dµ.

Since
∫

Σ
χi ◦ T k χj dµ = µ(U(j) ∩ T−kU(i)) = pjP

k
ji we obtain limn→∞

1
n
pj
∑n−1

k=0 P
k
ji =

µ(χ̃iχj) Put

Qji =
1

pj
µ(χ̃iχj) = lim

n→∞

1

n

n−1∑
k=0

P k
ji.

This proves the first claim of the lemma. It is clear that Q is stochastic matrix with left
eigenvector ~p. It also follows easily that PQ = QP = Q = Q2.

Lemma 21. Let P be irreducible and aperiodic (i.e. P n > 0 for all n large enough).
Then all rows of Q are identical. In fact Qij = pj.

Proof. Let n be large enough so that P n is positive. Since QP = Q by the last lemma,
we also have QP n = Q which means that Qij =

∑M
k=1Qik(P

n)kj. Since Q is stochastic,∑
kQik = 1 and therefore at least one of the Qik, k = 1, . . . ,M , is non-zero. Since P n > 0

we conclude that Qij > 0 for all i, j. Thus Q > 0. To see that all rows are equal let us
put qj = maxiQij be the maximum in the j-th column. Assume there is a Qij < qj, then
we get as Q = Q2:

Qij =
∑
k

QikQkj < qj
∑
k

Qkj = qj

since one of the Qik is less than qj and the weights Qkj, k add up to 1 (Qij is a convex
combination of {Qkj : k}). Since i is arbitrary we get that Qij < qj for all i which
contradicts the definition of qj. Hence Qij = qj for all i, j.

To get the values of the entries of Q we use that ~p is a left eigenvector of Q to the
eigenvalue 1. To wit ~pQ = ~p and therefore for every j:

pj =
∑
i

piQij =
∑
i

piqj = qj

as
∑

i pi = 1. Thus Qij = pj for all i, j.

Lemma 22. µ is ergodic.

Proof. We will show that for cylindersets V,W one has

1

N

N−1∑
j=0

µ(W ∩ σ−jV )→ µ(W )µ(V )
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as N goes to infinity. Let W = U(x1 · · ·xn), V = U(y1 · · · ym), then if j ≥ n one has

W ∩ σ−jV =
⋃

z1···zj−n

U(x1 · · ·xnz1 · · · zj−ny1 · · · ym)

where the union is over all words z1 · · · zj−n in Σ of length j − n which allow for the
transitions Axnz1 = Azj−nym = 1. Thus

µ(W ∩ σ−jV ) =
∑

z1···zj−n

U(x1 · · ·xnz1 · · · zj−ny1 · · · ym)

= px1Px1x2 · · ·Pxn−1xn(P j−n)xny1Py1y2 · · ·Pym−1ym

and consequently

1

N

N−1∑
j=n

µ(W ∩ σ−jV ) = px1Px1x2 · · ·Pxn−1xn

(
1

N

N−1∑
j=n

P j−n

)
xny1

Py1y2 · · ·Pym−1ym

which converges to µ(W )µ(V ) as N → ∞ since the entry in brackets converges by the
previous two lemmas to py1 and in the averaging n terms will not affect the limit.

4.6. Linear toral automorphisms. Here we put Ω = Tn = Rn/Zn. Let A be an n×n-
matrix with integer entries. Then A induces a continuous map on Ω which is invertible if
detA = ±1.

For instance the matrix A =

(
2 1
1 1

)
induces a homeomorphism on T2. A has

eigenvalues λ± = 1
2
(3±

√
5), where 0 < λ− < 1 < λ+. The eigenvectors ~v± =

(
1

1±
√

5
2

)
span the expanding manifold and contracting manifolds at the fixed point 0:

W u(0) = {x ∈ T2 : |T jx| → 0 for j →∞}
W s(0) = {x ∈ T2 : |T−jx| → 0 for j →∞}

There exists a finite partition P = {R1, R2, . . . , RM} of Ω whose elements have boundaries
that consist of unions of pieces from W s,W u. To be more precise P satisfies the Markov
condition which is given by:

T (∂Rj ∩W s) ⊂ ∂R ∩W s

T (∂Rj ∩W u) ⊃ ∂R ∩W u

Then one can define a transition matrix on the alphabet A = {1, . . . ,M} by putting

Aij =

{
1 if intTRi ∩ intRj 6= ∅
0 otherwise

.

The shiftspace Σ is then defined as above and has the left shift map σ : Σ→ Σ. Then T
and σ are semiconjugate, i.e. π ◦ σ = T ◦ π where π : Σ→ T2 is the map defined by

π(~x) =
+∞⋂
j=−∞

T−jRxj

for all ~x ∈ Σ.
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5. Return times and the induced map

5.1. Kac’s theorem and the induced map. For U ⊂ Ω we define the return time
τU(x) = min{j ≥ 1 : T jx ∈ U}. By the Poincaré recurrence theorem τU(x) < ∞
for almost every x ∈ U for any finite T -invariant measure µ on Ω. Poincaré’s theorem
doesn’t tell us anything about how big τU is. The next result gives us the expected value
of τU on U which in particular implies that τU is integrable on U (assuming µ(U) > 0).

Theorem 23. (Kac 1947) If µ is an ergodic T -invariant probability measure on Ω then
for any U ⊂ Ω of positive measure one has∫

U

τU(x) dµ(x) = 1.

Proof. Let us put τ kU for the kth return time, that is we put τ 1
U = τU and then define

recursively

τ kU(x) = τU(T̂ k−1x) + τ k−1
U (x)

where we put T̂ (x) = T τU (x)(x) for the induced transformation on U (which exists almost
surely by Poincaré). Inductively we also get

τ kU = τU + τU ◦ T̂ + τU ◦ T̂ 2 + · · ·+ τU ◦ T̂ k−1,

i.e. the kth return time is the kth ergodic sum of τU on (U, T̂ ) By the pointwise ergodic
theorem we get ∫

U

τU dµ =

∫
Ω

χUτU dµ = lim
n→∞

1

n

n−1∑
j=0

(χUτU)(T jx)

for µ-almost every x ∈ Ω as µ is ergodic. If we take the limit along a subsequence
n` = τ `U(x) and use the fact that

(χUτU)(T jx) =

{
0 if T jx 6∈ U
τU(T jx) if T jx ∈ U

then we get (with n = τ `U)∫
U

τU dµ = lim
`→∞

1

τ `U(x)

τ`U−1∑
j=0

(χUτU)(T jx) = lim
`→∞

1

τ `U(x)

`−1∑
j=0

τU(T̂ jx) = lim
`→∞

1

τ `U(x)
τ `U(x) = 1.

It remains to show that χUτU ∈ L 1. We use the same argument again but this time cut
off the values of τU . For R large we put

ϕR(x) =

{
1 if τU(x) ≤ R
0 if τU(x) > R

.

Now, since ϕRχUτU ∈ L 1, we get by the pointwise ergodic theorem∫
U

ϕRτU dµ =

∫
Ω

ϕRχUτU dµ = lim
n→∞

1

n

n−1∑
j=1

(ϕRχUτU)(T jx) = lim
n→∞

1

τ `U(x)

τ`U−1∑
j=0

(ϕRτU)(T̂ `x) ≤ 1

for all values of R. Let R→∞ which implies that χUτU ∈ L 1.
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Second proof of Kac’s theorem if T is invertible. This one uses a representation of
Ω which is called a Rokhlin tower. Given U ⊂ Ω (µ(U) > 0), then we put Uk = {x ∈ U :

τU(x) = k}, k = 1, 2, . . . , for the level sets of τU . Then U =
⋃̇∞
k=1Uk is a disjoint union

and the sets T jUk for j = 0, 1, . . . , k − 1, k = 1, 2, . . . , are pairwise disjoint. Since µ is
ergodic, Ω =

⋃
k

⋃k−1
j=1 T

jUk and as T is invertible µ(T jUk) = µ(Uk). Hence

1 = µ(Ω) =
∞∑
k=1

k−1∑
j=0

µ(T−1Uk) =
∑
k

kµ(Uk) =

∫
U

τU dµ

This uses the representation of Ω by the following tower construction which is due to
Rokhlin. Let F be a map on a space ∆0 and assume ∆0 is decomposed into a disjoint
union ∆0 =

⋃
k ∆k,0. Then, given a (roof) function r : N→ N, we put

∆ =
∞⋃
k=1

r(k)−1⋃
j=0

∆k,j

(disjoint union), where ∆k,j = {(x, j) : x ∈ Uk}. Then there is a map S on ∆ which is
defined by

S : ∆k,j → ∆k,j+1 if j ≤ r(k)− 1

S : ∆k,r(k)−1 → ∆0 =
⋃
k

∆k,0

where S(x, j) = (x, j + 1) for (x, j) ∈ ∆k,j and if j < f(k) − 1. If (x, j) ∈ ∆k,r(k)−1 then
the map is S(x, j) = (F (x), 0). We call the pair (S,∆) a Rokhlin tower. In the case of
Kac’s theorem ∆0 = U and the roof function is f(k) = k.

For a subset U ⊂ Ω, µ(U) > 0, let us denote by T̂ = T τU : U → U the induced map.

T̂ exists by Poincaré’s (or Kac’s) theorem almost everywhere. We also have the induced

measure µ̂ which is defined on U by µ̂(A) = µ(A)
µ(U)

for all measurable A ⊂ U .

Lemma 24. The induced measure µ̂ is T̂ -invariant.

Proof. Let A ⊂ U and decompose its pullback T̂−1A as follows:

T̂−1A =
⋃̇∞

k=1
(T−kA ∩ Uk)

(disjoint union), where Uk = {x ∈ U : τU(x) = k} and

T−kA ∩ Uk = U ∩

(
T−kA \

k−1⋃
j=1

T−jU

)
.

If we put Ak = T−kA \
⋃k−1
j=0 T

−jU then A0 = A and Ak ∩ U = ∅ for k ≥ 1. We have

T−kA ∩ Uk = U ∩ T−1Ak−1

and hence

µ(T̂−1A) =
∞∑
k=1

µ(T−1Ak−1 ∩ U).
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Now note that T−1Ak = (T−1Ak ∩ U) ∪Ak+1 (disjoint union as Ak+1 = T−1Ak ∩ U c) and
thus

µ(T−1Ak ∩ U) = µ(Ak)− µ(Ak+1).

As µ(A0) = µ(A) we get

µ(T̂−1A) =
∞∑
k=1

(µ(Ak)− µ(Ak+1))

which equals µ(A) if µ(Ak+1)→ 0 (which is obvious if µ is ergodic as then Ω =
⋃
k T
−kA

if µ(A) > 0). We get that µ(T̂−1A) ≤ µ(A). The same argument applied to U \A (instead

of A) yields µ(T̂−1(U \A)) ≤ µ(U \A) = µ(U)−µ(A). Since T̂−1A∪ T̂−1(U \A) = U we

get µ̂(T̂−1A) = µ̂(A).

Lemma 25. Let U ⊂ Ω, µ(U) > 0, T̂ = T τU the induced map and µ̂ = µ|U the restricted
probability measure.
(I) If µ is ergodic with respect to T , then µ̂ is ergodic with respect to T̂ .

(II) If µ̂ is ergodic w.r.t. T̂ and Ω =
⋃∞
j=0 T

−jU , then µ is ergodic w.r.t. T .

Proof. This is the first assignment.

Lemma 26. Assume µ is ergodic and let U ⊂ Ω have positive measure.
Then for all A ⊂ U c”:

µ(A) =
∞∑
k=1

µ

(
U ∩

(
T−kA \

k−1⋃
j=1

T−jU

))
.

Proof. Let A ⊂ U c and put

Ak = T−kA \
k−1⋃
j=0

T−jU =
{
x ∈ Ω : T k ∈ A, T jx 6∈ U∀j = 0, 1, . . . , k

}
where A0 = A. Then

U ∩

(
T−kA \

k−1⋃
j=1

T−jU

)
= T−1Ak−1 \ Ak

for k = 1, 2, . . . . Note that Ak ⊂ Ak−1∀k. Hence

n∑
k=1

µ

(
U ∩

(
T−kA \

k−1⋃
j=1

T−jU

))
=

n∑
k=1

(
µ(T−1Ak−1)− µ(Ak)

)
= µ(A0)− µ(An)

= µ(A)− µ(An).

Since Ak ⊂ Ω \
⋃k
j=0 T

−jU and by ergodicity µ
(⋃∞

j=0 T
−jU

)
= 1 we conclude that

µ(Ak) ≤ µ

(
k⋃
j=0

T−jU

)
→ 0
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as k →∞.

Theorem 27. Assume µ is ergodic and U ⊂ Ω has positive measure.
Then for all A ⊂ Ω one has

µ(A) =

∫
U

τU (x)−1∑
k=0

χA ◦ T k(x) dµ(x).

Proof. As before put Uj = {x : τU(x) = j}. Then by the previous lemma

µ(A) = µ(A ∩ U) + µ(A \ U)

= µ(A ∩ U) +
∞∑
k=1

µ

(
U ∩

(
T−kA \

k−1⋃
j=1

T−jU

))

= µ(A ∩ U) +
∞∑
k=1

µ

(
T−kA ∩

∞⋃
j=k

Uj

)

= µ(A ∩ U) +
∞∑
k=1

∞∑
j=k

µ
(
T−kA ∩ Uj

)
= µ(A ∩ U) +

∞∑
j=1

j∑
k=1

µ
(
T−kA ∩ Uj

)
=

∞∑
j=1

j∑
k=0

µ
(
T−kA ∩ Uj

)
=

∞∑
j=1

j∑
k=0

∫
Uj

χA ◦ T k dµ

=

∫
U

τU (x)−1∑
k=0

χA ◦ T k(x) dµ(x).

This provides us with an alternate proof of Kac’s theorem. Setting A = Ω we get that

1 = µ(Ω) =

∫
U

τU (x)−1∑
k=0

χU ◦ T k(x) dµ(x) =

∫
U

τU(x) dµ(x).

5.2. Example. Kac’s theorem states that the return time function τU is integrable over
U and also gives the value of the integral. Here we give an example of a system for which
τU is not integrable over the entire space Ω and yet the measure is ergodic under the shift
map.

Let Ω = NZ where on the state space N we give the transition probabilities: Let
pi ∈ (0, 1), i = 1, 2, . . . , be a sequence, then we allow for the transition i → i + 1 with
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probability pi and for the transition i → 1 with probability qi = 1 − pi. In other words,
we can define a stochastic matrix M by Mj,1 = qj

Mj,j+1 = pj
Mj,k = 0 otherwise, i.e. if k 6= 1 or k 6= j + 1

,

where the transition probability of the transition j → k is given by the entry Mj,k. Then
M1 = 1 as

∑∞
k=1Mj,k = Mj,1 + Mj,j+1 = qj + pj = 1∀j and M has the left eigenvector

~x = (x1, x2, . . . ) (for the dominant eigenvalue 1) which satisfies

q1x1 + q2x2 + q3x3 + · · · = x1

xjpj = xj+1 for j = 1, 2, . . . .

One sees that the components of the left eigenvector are xj = x1Pj, j = 2, 3, . . . , where

Pj =
∏j−1

i=1 pi (P1 = 1) and x1 is chosen to make ~x a probability vector (x−1
1 =

∑
j Pj).

The first equation above is satisfied as
∑

j qjxj =
∑

j(1− pj)x1Pj = x1

∑
j(Pj − Pj+1) =

x1P1 = x1 if Pj → 0 as j → ∞. In this way we obtain a shift invariant probability
measure µ on Ω which is ergodic as one can go from any state i to any other state j with
positive probability.

Put Aj = {~ω ∈ Ω : ω0 = j}, j = 1, 2, . . . , let U = A1 be the return set and τU its
return/entry time function. If we put Aj,k = Aj ∩ {τU = k} then ~ω ∈ Aj,k is of the form
ω0ω1 · · ·ωk = j(j + 1)(j + 2) · · · (j + k− 2)(j + k− 1)1 (symbol sequence of length k+ 1).
One has

µ(Aj,k) = µ(Aj)pjpj+1 · · · pj+k−2qj+k−1 = x1Pj
Pj+k−1

Pj
qj+k−1 = x1Pj+k−1qj+k−1

as µ(Aj) = xj = x1Pj. The integral of τU over the entire space is∫
Ω

τU dµ =
∑
j,k

kµ(Aj,k) =
∑
j,k

kx1Pj+k−1qj+k−1.

If we choose pi =
(

i
i+1

)α
for some α ∈ (1, 2) then Pj =

∏j−1
i=1

(
i
i+1

)α
= 1

jα
and since the

Pj are summable, x1 =
(∑

j Pj

)−1

is well defined and positive. Then∫
Ω

τU dµ = x1

∑
k

k
∑
j

1

(j + k − 1)α
qj+k−1

≥ c1x1

∑
k

k
∑
j

1

(j + k − 1)α+1

≥ c2

∑
k

k

kα
=∞,

as α < 2, where we used that qj+k−1 = 1−
(

1− 1
j+k−1

)α
≥ c1

1
j+k−1

for some c1 > 0. We

thus see that the integral of τU over the entire space Ω diverges.
This can be converted to an example on a two-state shiftspace Σ ⊂ {0, 1}Z by the single

element mapping π : Ω → Σ which maps π(1) = 1 and collapses all other symbols to 0,
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i.e. π(j) = 0, j = 2, 3, . . . . The measure µ is sent to the probability measure ν = π∗µ
which is invariant under the shift map.

6. Existence of invariant measures and extremality of ergodic measures

Put M (T ) for the set of T -invariant probability measures on (Ω, T ) where Ω is a
compact metric space. The following result affirms that for continuous maps on compact
spaces and invariant maps, invariant measures indeed exist. The mainpart of the proof is
to show that the set of probability measures on Ω is weak* compact.

Theorem 28. (Krylov-Bogolioubov) If Ω is a compact metric space and T : Ω → Ω is
continuous, then M (T ) 6= ∅.
Proof. Let x ∈ Ω be arbitrary and let µn = 1

n

∑n−1
j=1 δx◦T j, where δx is the unit pointmass

at x. That is, for f ∈ C(Ω) one has µn(f) = 1
n
fn(x) = 1

n

∑n−1
j=1 f(T jx) (here we use

continuity of T to make sure that T∗f = f ◦T lies in C(Ω)). Let S = {f1, f2, . . . } ⊂ C(Ω)
be dense and countable. Then |µn(f1)| ≤ |f1|∞ < ∞ and consequently there exists a
subsequence nj so that the limit limj→∞ µnj(f1) = L(f1) exists for some number L(f1).
Put µ1,j = µnj and there exists a subsequence j` so that µ1,j`(f2) converges to some L(f2)
as ` → ∞. Put µ2,` = µ1,j` and proceed inductively. We obtain a sequence of sequences
µk,j so that µk,j(fk) converges to a limit L(fk) as j → ∞ and so that {µk+1,` : `} is a
subsequence of {µk,j : j} for every k. For the diagonal sequence νk = µk,k the values νk(f)
converge to a limit L(f) for every f ∈ S. Thus L defines a positive linear functional on
S which can be extended to all of C(Ω) as follows. Let g ∈ C(Ω) and ε > 0. Then there
exists f ∈ S so that |g − f |∞ < ε. Hence |νk(g) − νk(f)| < ε for all k. Moreover there
exists an N so that |νk(f)− ν`(f)| < ε for all k, ` ≥ N . Hence

|νk(g)− ν`(g)| ≤ |νk(g)− νk(f)|+ |νk(f)− ν`(f)|+ |ν`(f)− ν`(g)| < 3ε

for all k, ` ≥ N . Thus {νk(g) : k} is a Cauchy sequence and converges to a value L(g).
Since L is a positive linear functional on Ω, by the Riesz representation theorem there
exists a (Radon) measure µ on Ω so that L(f) =

∫
Ω
f(x) dµ(x). Clearly the measure µ is

T -invariant as it is a limit of {µn : n} and

|µn(f ◦ T )− µn(f)| =

∣∣∣∣∣ 1n
∫

Ω

(
n−1∑
j=0

f ◦ T j+1 −
n−1∑
j=0

f ◦ T j
)
µn

∣∣∣∣∣
=

∣∣∣∣ 1n
∫

Ω

(f ◦ T n − f)µn

∣∣∣∣
≤ 2|f |∞

n
→ 0

as n goes to infinity along a (sub)sequence.

Example: The requirement that the map be continuous is necessary as the following
example shows where we produce a non-continuous map that does not have an invariant
probability measure. Let Ω = [0, 1] and T : [0, 1]→ [0, 1] defined by

Tx =

{
1
2
x if 0 < x ≤ 1
1 if x = 0
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for x ∈ [0, 1]. Then T not continuous and has no invariant probability measure since
(i) the pointmass δ0 is not T -invariant and (ii) if there were an invariant measure µ
with non-zero mass on, say, the interval (1

2
, 1], then by T -invariance of µ one would have

µ((1
2
, 1]) = µ((1

4
, 1

2
]) = µ((1

8
, 1

4
]) = · · · = µ((2−(j+1), 2−j]) for j = 0, 1, 2, . . . . Since the

intervals (2−(j+1), 2−j] are pairwise disjoint, the total measure of (0, 1] would have be to
infinite which is impossible.

Next we will identify the ergodic measures as the irreducible components of invariant
measures. Since the the linear combination of two invariant measures is again an invariant
measures, the set of invariant measures M (T ) is convex. Its boundary elements are the
ergodic measures.

Definition 29. We say µ ∈M (T ) is not extremal if there exist µ1, µ2 ∈M (T ) µ1 6= µ2

and α ∈ (0, 1) so that µ = αµ1 + (1− α)µ2.

Lemma 30. µ ergodic ⇐⇒ 6 ∃µ̃ ∈M (T ) so that µ̃ 6= µ, µ̃� µ.

Proof. “⇒”: Assume µ is ergodic and assume there exists µ̃ ∈M (T ) so that µ̃� µ. If
µ̃ is not ergodic then there exists U ⊂ Ω, T−1U = U so that µ̃(U), µ̃(U c) > 0. However,
µ̃(U) > 0 ⇒ µ(U) > 0 (as µ̃ � µ) and similarly, µ̃(U c) > 0 ⇒ µ(U c) > 0. This
contradicts the assumption that µ is ergodic. Hence µ̃ is ergodic. In order to show that
µ̃ = µ let U ⊂ Ω and χU its characteristic function. Then by the pointwise ergodic
theorem

1

n
χnU →

{
µ(U) for µ-a.e. x
µ̃(U) for µ̃-a.e. x

.

Hence µ(U) = µ̃(U)∀U ⊂ Ω and therefore µ̃ = µ.
“⇐”: Assume there is no µ̃ ∈ M (T ) so that µ̃ � µ and µ̃ 6= µ. We show that

µ is ergodic by contradiction. If we assume that µ is not ergodic, then there exists
U ⊂ Ω, T−1U = U so that µ(U), µ(U c) > 0. Put µU = µ|U for the restricted probability
measure, then µU is T -invariant as U is T -invariant. Moreover, µU � µ and µU 6= µ
which contradicts the assumption. Hence µ is ergodic.

Corollary 31. For a continuous map T on a compact metric space Ω, the set of invariant
probability measures M (T ) is convex and its extremal elements are exactly the ergodic
measures.

If there is only one invariant measure µ (i.e. M (T ) = {µ}) then we call (Ω, T, µ) uniquely
ergodic as by force µ is ergodic.

Example (Irrational rotation). We give an example of a map which is uniquely ergodic.
Let Ω = [0, 1) be the circle T1 and T be the rotation by an irrational number α, i.e.
Tx = x + α mod 1. Clearly, T is continuous and we can use Fourier series on C([0, 1)).
If gk(x) = e2πikx, then

1

n

n−1∑
j=0

gk(T
jx) =

1

n

n−1∑
j=0

e2πik(x+jα) =

{
1 if k = 0

1
n
e2πikx 1−e2πikαn

1−e2πikα if k 6= 0

as
∑n−1

j=0 t
j = 1−tn

1−t if t 6= 1. Letting n → ∞ yields 1
n
gnk (x) → 0 for all x ∈ T1 and for

all k 6= 0, and 1
n
gn0 (x) = 1 for all x. If µ is a T -invariant measure on [0, 1) then by the
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ergodic theorem 1
n
gnk (x) →

∫ 1

0
gk dµ as n → ∞ for µ-almost every x. Hence

∫ 1

0
gk dµ = 0

for k 6= 0 and equal to 1 if k = 0. If P (x) is a trigonometric polynomial
∑
|k|≤m akgk(x)

of some degree m, then
1

n
P n(x)→ a0

as n→∞, where a0 =
∫ 1

0
P (x) dλ(x) and also equal to

∫ 1

0
P (x) dµ(x). If Pj is a sequence

of trigonometric polynomials that converge to a characteristic functions χ[a,b) of an interval
[a, b) ⊂ [0, 1), then

a0 =

∫ 1

0

P dµ→
∫ 1

0

χ[a,b) dµ

as j → ∞. Hence a0 =
∫ 1

0
χ[a,b) dµ = λ([0, 1)) for all 0 ≤ a < b ≤ 1. Thus µ = λ and

consequently, λ is the only ergodic measure on T1.

Theorem 32. (Ergodic decomposition) For every T -invariant measure on the compact
metric space Ω there exists a probability measure ρ on the ergodic set E = {ν ∈M (T ) :
ν ergodic} of M (T ) so that for all f ∈ C(Ω)∫

Ω

f dµ =

∫
E

(∫
Ω

f dν

)
dρ(ν)

That is M (T ) is a Choquet simplex (Choquet 1959).

Example. In the shiftspace Σ = {0, 1}Z the ergodic measures form a dense set in M (σ).

7. Entropy

Definition 33. Given (Ω, µ) with σ-algebra B.
(I) A ⊂ B is a partition of Ω if elements in A are pairwise disjoint subsets of Ω and⋃
A∈AA = Ω.

(II) For two partitions A,B we call

A ∨ B = {A ∩B : A ∈ A, B ∈ B}
the join of A and B.
(III) We say A is finer than B (B is coarser than A) if for every A ∈ A there exists a
B ∈ B so that A ⊂ B.

Example. For the shiftspace Σ = {1, 2, . . . ,M}Z the set A = {U(i) : i = 1, . . . ,M}
forms a partition (U(i) = {~x ∈ Σ : x0 = i} are 1-cylinder sets). Also B = {σ−1U(i) : i} is
a partition and so is A ∨ B = {U(ij) : i, j = 1, . . . ,M}.

Let us now define the function

ϕ(t) =

{
0 if t = 0

−t log t if t > 0

which is concave on [0,∞) which means that for xi ∈ [0,∞) and weights αi ≥ 0 so that∑
i αi = 1 one has ϕ (

∑
i αixi) ≥

∑
i αiϕ(xi).
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Definition 34. Let µ be a probability measure on Ω and A a partition. Then

H(A) =
∑
A∈A

ϕ(µ(A))

is the entropy of µ with respect to the partition A.

If we introduce the information function IA(x) = − log µ(A(x)) =
∑

A∈A | log µ(A)|χA(x)
where A(x) ∈ A is the partition element that contains x, then

H(A) =
∑
A∈A

µ(A)IA(A) =

∫
Ω

IA(x) dµ(x).

Example 1. Let Σ = {1, . . . ,M}N0 be the full M -shift and µ the invariant measure
(Bernoulli measure) generated by the probability vector ~p = (p1, . . . , pm). For the parti-
tion A = {U(i) : i} one then has

H(A) =
∑
i

ϕ(µ(U(i)) =
∑
i

pi| log pi|.

If all the pi are equal to 1
M

, then H(A) = logM .

Example 2. For the affine stretching map T on the interval [0, 1) (= T1) one has
Tx = dx mod 1 for degree d ≥ 2. For the Lebesgue measure λ and the partition A =
{[ i
d
, i+1

d
) : i = 0, 1, . . . , d− 1} one obtains

H(A) = −
∑
i

λ([
i

d
,
i+ 1

d
)) log λ([

i

d
,
i+ 1

d
)) =

∑
i

−1

d
log

1

d
= log d

Definition 35. Let µ be a probability measure on Ω and A,B partitions. Then

H(A|B) =
∑
B

µ(B)
∑
A

ϕ

(
µ(A ∩B)

µ(B)

)
=
∑
A,B

−µ(A ∩B) log
µ(A ∩B)

µ(B)

is the conditional entropy of A with respect to B.

Theorem 36. For partitions A,B, C one has:
(I) H(A ∨ B|C) = H(A|C) +H(B|A ∨ C)
(II) H(A ∨ B) = H(A) +H(B|A)
(III) If B is finer than A then H(B|C) ≥ H(A|C) (and also H(B) ≥ H(A))
(IV) If B is finer than C then H(A|B) ≤ H(A|C)
(V) H(A ∨ B|C) ≤ H(A|C) +H(B|C)
(VI) H(A|C) ≤ H(A|B) +H(B|C)

Also note that H(A|B) = 0 if B is finer than A because then

H(A|B) = −
∑
A,B

µ(A ∩B) log
µ(A ∩B)

µ(B)
= −

∑
A,B

µ(A ∩B) log
µ(B)

µ(B)
= 0

as either A ∩B = ∅, or A ∩B = B as A ∨ B = B.



26 NICOLAI HAYDN

Proof. (I) One has

H(A ∨ B|C) = −
∑
A,B,C

µ(A ∩B ∩ C) log
µ(A ∩B ∩ C)

µ(C)

= −
∑
A,B,C

µ(A ∩B ∩ C)

(
log

µ(A ∩B ∩ C)

µ(A ∩ C)
+ log

µ(A ∩ C)

µ(C)

)
= H(B|A ∨ C) +H(A|C).

(II) This is a special case of (I) with the trivial partition C = {Ω}.
(III) As B is finer than A one has A ∨ B = B and thus by (I)

H(B|C) = H(A ∨ B|C) = H(A|C) +H(B|A ∨ C) ≥ H(A|C)

as H(·|·) ≥ 0.
(IV) Since B is finer than C, for every C ∈ C there is a subset BC ⊂ B so that C =⋃
B∈BC B. Then by concavity of the function ϕ

H(A|B) =
∑

A∈A,B∈B

µ(B)ϕ

(
µ(A ∩B)

µ(B)

)
=

∑
A∈A,C∈C

µ(C)
∑
B∈BC

µ(B)

µ(C)
ϕ

(
µ(A ∩B)

µ(B)

)

≤
∑

A∈A,C∈C

µ(C)ϕ

(∑
B∈BC

µ(B)

µ(C)

µ(A ∩B)

µ(B)

)

=
∑

A∈A,C∈C

µ(C)ϕ

(
µ(A ∩ C)

µ(C)

)
= H(A|C)

as the weights µ(B)
µ(C)

add up to 1 on BC for every C ∈ C and
∑

B∈BC µ(A∩B) = µ(A∩C).

(V) By (IV) H(B|C) ≥ H(B|C ∨ A) and thus by (I):

H(A ∨ B|C) = H(A|C) +H(B|A ∨ C) ≤ H(A|C) +H(B|C).

(VI) Using (III) and then (I) yields

H(A|C) ≤ H(A ∨ B|C) = H(B|C) +H(A|B ∨ C) ≤ H(B|C) +H(A|B).

Now we come to the entropy of a map. Let T be a map on Ω and µ a T -invariant
probability measures. If A is a partition of Ω then so is T−1A (and higher order pull-
backs). Since µ is invariant one has H(T−1A) = H(A). The partition An =

∨n−1
j=0 T

−jA
is called the nth join of A and it refines the partitions A, T−1A, . . . , T−(n−1)A. The atoms
A of An are of the form A = Ai0 ∩ Ai1 ∩ · · · ∩ Ain−1 where Aik ∈ A = {A1, A2, . . . }. We
call A an n-cylinder.
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Example 1. For the full shift Σ = {1, . . . ,M}N0 we take the partition A = {U(i) : i} of
1-cylinders. Then

An = {U(i0i1i2 · · · in−1) : ik ∈ {1, . . . ,M}, k = 0, . . . , n− 1}

consists of the collection of n-cylinders U(i0i1 · · · in−1) = {~x ∈ Σ : x0 · · ·xn−1 = i0 · · · in−1}.
Clearly, here |An| = Mn.

Example 2. For the doubling map T : [0, 1) → [0, 1) given by Tx = 2x mod 1 we take
the two element partition A = {[0, 1

2
), [1

2
, 1)}. Then

An =

{[
j

2n
,
j + 1

2n

)
: j = 0, 1, . . . , 2n − 1

}
= {Ix1x2···xn : xk ∈ {0, 1}, k = 1, . . . , n},

where the intervals Ix1x2···xn consists of all points x ∈ [0, 1) whose binary expansions begin
with the digits x1, x2, . . . , xn. That is

Ix1x2···xn =

[
n∑
j=1

xj
2j
,

n∑
j=1

xj
2j

+
1

2n

)
.

7.1. The Kolmogorov entropy. In order to prove the existence of the limit we will
need the following arithmetic lemma.

Lemma 37. Let {an : n ∈ N} be a positive and subadditive sequence, that is an+m ≤
an + am for all m,n ∈ N. Then the following limit exists:

lim
n→∞

an
n

= inf
n∈N

an
n
.

Proof. Let m ≥ 1 and put n = km+ r, where 0 ≤ r < m (remainder). Then

an
n

=
akm+r

n
≤ ar

n
+
kam
n
≤ ar

n
+
kam
km

=
1

k
+
am
m

since akm ≤ kam by subadditivity. Now let n→∞ (k →∞) along a sequence that gives
the lim sup and we get

lim sup
n→∞

an
n
≤ am

m

for every m ≥ 1. Taking a liminf on the RHS gives the existence of the limit. That the
limit equals the inf follows from the last inequality.

Definition 38. If the limit exists, then hµ(T,A) = limn→∞
1
n
H(An) is the entropy of µ

with respect to T and A.

Theorem 39. Let T be a map on a space Ω, µ a T -invariant probability measure and A
a measurable partition. Then

h(µ,A) = lim
n→∞

1

n
H(An)

exists.
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Proof. Note that An+m = An ∨ T−nAm. Since by (II) and (III) of the theorem one has
H(B ∨ C) ≤ H(B) +H(C) for any two partitions B, C, we obtain:

H(An+m) = H(An ∨ T−nAm) ≤ H(An) +H(T−nAm) = H(An) +H(Am).

Thus the sequence an = H(An), n = 1, 2, . . . , is subadditive and we can apply the
arithmetic lemma to obtain the limit

h(µ,A) = lim
n→∞

1

n
H(An) = inf

n∈N

1

n
H(An).

Lemma 40. h(µ,A) ≤ h(µ,B) +H(A|B) for any two partitions A,B.

Proof. Obviously H(An) ≤ H(An ∨ Bn) as An ∨ Bn is finer than An. By property (II) of
the theorem

H(An ∨ Bn) = H(Bn) +H(An|Bn).

The second term on the RHS is

H(An|Bn) = H(A ∨ T−1A ∨ T−2A ∨ · · · ∨ T−1A|Bn)

≤ H(A|Bn) +H(T−1A|Bn) +H(T−1A|Bn) + · · ·+H(T−(n−1)A|Bn)

≤ H(A|Bn) +H(T−1A|T−1B) +H(T−2A|T−2B) + · · ·+H(T−(n−1)A|T−(n−1)B)

because T−jB is coarser than Bn and therefore H(C|Bn) ≤ H(C|T−jB) for any partition
C. Because of invariance of the measure H(T−jA|T−jB) = H(A|B) and thus

H(A|Bn) ≤ nH(A|B).

Dividing by n yields
1

n
H(An) ≤ 1

n
H(Bn) +H(A|B)

and the limit n→∞ proves the lemma.

Corollary 41. h(µ,A) ≤ h(µ,B) if B is finer than A.

Proof. By the previous lemma h(µ,A) ≤ h(µ,B) + H(A|B) and since B is finer than A
one gets that H(A|B) = 0.

Remark. We also have h(µ,An) = h(µ,A) for any n ∈ N because

(An)k =
k−1∨
j=0

T−j
n−1∨
i=0

T−iA =
k+n−1∨
j=0

T−jA = An+k−1

which implies

h(µ,An) = lim
k→∞

1

k
H((An)k)

= lim
k→∞

1

k
H(An+k−1)

= lim
k→∞

n+ k − 1

k
lim
k→∞

1

k + n− 1
H(An+k−1)

= h(µ,A).
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Definition 42. The measure theoretic entropy of µ is

h(µ) = sup
A
h(µ,A),

where the supremum is over all finite partitions A of Ω.

The definition may be extended to include infinite partitions A under the additional
assumption that H(A) be finite.

Definition 43. A partition A is a generator (or µ-generator) if
⋃
nAn generates the

σ-algebra on Ω (up to µ-nullsets).

If the map T is invertible then A is a µ-generator if {
∨n
j=−n T

−jA : n ∈ N} generates the
σ-algebra.

Theorem 44. (Kolmogorov-Sinai) If A is a µ-generator then

h(µ) = h(µ,A).

Proof. Let A be a µ-generator and B be an arbitrary finite partition. We have to show
that h(µ,B) ≤ h(µ,A). For any n we have

h(µ,B) ≤ h(µ,An) +H(B|An) = h(µ,A) +H(B|An).

We want to show that H(B|An) can be made arbitrarily small if n is large enough. Let
B = {B1, B2, . . . , Br} (r = |B|) and ε > 0. Since A is a µ-generator, we can find

A
(n)
j ∈ σ(An), unions of n-cylinders so that µ(Bj4A(n)

j ) < εµ(A
(n)
j ), j = 1, 2, . . . , r. We

can assume that A(n) = {A(n)
j : j} forms a partition of Ω. Clearly An is finer than A(n)

and therefore

H(B|An) ≤ H(B|A(n)) =
∑
j,k

−µ(A
(n)
k )ϕ

(
µ(A

(n)
k ∩Bj)

µ(A
(n)
k )

)
.

We have two cases, (i) when j = k and (ii) j 6= k. If j = k then

µ(A
(n)
j 4Bj) ≤ µ(A

(n)
j ∪Bj)− µ(A

(n)
j ∩Bj) < εµ(A

(n)
j )

which implies that

µ(A
(n)
j ∩Bj)

µ(A
(n)
j )

>
µ(A

(n)
j ∪Bj)

µ(A
(n)
j )

− ε ≥ 1− ε.

If j 6= k then

µ(A
(n)
k ∩Bj) ≤ µ(A

(n)
k ∩B

c
k) ≤ µ(A

(n)
k 4Bj) < εµ(A

(n)
k )

which implies

µ(A
(n)
k ∩Bj)

µ(A
(n)
k )

< ε.

Hence

H(B|An) ≤
∑
k

µ(A
(n)
k )

(
ϕ(1− ε) +

∑
j 6=k

ϕ(ε)

)
≤ c1rϕ(ε).
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Since ε > 0 was arbitrary we get h(µ,B) ≤ h(µ,A) for all partition B. Consequently,
since ϕ(ε)→ 0 as ε→ 0 and ε > 0 is arbitrary, we conclude that supB h(µ,B) ≤ h(µ,A).

7.2. Examples. (I) Bernoulli shift. Let Σ = {1, . . . ,M}N0 , with the shiftmap σ and
the generating partition A = {U(i) : i}. Then

∨n
j=0 σ

−jA generates the σ-algebra by

definition. If µ is the measure generated by the probability vector ~p = (p1, . . . , pM)
(
∑

i pi = 1) then

H(An) = −
∑

x0x1···xn−1

px0 · · · pxn−1 log px0 · · · pxn−1

= −
∑

x0x1···xn−1

px0 · · · pxn−1 log pxk

= −
∑
xk

pxk log pxk

= −n
∑
i

pi log pi

and therefore h(µ) = −
∑

i pi log pi.

(II) Markov measure. LetA be anM×M -transition matrix and Σ = {~x ∈ {1, . . . ,M}N0 :
Axixi+1

= 1∀i} and σ : Σ → Σ the left shift. Again the partition A = {U(i) : i} of 1-
cylinder sets is generating. Let µ be the invariant measure induced by a stochastic matrix
P (Pij = 0 if Aij = 0) and its probability left eigenvector ~p = (p1, . . . , pM) (

∑
i pi = 1).

By the theorem of Kolmogorov and Sinai h(µ) = h(µ,A). We have

H(An) = −
∑

x0x1···xn−1

µ(U(x0 · · ·xn−1)) log µ(U(x0 · · ·xn−1))

= −
∑

x0x1···xn−1

px0Px0x1 · · ·Pxn−2xn−1 log px0Px0x1 · · ·Pxn−2xn−1

= −
∑

x0x1···xn−1

px0Px0x1 · · ·Pxn−2xn−1

(
log px0 +

n−1∑
k=1

logPxk−1xk

)
= −

∑
i

pi log pi − (n− 1)
∑
i,j

piPij logPij,

and therefore h(µ) = limn
1
n
H(An) = −

∑
i,j piPij logPij.

(III) Affine stretching interval map. Ω = [0, 1), Tx = dx mod 1 (d ≥ 2 degree).
Then

A =

{[
i

k
,
i+ 1

d

)
: i = 0, 1, . . . , d− 1

}
is generating and

An =

{[
j

dn
,
j + 1

dn

)
: j = 0, 1, . . . , dn − 1

}
= {Ii1i2···in : ik ∈ {0, 1, . . . , d− 1}}
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where

Ii1i2···in =

[
n∑
j=1

ij
dj
,

n∑
j=1

ij
dj

+
1

dn

)
consists of the numbers x ∈ [0, 1) whose base d expansion begins with the digits i1, i2, . . . , in.
With λ the Lebesgue measure λ(Ii1i2···in) = d−n and

H(An) =
∑

i1,i2,...,in

−λ(Ii1i2···in) log λ(Ii1i2···in)) = n log d.

Therefore h(λ) = log d.

7.3. The theorems of Shannon-McMillan-Breiman and Ornstein-Weiss. For x ∈
Ω denote by An(x) the unique atom in An which contains x.

Theorem 45. (Shannon-McMillan-Breiman) Let µ be a T -invariant probability measure
with entropy h(µ) and A a finite µ-generating partition. Then

lim
n→∞

1

n
|log µ(An(x))| = h(µ)

for almost every x ∈ Ω and in L 1.

This theorem was first proved by Shannon [?] in 1948 for Markov measures. He showed
that the convergence was in measure. This was in 1957 improved upon by McMillan [?]
who proved the theorem for ergodic measures and showed that convergence was in L 1.
The final version for finite alphabets was formulated by Breiman [?, ?] in 1958. Sub-
sequent generalisations to infinite partitions are due to Carleson [?] in 1961 for Markov
measures and convergence in measure and Chung [?] for ergodic measures with almost
sure convergence.

In order to prove the theorem we need the Martingale convergence theorem.

Theorem 46. (Martingale convergence theorem) Let f ∈ L 1 and B1 ⊂ B2 ⊂ B3 ⊂ · · ·
be a seqence of successively finer partitions so that

⋃
j Bj generates the σ-algebra B. Then

the functions

fn = f |Bn
converge almost surely and in L 1 to the limit f |B. The convergence is in L 1 if supn |fn|
is integrable.

The mainpart of the proof of the SMB theorem is to show that the limit exists.

Lemma 47. The functions hn(x) = 1
n
|log µ(An(x))| converge almost surely and in L 1

to a limit F ∗.

Proof. If we put Fk(x) = log µ(Ak(x))
µ(Ak−1(Tx))

then

log µ(An(x)) =
n−1∑
k=0

log
µ(An−k(T

kx))

µ(An−k−1(T k+1x))
+ log µ(A0(T nx))
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where log µ(A0(T nx)) = 0 as A0 = {Ω} is the trivial partition. Thus

hn(x) = − 1

n

n−1∑
k=0

Fn−k(T
kx) +O(1/n).

Let us now look more closely at the functions Fk:

eFk(x) =
µ(Ak(x))

µ(Ak−1(Tx))
=
µ(A1(x) ∩ T−1Ak−1(Tx))

µ(Ak−1(Tx))
=

1

µ(Ak−1(Tx))

∫
T−1Ak−1(Tx))

χA1(x) dµ

is the average of χA1(x) over the elements in the partition T−1Ak−1. We now can use
the Martingale convergence theorem with the function f(x) = χA1(x) and the successively
refining partitions Bk = T−1Ak−1. Thus eFk converges to a limit eF∞ almost surely.

We shall now show that ϕ = supn−Fn is integrable. For A ∈ A and t > 0 note that
the sets

SAn (t) = {x ∈ Ω : −Fj(x) ≤ t, j = 2, 3, . . . , n− 1, −Fn(x) > t}
are Bn-integrable and also are disjoint, i.e. SAn (t) ∩ SAn (t) = ∅ if n 6= m. One has

µ(A ∩ SAn (t)) =

∫
SAn (t)

eFn dµ ≤ e−tµ(SAn (t))

and therefore

µ(A ∩ {ϕ > t}) =
∞∑
n=2

µ(A ∩ SAn (t)) ≤ e−t
∑
n

µ(SAn (t)) ≤ e−t

since the sets SAn (t) are disjoint. From this we now conclude the integrability of ϕ as
follows: ∫

Ω

ϕdµ =

∫ ∞
0

µ({ϕ > t}) dt

=
∑
A∈A

∫ ∞
0

µ(A ∩ {ϕ > t}) dt

≤
∑
A

∫ ∞
0

min{e−t, µ(A)} dt

=
∑
A

(∫ − log µ(A)

0

µ(A) dt+

∫ ∞
− log µ(A)

e−t dt

)
= H(A) + 1 <∞.

To finish the proof of the lemma we now write

hn(x) = − 1

n

n−1∑
k=0

Fn−k(T
kx) +O(1/n)

= − 1

n

n−1∑
k=0

(Fn−k − F∞)(T kx)− 1

n

n−1∑
k=0

F∞(T kx) +O(1/n),
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where the last sum on the RHS converges by the ergodic theorem almost surely to a
constant F ∗ as µ is ergodic. To estimate the first sum

Sn = − 1

n

n−1∑
k=0

(Fn−k − F∞)(T kx)

on the RHS put ϕn = supj≥n |Fj − F∞| and observe that by the Martingale Convergence
Theorem ϕn → 0 almost surely as n → ∞. Since ϕn ≤ 2ϕ conclude by the Dominated
Convergence Theorem that

∫
ϕn dµ → 0 as n → ∞. If N is a large integer then for

n > N :

|Sn| ≤
1

n

n−N∑
k=1

ϕN ◦ T k +
1

n

n−1∑
k=n−N+1

ϕ1 ◦ T k ≤
1

n

n∑
k=1

ϕN ◦ T k +O
(
N

n

)
.

By the Birkhoff Ergodic Theorem, the sum on the RHS converges almost surely to
∫
ϕN dµ

as n→∞ while the error term goes to 0. Hence

lim sup
n
|Sn| ≤

∫
ϕN dµ

almost everywhere. Now let N →∞ which implies that the RHS goes to zero. Thus we
finally get that hn(x)→ F ∗ almost surely as n→∞.

In order to get the convergence in L1 notice that∫
Ω

|Sn| dµ ≤
1

n

n−1∑
k=1

∫
ϕn−k dµ,

where the RHS converges to 0 as n goes to infinity.

Proof of the SMB theorem. It remains to show that the constant F ∗ from the previous
lemma is equal to the entropy. Indeed∫

Ω

hn dµ =

∫
Ω

− 1

n
log µ(An(x)) dµ(x) = − 1

n

∑
A∈An

µ(A) log µ(A) =
1

n
H(An)

which converges to h(µ) as A is a µ-generator.

If the measure is sufficiently well mixing we have indeed the Central Limit Theorem:

Theorem 48. Let µ be a β-mixing probability measure on Ω with respect to a finite,
measurable and generating partition A. Assume that β decays at least polynomially with
power > 6.

If σ > 0 then

P
(
In − nh
σ
√
n
≤ t

)
= N(t) +O(n−κ)

for all t and all
(i) κ < 1

10
− 3

5
1
p+2

if β decays polynomially with power p,

(ii) κ < 1
10

if β decays super polynomially.
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As above let A be a µ-generating partition and denote by An(x) the n-cylinder that
contains x. Then

Rn(x) = τAn(x)(x)

denotes the return time function. In the symbolic description, when every point x is
identified by its trajectory ~x = (. . . , x−1, x0, x1, . . . ) then

Rn(x) = min{j ≥ 1 : xjxj+1 · · ·xj+n−1 = x0x1 · · ·xn−1}

measures the time it takes until one sees the starting n-word again. According to Kac’s
theorem the value of τAn(x) is on average 1/µ(An(x)). Since the SMB theorem says that
µ(An(x)) ∼ e−nh one would expect that Rn(x) ∼ enh. This indeed is true as the following
theorem shows.

Theorem 49. (Ornstein-Weiss [24]) Let µ be ergodic and A a finite µ-generating parti-
tion, then almost surely

lim
n→∞

logRn(x)

n
= h(µ).

Proof. We notice that Rn−1(x) ≤ Rn(x) and also Rn−1 ≤ Rn(x) for all x ∈ Ω. Thus, if

R+(x) = lim sup
n→∞

1

n
logRn(x), R−(x) = lim inf

n→∞

1

n
logRn(x)

then

R+ ◦ T ≤ R+, R− ◦ T ≤ R−

from which it follows that R± are constant almost everywhere as µ is ergodic1. We split
the proof into two parts: In part (I) we show R+ ≤ h and in part (II) we show that
R− ≥ h.

(I) Suppose R+ > h and choose b, c so that R+ > b > c > h. For A ∈ An let

EA = {x ∈ A : Rn(x) ≥ enb}.

Then EA ∩ T jEA = ∅ for j = 1, 2, . . . , S, where S = [enb] − 1. This is because if
x ∈ EA ∩ T jEA 6= ∅ then Rn(x) ≤ j thus contradicting the definition of EA which
demands that Rn be larger than S. Similarly T kEA ∩ T jEA = ∅ for j 6= k, j, k =
0, 1, . . . , S, because (assming k < j) T kEA∩T jEA = T k(EA∩T j−kEA) = ∅. Thus the sets
EA, TEA, T

2EA, . . . , T
SEA are pairwise disjoint. Moreover as EA ⊂ T−j(T jEA) one has

µ(EA) ≤ µ(T−j(T jEA)) = µ(T jEA) for all j = 1, . . . , S, and therefore µ
(⋃S

j=0 T
jEA

)
=∑S

j=0 µ(T jEA) ≥ (S + 1)µ(EA) which implies µ(EA) ≤ 1
S+1
≤ e−nb. Now put

Bn =
{
A ∈ An : µ(A) ≥ e−nc

}
1Suppose R+ were not constant a.s., then the set E = {x ∈ Ω : R+(Tx) < R+(x)} has positive

measure and there exists an a ∈ R so that Ea = {x ∈ Ω : R+(Tx) < a < R+(x)} also has positive
measure. By the Poincaré recurrence theorem almost every x ∈ Ea returns to Ea after finite time. Since
R+(T jx) ≤ R+(Tx) < a∀j ≥ 1 this contradicts the fact that R+(x) > a∀x ∈ Ea.
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which by the drawer principle implies |Bn| ≤ enc. By the theorem of Shannon-McMillan-
Breiman P(x ∈ Ω : x 6∈ Bn i.o.) = 0, where Bn =

⋃
A∈Bn A. If

Gn =
⋃
A∈Bn

EA

then

µ(Gn) ≤ |Bn| max
A∈An

µ(EA) ≤ ence−nb = e−(b−c)

decays exponentially fast as b− c > 0. Thus
∑

n µ(Gn) <∞ and by Borel-Cantelli P(x ∈
Ω : x ∈ Gn i.o.) = 0. Moreover, if we put Hn =

⋃
A∈An EA = {x ∈ Ω : Rn(x) ≥ ebn}, then

P(x ∈ Ω : x ∈ Hn i.o.) ≤ P(x ∈ Ω : x ∈ Gn i.o.) + P(x ∈ Ω : x ∈ Bc
n i.o.) = 0

as Gn = Hn ∩Bn and Hn ∩Bc
n ⊂ Bc

n. Hence R+ ≤ h almost surely.

(II) Now suppose R− < h and let b, c be so that R− < b < c < h. For N ∈ N put

DN =
{
x ∈ Ω : Rn(x) ≤ enb for some n ∈ [1, N ]

}
.

Obviously µ(DN) → 1− as N → ∞. Let ε > 0, then µ(DN) > 1 − ε
2

for all N large
enough. Define

EL =

{
x ∈ Ω :

1

L

L−1∑
j=0

χDN (T jx) > 1− ε

}
.

By the pointwise ergodic theorem µ(EL)→ 1− as L→∞.
Now one does a parsing argument to estimate the exponential growth rate of

A(L) =
{
A ∈ AL : EL ∩ A 6= ∅

}
.

A cylinder A ∈ A(L) is given by an L-word x0x1 · · ·xL−1 (i.e. A = U(x0x1 · · ·xL−1), where
xj ∈ {1, . . . ,M} and M = |A|). The word is parsed in the following way and then we
estimate the number of ways such an L-word can be composed in order to lie in A(L).
(A) The first block: If x 6∈ DN then the first block is the single-element block x0. If
x ∈ DN then the first block is x0x1 · · ·xm−1 where m ∈ [1, N ] is so that Rm(x) ≤ emb.
(B) Recursively: Assume the string x0x1 · · ·xk−1, k ≤ L−N , has been parsed, then the
next block is xk if T kx 6∈ DN and it is xkxk+1 · · ·xk+m−1 if T kx ∈ DN where m ≤ N is so
that Rm(x) ≤ emb.
(C) The remaining symbols of which there are at most N many will not be parsed.

Now we estimate the number of possibilities for such L-words.
(A) There are at most εL single-element blocks. Each can be filled with any of the M
symbols of A. The number C0 of configurations of these at most εL many single-element
blocks is bounded by

C0 ≤
[εL]∑
j=0

(
L
j

)
≤ εL

(
L

[εL]

)
≤ c1

√
L

√
ε√

1− ε

(
1

(1− ε)1−εεε

)L
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for some constant c1, using Stirling’s formula j! ∼
√

2πjjje−j. The total combinatorial
contribution from the single-element blocks amounts to a factor of (ε is small)

CA ≤ c1M
εL

(
1

(1− ε)1−εεε

)L
.

(B) Denote the length of the ‘long’ (i.e. not single-element) blocks by mj, where j =
1, 2, . . . , r, r being the total number of non-single-element blocks. By construction mj ≤
N . Since the return time Rmj is bounded by emjb, the jth word (which has length mj)

can be chosen in at most emjb many different ways because it is repeated after no more
than emjb time to its ‘right’. The total number of ways to fill all r words is

CB ≤
r∏
j=1

emjb = e
∑r
j=1mjb ≤ ebL.

(C) The remaining symbols between the last ‘long’ word that begins on a coordinate
< L−N and ends on coordinate L− 1, of which there are no more than N many, can be
filled in at most

CC ≤MN

many different ways.
The three estimates combined give

|A(L)| ≤ CACBCC ≤ c1M
N+εLebL

(
1

(1− ε)1−εεε

)L
or, taking logarithms,

log |A(L)|
L

≤ b+
∣∣log(1− ε)1−εεε

∣∣+ ε logM +
1

L
(c1 +N logM) .

As L → ∞ the last term vanishes and since limε→0+(1 − ε)1−εεε = 1 we get that for all
ε > 0 small enough | log(1− ε)1−εεε| < b−c

8
and ε logM < b−c

8
. The value of ε determines

the choice of N . Hence for all L large enough

log |A(L)|
L

< b+
b− c

2
=
b+ c

2
.

If
BL =

{
A ∈ AL : µ(A) ≤ e−Lc

}
,

then by the Shannon-McMillan-Breiman theorem P(x ∈ Ω : x 6∈ BL i.o.) = 0 where
BL =

⋃
A∈BL A. If we put GL = BL ∩ A(L) and GL =

⋃
A∈GL A then

µ(GL) ≤ |A(L)| · e−Lc ≤ eL
b+c
2 e−Lc = e−L

c−b
2

which goes to zero exponentially fast as c > b. Thus
∑

L µ(GL) <∞ and by Borel-Cantelli
P(x ∈ Ω : x ∈ GL i.o.) = 0. Since also P(x ∈ Ω : x ∈ GL \ BL i.o.) ≤ P(x ∈ Ω : x 6∈
BL i.o.) = 0 we conclude that R− ≥ h.

This forces R+ = R− = h.

This theorem was by Ornstein and Weiss [25] later extended to infinite partitions (alpha-
bets).
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Theorem 50. (Ornstein 1969) Let (Σ1, µ1), (Σ2, µ2) be two Bernoulli shifts. Then
h(µ1) = h(µ2) if and only if the two Bernoulli shifts are isomorphic (i.e. there exists
a measure preserving and invertible map ϕ : Σ1 → Σ2).

There are several proofs of this famous theorem all of which are very long (see e.g. [?, ?]).
We will skip the proof and just give an example. Let Σ1 = {1, 2, 3, 4}Z and µ1 given by the
probability vector (1

4
, 1

4
, 1

4
, 1

4
). Let Σ2 = {1, 2, 3, 4, 5}Z and µ2 be given by (1

2
, 1

8
, 1

8
, 1

8
, 1

8
).

Then h(µ1) = 41
4
| log 1

4
| = 2 log 2 and h(µ2) = 1

2
| log 1

2
|+ 41

8
| log 1

8
| = 2 log 2 are equal. By

the isomorphism theorem the two Bernoulli shifts are isomorphic. Meschalkin gave a nice
description of how such an isomorphism can be constructed.

We give a short description of the Lempel-Ziv compression algorithm. Assume Σ = {0, 1}N
and let ~x ∈ Σ, then ~x = x0x1x2 · · · is parsed into words w1, w2, . . . in the following way.
One puts w1 = x1 for the first word and then defines recursively wj = wkjx`j as the word
which has not been seen previously and which reduces to a word wkj which has already

been seen if its last symbol x`j is removed. Clearly, `j =
∑j

i=1 |wi|, where |wi| denotes
the length of the ith word wi. In the new description, the word wj contains two pieces
of information, namely the position kj of its known portion wkj (which here requires
[log2 j]+1 many binary digits) and the new additional symbol x`j (which requires a single
binary digit). This algorithm is known to be optimal in the limit (see e.g. [?]) and is in
its various implementations widely used in practice.

8. Pressure and topological entropy

8.1. Pressure. In this section we assume that Ω is a compact metric space with a metric
d(·, ·) which induces the σ-algebra. We denote be C(Ω) the set of continuous functions on
Ω. In section 6 we have shown that the probability measures form a compact set in the
weak* topology. For a continuous map T : Ω → Ω, the set of invariant measures M (T )
is not empty (Theorem of Krylov and Bogolioubov).

Let A be a finite partition of Ω and An its nth join. If f is a continuous function on Ω
then for sets A ⊂ Ω we write

f(A) = sup
x∈A

f(x).

Definition 51. For a finite partition A and f ∈ C(Ω) we call

Zn(f,A) =
∑
A∈A

ef
n(A)

the nth partition function of f with respect to A.

Lemma 52. The limit

P (f,A) = lim
n→∞

1

n
logZn(f,A)

exists and is called the pressure of f with respect to A.

Proof. We have to prove the existence of the limit which we do by establishing the
subadditivity of the sequence an = logZn(f,A). Let us recall that An+m = An ∨ T−nAm
which implies that for every C ∈ An+m there are A ∈ An, B ∈ Am so that C = A∩T−nB.
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Since fn+m(A∩ T−nB) ≤ fn(A) + fm(B) we conclude that the Zn are submultiplicative:
as

Zn+m(f,A) =
∑

C∈An+m
ef

n+m(C)

=
∑
A∈An

∑
B∈Am

ef
n+m(A∩T−nB)

≤
∑
A∈An

∑
B∈Am

ef
n(A)+fm(B)

=
∑
A∈An

ef
n(A)

∑
B∈Am

ef
m(B)

= Zn(f,A)Zm(f,A)

and by taking logarithms

an+m = logZn+m ≤ logZn + logZm = an + am

which shows subadditivity. The limit is then ensured by the arithmetic lemma from
section 7:

lim
n→∞

1

n
logZn(f,A) = inf

n∈N

1

n
logZn(f,A).

Remark. As f ≥ −|f |∞ we get Zn ≥ e−n|f |∞ which implies P (f) ≥ −|f |∞. We also have
Zn ≤ en|f |∞|An| ≤ en|f |∞|A|n which yields P (f) ≤ |f |∞ + log |A|.

Definition 53. P (f) = sup{Ak} lim supk→∞ P (f,Ak) is called the pressure of f , where

the supremum is over all sequences of partitions Ak for which diamAk → 0+ as k →∞.

(diamA = maxA∈A diam(A))

Lemma 54. If {Ak : k} is a sequence of partitions whose diameters go to zero, then
P (f) = limk P (f,Ak).

Proof. If {Bn : n} is any sequence of partitions (so that diamBk → 0) then we have to
show that every ε > 0

lim sup
n

P (f,Bn) ≤ lim sup
k

P (f,Ak) + ε,

or for every P (f,Bn) ≤ P (f,Ak) + ε for all k large enough. Let ε > 0 and since f is
continuous on compact Ω there exists δ > 0 so that |f(x) − f(y)| < ε

2
for all x, y ∈ Ω

for which d(x, y) < δ. We let n be big enough so that diamBn < δ
2

and also let δ′ > 0
(δ′ < δ/2) be small enough so that every B ∈ Bn contains a δ′-ball. Now choose k large
enough so that diamAk < δ′/2. Then for every B ∈ Bn we can find an AB ∈ Ak so that
AB ⊂ B and AB 6= AB′ if B 6= B′. Similarly, for every B ∈ Bmn there exists AB ∈ Amk so
that AB ⊂ B. We can now estimate the ergodic sums for B ∈ Bmn

|fm(B)− fn(x)| < m
ε

2
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for any point x ∈ B. Similarly we get

|fm(AB)− fm(x)| ≤ m
ε

2
where this time x ∈ AB ⊂ B. Hence

|fm(B)− fm(AB)| < mε

for all B ∈ Bmn . Thus

Zm(f,Bn) =
∑
B∈Bn

ef
m(B)

≤
∑
B∈Bn

ef
m(AB)emε

≤
∑
B∈Ak

ef
m(A)emε

= Zm(f,Ak)emε

which implies that P (f,Bn) ≤ P (f,Ak) + ε and since ε > 0 was arbitrary we obtain

lim sup
n

P (f,Bn) ≤ lim sup
k

P (f,Ak).

Since {Bn : n} was arbitrary we get P (f) = lim supk P (f,Ak).

Definition 55. The (finite) partition A is a topological generator if diamAn → 0 as
n→∞.

Theorem 56. If A is a topological generator then P (f) = P (f,A).

Proof. We will show that P (f,Ak) = P (f,A) for every k. The theorem then follows
from the previous lemma. Since

(Ak)n =
n−1∨
j=0

T−j
k−1∨
i=0

T−iA =
n−1∨
j=0

k−1∨
i=0

T−j−iA =
k+n−2∨
j=0

T−jA = An+k−1

we get

Zn(f,Ak) =
∑

A∈An+k−1

ef
n(A) =

∑
A′∈An

∑
A∈An+k−1,A⊂A′

ef
n(A) ≤

∑
A′∈An

ef
n(A′)NA′

and thus Zn(f,Ak) ≤ |A|kZn(f,A) where NA′ = |{A ∈ An+k−1 : A ⊂ A′}| ≤ |A|k. For
the lower bound we obtain

Zn(f,Ak) ≥
∑
A′∈An

∑
A∈An+k−1,A⊂A′

ef
n(A) ≥

∑
A′∈An

ef
n(A′) = Zn(f,A)

since for every A′ ∈ An there is an A ⊂ A′, A ∈ An+k−1, so that fn(A) = fn(A′) (realises
the sup). Taking logarithms and dividing by n yields

1

n
logZn(f,A) ≤ 1

n
logZn(f,Ak) ≤ 1

n
k logM +

1

n
logZn(f,A)

and taking limits yields
P (f,Ak) = P (f,A)
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for any k. The theorem now follows from the previous lemma since diamAk → 0 as A is
generating.

Remarks. (I) P (f + g ◦ T − g) = P (f). This follows from the fact that

(f + g ◦ T − g)n =
n−1∑
j=0

(f ◦ T j + g ◦ T j+1 − g ◦ T j) = fn + g ◦ T n − g

which implies

Zn(f + g ◦ T − g,A) ≤
∑
A∈An

ef
n(A)+g(TnA)−g(A) = Zn(f,A)eO(2|g|∞).

Taking logarithms and dividing by n yields

1

n
logZn(f + g ◦ T − g,A) =

1

n
Zn(f,A) +O

(
2|g|∞
n

)
which gives the result when n→∞. The function g ◦ T − g is a coboundary.
(II) P (f + c) = P (f) + c for constants c. This follows from

Zn(f + c,A) =
∑
A∈An

ef
n(A)+nc = Zn(f,A)enc.

Taking logarithms, dividing by n and letting n go to infinity makes the statement follow.
(III) In the special case when f = 0

P (0) = lim
n→∞

1

n
log |An| = htop

is called the topological entropy and captures the exponential growth rate of the joins of
A.

8.2. Variational principle.

Theorem 57. (Variational principle, Walters 1973)

P (f) = sup
µ

(
h(µ) +

∫
Ω

f dµ

)
where the supremum is over all T -invariant probability measures µ (h(µ) is the measure
theoretic entropy of µ).

In the special case when f = 0 then we get the topological entropy is htop = supµ h(µ)
where again the supremum is over all invariant probability measures.

Definition 58. (I) If h(µ) + µ(f) = P (f) then µ is an equilibrium state.
(II) If h(µ) = htop then µ is a measure of maximal entropy.

Bernoulli shift: Before we prove the theorem, let us do the Bernoulli shift as an example.
Let Σ = {1, . . . ,M}Z, σ the left shift andA = {U(i) : i} the standard generating partition.



NOTES FOR MATH 625, FALL 2018 41

Let f be a function that only depends on the zeroth coordinate, i.e. f(~x) = f(x0) = fx0 .
Since the nth partition function is

Zn =
∑
x1···xn

ef
n(x1···xn) =

∑
x1···xn

efx1+···+fxn =

(∑
i

efi

)
= Zn

1

we see that the pressure is P (f) = logZ1 = log
∑

i e
fi (Z1 =

∑
i e
fi). We now look for

an equilibrium state µ which will be a Bernoulli measure induced by a probability vector
(p1, . . . , pM). With a Lagrange multiplier λ the derivatives

∂

∂pi

(
h(µ) +

∫
f dµ+ λ

∑
j

pj

)
=

∂

∂pi

(
−
∑
j

pj log pj +
∑
j

fjpj + λ
∑
j

pj

)
= − log pi − 1 + fi + λ

have to be zero for every i, which yields log pi = fi + λ − 1 or pi = efieλ−1. The
normalisation condition is 1 =

∑
i pi =

∑
i e
fieλ−1 = Z1e

λ−1, where Z1 =
∑

i e
fi = e1−λ.

Hence the probabilities pi = efi
Z1

define the invariant measure µ. We can verify

h(µ) = −
∑
i

pi log pi

= −
∑
i

efi

Z1

log
efi

Z1

= − 1

Z1

∑
i

efi(fi − logZ1)

= −
∑
i

fipi + logZ1

= P (f)−
∫
f dµ

which means that µ is indeed an equilibrium state for f .
Let us now introduce a parameter t > 0 and denote by µtf the equilibrium state for

the function tf . With Z1(tf) =
∑

i e
tfi we obtain

d

dt
logZ1(tf) =

1

Z1(tf)

d

dt

∑
i

etfi =
1

Z1(tf)

∑
i

fie
tfi = µtf (f).

One also has h(µtf ) = logZ1(tf)− µtf (tf) which, when differentiated, yields:

d

dt
h(µtf ) = µtf (f)− d

dt
tµtf (f) = µtf (f)− µtf (f)− t d

dt
µtf (f)

and thus
d

dt
h(µtf ) = t

d

dt
µtf (−f).

If we interpret t as the inverse temperature 1
T

with T being the absolute temperature,
then this last identity looks familiar to the thermodynamic relation

dS =
1

T
dQ
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where S is the thermodynamic entropy and dQ is the heat energy.

For the proof of the variational principle we will need the following arithmetic lemma.

Lemma 59. Let pi be weights (
∑

i pi = 1). Then for any ai ∈ R+ one has∑
i

pi(ai − log pi) ≤ log
∑
i

eai

with equality if and only if pi = eai
Z

, where Z =
∑

i e
ai.

In the special case when ai = 0, i = 1, . . . ,M , then −
∑

i pi log pi ≤ logM with equality
if and only if pi = 1

M
for all i.

Proof. Recall that the function ϕ(t) = −t log t for t > 0 and ϕ(0) = 0 is concave down
on [0,∞), i.e. if qi are weights and bi ≥ 0 arbitrary, then

∑
i qiϕ(bi) ≤ ϕ (

∑
i qibi) and

equality if and only if all the bi are equal. Now put qi = eai
Z

, where Z =
∑

i e
ai , and

bi = piZ
eai

= pi
qi

. Clearly qi > 0 and
∑

i qi =
∑

i
eai
Z

= Z
Z

= 1, i.e. the qi are weights. Since∑
i

qibi =
∑
i

pi
qi
qi =

∑
i

pi = 1

one has by concavity

0 = ϕ(1) = ϕ

(∑
i

qibi

)
≥
∑
i

qiϕ(bi)

which implies

0 ≥
∑
i

qi

(
−piZ
eai

)
log

piZ

eai
= −

∑
i

eai

piZ

piZ

eai
(log pi + logZ − ai)

and finally gives

logZ ≥
∑
i

pi(ai − log pi).

Note that above in the concavity argument one gets equality if and only if the bi = pi
Z
eai

are all equal. Suppose bi = α∀i then pi = α e
ai

Z
and 1 =

∑
i pi =

∑
i α

eai
Z

= α implies that

pi = eai
Z
∀i.

Lemma 60. Let µ, ν ∈ M (T ), p + q = 1, p, q ≥ 0. Then pH(µ,An) + qH(ν,An) ≤
H(pµ+ qν,An) and ph(µ) + qh(ν) ≤ h(pµ+ qν).

Proof. By concavity of the function ϕ(t) = −t log t (ϕ(0) = 0) one has

H(pµ+ qν,An) =
∑
A∈An

ϕ(pµ(A) + qν(A))

≥
∑
A∈An

(pϕ(µ(A)) + qϕ(ν(A)))

= pH(µ,An) + qH(ν,An).

For the second statement divide by n and take the limit n→∞.
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Similarly one gets for a larger (even countably infinite) number of measures µj ∈M (T )
and weights pj ≥ 0 (

∑
j pj = 1) that

∑
j pjH(µj,An) ≤ H(

∑
j pjµj,An) and

∑
j pjh(µj) ≤

h(
∑

j pjµj).

Proof of the variational principle. We prove the theorem in two parts, first the lower
bound on the pressure and then the upper bound on the pressure. Let A be a topological
generator.

Part (I): We show that P (f) ≥ h(µ) +
∫

Ω
f dµ for every invariant measure µ. Let µ be

an invariant measure, then
∫
fn dµ = n

∫
f dµ as

∫
f ◦ T j dµ =

∫
f dµ and therefore

1

n
H(An) +

∫
f dµ =

1

n

(
H(An) +

∫
fn dµ

)
=

1

n

∑
A∈An

(
−µ(A) log µ(A) +

∫
A

fn dµ

)
≤ 1

n

∑
A∈An

µ(A) (− log µ(A) + fn(A)) .

The arithmetic lemma with the weights pA = µ(A) and the numbers aA = fn(A), A ∈ An
yields

1

n
H(An) +

∫
f dµ ≤ 1

n
log

∑
A∈An

ef
n(A).

and letting n→∞ one gets h(µ) +
∫
f dµ ≤ P (f).

Part (II): Here we produce an invariant measure µ for which P (f) ≤ h(µ)+
∫
f dµ. For

every A ∈ An pick an arbitrary point yA ∈ A and put

νn =
1

Ẑn

∑
A∈An

ef
n(yA)δyA

where δyA is the point mass at yA and Ẑn =
∑

A∈An e
fn(yA) is the normalising term. Now

we define

µn =
1

n

n−1∑
j=0

νn ◦ T j.

By the arithmetic lemma we obtain for the measure νn

1

n

(
H(νn,An) +

∫
fn dνn

)
=

1

n

∑
A∈An

νn(A) (− log νn(A) + fn(yA)) =
1

n
Ẑn,

where we used the weights pA = νn(A) and the values aA = ef
n(yA) and got equality

because pA = ef
n(yA)/Ẑn. To compare Ẑn to the partition function Zn let us note that

for ε > 0 there exists δ > 0 so that |f(x)− f(y)| < ε if d(x, y) < δ. As A is a generator,
we can assume that diamA < δ because otherwise we replace A by a join Ak which has
small enough diameter. Since supA∈A supx,y∈A |f(x)−f(y)| < ε we get Ẑn = Zne

O(nε) and

therefore | log Ẑn − logZn| < nε.
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In order to replace νn in the estimates above by µn we use a summation trick due to
Misurewicz. Let m > 0 (m� n) and put p(j) =

[
n−j
m

]
for j = 0, 1, . . . ,m. Then one can

write

An =

p(j)−1∨
k=0

T−(km+j)Am
 ∨ ∨

k∈Rj

T−jA,

where Rj = {0, 1, 2, . . . , j − 1} ∪ {p(j)m + j + 1, p(j)m + j + 2, . . . , n} is the remainder
set (|Rj| ≤ 2m). Then

H(νn,An) ≤
p(j)−1∑
k=0

H
(
νn, T

−(km+j)Am
)

+H

 ∨
k∈Rj

T−jA

 ,

where the last term on the RHS is estimated above by log
∣∣∣∨k∈Rj T

−jA
∣∣∣ ≤ log |A||Rj | ≤

2m log |A|. Summation over j = 0, 1, . . . ,m− 1 yields

mH(νn,An) ≤
m−1∑
j=0

p(j)−1∑
k=0

H
(
νn, T

−(km+j)Am
)

+O(m2)

By convexity of the entropy function

m

n
H(νn,An) ≤ H

 1

n

m−1∑
j=0

p(j)−1∑
k=0

T km+jνn,Am
+O

(
m2

n

)

= H

(
1

n

n−1∑
i=0

T iνn,Am
)

+O
(
m2

n

)
= H (µn,Am) +O

(
m2

n

)
.

Since 1
n
(H(νn,An) +

∫
fn dνn) = log Ẑn = logZn +O(ε) one has

1

n
logZn ≤

1

n

(
H(νn,An) +

∫
fn dνn

)
+ ε ≤ 1

m
H(µn,Am) +

∫
f dµn + ε+O

(
m2

n

)
as 1

n

∫
fn dνn =

∫
f dµn. Let µnj → µ in the weak* topology along a convergent subse-

quence nj and one obtains

P (f,A) ≤ 1

m
H(µ,Am) +

∫
f dµ+ ε.

Letting m→∞ yields

P (f,A) ≤ h(µ) +

∫
f dµ+ ε

as A is a generator. The result follows as ε > 0 was arbitrary. The limiting measure is
an equilibrium state for f as is any other accumulation point of the sequence {µn : n}.

Remark: Oftentimes the pressure is introduced using separated and spanning sets. We
say a set Eε,n ⊂ Ω is (ε, n)-separated if for every x, y ∈ Eε,n, x 6= y one has d(T jx, T jy) ≥ ε
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for j = 0, 1, . . . , n− 1. Similarly, a set Fε,n ⊂ Ω is (ε, n)-spanning if for every x ∈ Ω there
exists a y ∈ Fε,n so that d(T jx, T jy) < ε for j = 0, 1, . . . , n − 1. Equivalently one can
say that Fε,n is an (ε, n)-spanning set if Ω =

⋃
x∈Fε,n Bε,n(x), where Bε,n(x) = {y ∈ Ω :

dn(x, y) < ε} is an (ε, n)-Bowen ball given by the metric dn(x, y) = max0≤j<n d(T jx, T jy).
One then defines

Zε,n(f) = sup
Eε,n

∑
x∈Eε,n

ef
n(x)

where the supremum is over all (ε, n)-separated sets Eε,n. The pressure is then

P (f) = lim
ε→0

lim
n→∞

1

n
logZε,n(f)

and the variational principle applies (see [?]). In a similar way one can use minimal
spanning sets. If the map T is expansive, then the limit ε → 0 can is achieved if ε is
an expansive constant. T is expansive if there exists an ε > 0 so that d(T jx, tjy) < ε∀j
implies that x = y (and such ε is then an expansive constant.

8.3. The Parry measure. We look at the equilibrium states on a subshift of finite type
for locally constant functions. The subshift Σ = {~x ∈ {1, . . . ,M}Z : Axixi+1

= 1∀i} are
the doubly infinite sequences over an alphabet with M elements and M ×M -transition
matrix A. We assume that A is irreducible and aperiodic, that is An > 0 for all large
enough n. The usual left shift map is σ and A = {U(i) : i} is a topologically generating
partition.

Let f : Σ → R be locally constant. We can assume that f depends only on the first
two coordinates: f(~x) = f(x0, x1) = fx0x1 . (f is locally constant if it depends on only
finitely many coordinates. A recoding can reduce this to only two coordinates.) Put
B for the M × M -matrix with the entries Bij = Aije

fij . Clearly B is non-negative,
irreducible and aperiodic and thus has by the theorem of Perron-Frobenius a simple
largest eigenvalue λ ∈ (0,∞) and all the other eigenvalues have modulus strictly less
than λ. There are also strictly positive left and right eigenvectors ~v, ~w to the dominating
eigenvalue: ~vB = λ~v,B ~w = λ~w. We can assume that

∑
i viwi = 1. Now define a

probability vector ~p by putting pi = viwi and define the M×M -matrix P by Pij = 1
λ
Bij

wj
wi

.
Then P is a stochastic matrix with left eigenvector ~p as

(P1)i =
∑
j

Pij =
1

λwi

∑
j

Bijwj =
1

λwi
λwi = 1

for all i, and also

(~pP )j =
∑
i

piPij =
∑
i

viwi
1

λ
Bij

wj
wi

=
wj
λ

∑
i

viBij =
wj
λ
λvj = pj
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for all j. Thus (P, ~p) defines a σ-invariant probability measure µ on Σ which on cylinder
sets is given by

µ(U(x0 · · ·xn−1)) = px0Px0x1Px1x2 · · ·Pxn−2xn−1

=
1

λn−1
vx0wx0Bx0x1

wx1
wx0

Bx1x2

wx2
wx1
· · ·Bxn−2xn−1

wxn−1

wxn−2

=
1

λn−1
vx0Bx0x1Bx1x2 · · ·Bxn−2xn−1wxn−1

=
1

λn−1
vx0e

fx0x1+fx1x2+···+fxn−2xn−1wxn−1

=
1

λn−1
vx0e

fn−1(x0x1···xn−1)wxn−1 .

By section 7 its entropy is h(µ) = −
∑

ij piPij logPij for which we can also write (Pij =
1
λ
Aije

fij wj
wi

)

h(µ) = −
∑
ij

piPij log
1

λ
Aije

fij
wj
wi

= log λ−
∑
ij

piPijfij −
∑
ij

piPij logAij
wj
wi

= log λ−
∫

Σ

f dµ−
∑
ij

piPij logwj +
∑
ij

piPij logwi

= log λ−
∫

Σ

f dµ

since
∑

i piPij = pj and
∑

j Pij = 1. Or log λ = h(µ)+
∫
f dµ, where log λ = limn→∞ log ‖Bn‖

is the spectral radius of B. Notice that

(Bn)ij =
∑

x0x1···xn

Bx0x1Bx1x2 · · ·Bxn−1xn

where the sum is over all (n + 1)-words x0x1 · · ·xn which begin with x0 = i and end on
xn = j. Thus

‖Bn‖ =
∑
ij

(Bn)ij =
∑

x0x1···xn

Bx0x1Bx1x2 · · ·Bxn−1xn

=
∑

x0x1···xn

efx0x1+fx1x2+···+fxn−1xn

=
∑

x0x1···xn

ef
n(x0x1···xn)

= Zn(f,A),

where the sum is over all (n + 1)-words in Σ. We conclude that log λ = P (f) or the
leading eigenvalue of B is λ = eP (f). The measure µ is called the Parry measure.

The special case f = 0 gives the measure of maximal entropy. Here B = A and P is
the stochastic matrix given by Pij = Aij

wj
wi

where ~w is the right eigenvector of A to its
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leading eigenvalue λ which satisfies

log λ = lim
n→∞

1

n
log ‖An‖.

The entries (An)ij count the number of (n + 1)-words in Σ that begin with the symbol i
and end with the symbol j. Thus the norm ‖An‖ is the total number of (n + 1)-words
the space Σ allows (‖An‖ = |An+1|). If ~v denotes the left eigenvector for A to the leading
eigenvalue λ then, with suitable normalisation, pi = viwi, i = 1, . . . ,M , defines a strictly
positive probability vector ~p. The measure of maximal entropy µ is then defined by (P, ~p)
on cylinder sets by

µ(U(x0x1 · · ·xn−1)) =
1

λn−1
vx0wxn−1 .

Moreover log λ = htop.

Theorem 61. If the entropy function µ 7→ h(µ) is upper semi continuous, then there
exists at least one equilibrium state for f ∈ C(Ω).

Proof. For δ > 0 put

Sδ = {µ ∈M (T ) : h(µ) + µ(f) ≥ P (f)− δ} .
It follows from the variational principle, Theorem 57 Sδ 6= ∅. We moreover note that
Sδ is convex, since for µ, ν ∈ M (T ) and p + q = 1, p, q ≥ 0 one has by convexity of the
entropy function (Lemma 60)

h(pµ+ qν) + (pµ+ qν)(f) ≥ ph(µ) + qh(ν) + pµ(f) + qν(f) ≥ P (f)− δ.
Hence pµ + qν ∈ Sδ. Also, Sδ is compact since if µn ∈ Sδ is a sequence which converges
to µ, then by the upper semi continuity:

h(µ) + µ(f) ≥ lim sup
n→∞

(h(µn) + µn(f)) ≥ P (f)− δ,

and hence µ ∈ Sδ. Since the Sδ form a nested sequence we conclude that

{µ ∈M (T ) : h(µ) + µ(f) = P (f)} =
⋂
δ>0

Sδ

is non-empty.

Assuming upper semi continuity of the entropy function one can prove the dual variational
principle

h(µ) = inf
f∈C(Ω)

(P (f)− µ(f))

for every T -invariant probability measure µ.

Lemma 62. Assume the entropy function h is upper semi continuous. Then the pressure
function P (f) is continuous. That is, let f, gn ∈ C(Ω) so that |gn|∞ → 0 as n → ∞.
Then
(i) P (f + gn)→ P (f) as n→∞.
(ii) If µn are equilibrium states for f + gn and µn → µ (weakly) for some µ, then µ is an
equilibrium state for f .
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Proof. To get continuity of the pressure function we use the variational principle:

P (f + gn) = sup
ν∈M (T )

(h(ν) + ν(f + gn))

≥ sup
ν

(h(ν) + ν(f))− |gn|∞

= P (f)− |gn|∞.

Similarly one shows the upper bound and obtains

|P (f + gn)− P (f)| ≤ |gn|∞ → 0

as n → ∞. In order to show that µ = limn→∞ µn is an equilibrium state for f we need
to verify the following lower bound where we use the upper semicontinuity of the entropy
function:

h(µ) + µ(f) ≥ lim sup
n→∞

(h(µn) + µn(f))

= lim sup
n

(h(µn) + µn(f + gn)− µn(gn))

≥ lim sup
n

((h(µn) + µn(f + gn))− |gn|∞)

≥ lim sup
n

(P (f + gn)− |gn|∞)

≥ lim sup
n

(P (f)− 2|gn|∞) = P (f).

Hence µ is an equilibrium state for f .

Corollary 63. Assume the entropy function h is USC. Let f, gn ∈ C(Ω) so that |gn|∞ → 0
and µn the equilibrium states for f + gn.

If µ is a unique equilibrium state for f , then µ = limn→∞ µn.

Proof. By the previous lemma, a limit point ν of {µn : n} is an equilibrium state for f .
Hence ν = µ.

Theorem 64. Assume the entropy function h is USC and µ is a unique equilibrium state
for f ∈ C(Ω). For any g ∈ C(Ω) one the derivative exits:

lim
t→0

P (f + tg)− P (f)

t
= µ(g).

Proof. Assume t > 0 and let µt be an equilibrium state for f + tg. Then

µt(f + tg) + h(µt) = P (f + tg)

µt(f) + h(µ) ≤ P (f)

which yields

tµt(g) ≥ P (f + tg)− P (f).

Similarly one obtains from

µ(f + tg) + h(µ) ≤ P (f + tg)

µ(f) + h(µ) = P (f)
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the bound

tµ(g) ≤ P (f + tg)− P (f).

Hence

µ(g) ≤ P (f + tg)− P (f)

t
≤ µt(g)

for positive t. Similar estimates from above and below can be obtained for t < 0. If we
let t→ 0 then by Lemma 62 and its corollary we obtain µ = limt→0 µt and therefore

µ(g) ≤ lim
t→0

P (f + tg)− P (f)

t
≤ µ(g).

This proves the derivative and its limit. .

9. The transfer operator method for subshifts of finite type

9.1. Transfer operator. Let A be an M ×M -transition matrix and put

Σ+ =
{
~x ∈ {1, . . . ,M}N : Axixi+1

= 1∀i ≥ 1
}

for the one-sided shift space. The left shift map σ : Σ+ → Σ+ is defined as before
((σx)i = xi+1∀i) but now is only locally invertible. It is an at most M to 1 map. In
fact σ−1x = {ηx : η ∈ {1, . . . ,M}} where it is understood that the point ηx lies in Σ+,
i.e. Aηx1 = 1. Similarly σ−nx = {ηx}, where η = η1η2 · · · ηn ranges over all permissible
n-words in Σ+ that satisfy Aηnx1 = 1. The topology is generated by cylinder sets U(η)
where η ranges over all finite words in Σ+. Let f ∈ C(Σ+) be a (real valued) function on
Σ+, then

varnf = sup
xi=yi,i=1,...,n

|f(x)− f(y)| = max
A∈An

sup
x,y∈A

|f(x)− f(y)|

is the n-variation of f . For ϑ ∈ (0, 1) we put

|f |ϑ = sup
n
ϑ−nvarnf

and define a norm

‖f‖ϑ = |f |∞ + |f |ϑ.
The space

Cϑ(Σ+) =
{
f ∈ C(Σ+) : ‖f‖ϑ <∞

}
is the space of ϑ-Hölder continuous functions on Σ+ which forms in fact a Banach space
(Exercise). Let f ∈ Cϑ(Σ+) and define the transfer operator Lf on Cϑ(Σ+) by

(Lfϕ)(x) =
∑

y∈σ−1x

ef(y)ϕ(y), ϕ ∈ Cϑ(Σ+).

We also get

(L2
fϕ)(x) =

∑
y∈σ−1x

ef(y)(Lfϕ)(y) =
∑

y∈σ−1x

ef(y)
∑

z∈σ−1y

ef(z)ϕ(z) =
∑

z∈σ−2x

ef(σz)+f(z)ϕ(z),

as σz = y, and inductively (Lnϕ)(x) =
∑

y∈σ−nx e
fn(y)ϕ(y).

Lemma 65. L maps Cϑ(Σ+) into Cϑ(Σ+).
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Proof. Let ϕ ∈ Cϑ(Σ+), then

|Lϕ|∞ ≤ |ϕ|∞
∑

y∈σ−1x

ef(y) ≤M |ϕ|∞e|f |∞ <∞

as L1(x) ≤ c1∀x ∈ Σ+ for a constant c1 < ∞. To get a bound on the variation let
x, y ∈ Σ+ so that xi = yi∀i ≤ n for some n. Then for some constants c2, c3, c4 independent
of ϕ:

|Lϕ(x)− Lϕ(y)| =

∣∣∣∣∣∑
η

(
ϕ(ηx)ef(ηx) − ϕ(ηy)ef(ηy)

)∣∣∣∣∣
≤

∑
η

ef(ηx)|ϕ(ηx)− ϕ(ηx)|+ |ϕ(ηy)|
∑
η

∣∣ef(ηx) − ef(ηy)
∣∣

≤
∑
η

ef(ηx)varn+1ϕ+ |ϕ|∞
∑
η

ef(ηy)
∣∣1− ef(ηx)−f(ηy)

∣∣
≤ L1(x)varn+1ϕ+ c2|ϕ|∞L1(y)varn+1f

≤ c3|ϕ|ϑϑn+1 + c4|ϕ|∞ϑn,

where we used that f(ηx) − f(ηy) = O(varn+1f) = O(ϑn+1). Thus varnLϕ ≤ c5‖ϕ‖ϑϑn
(for some c5) and consequently ‖Lϕ‖ϑ <∞.

9.2. Ruelle’s Perron-Frobenius theorem.

Theorem 66. (Ruelle’s Perron-Frobenius theorem) Let A be irreducible and aperiodic
and f ∈ Cϑ(Σ+). Then:
(I) There exists a simple real positive eigenvalue λ and a positive h ∈ Cϑ(Σ+) so that
Lh = λh.
(II) There exists a ν ∈ C∗ϑ(Σ+) so that L∗ν = λν.
(III) λ−nLnχ→ ν(χ)h as n→∞ for all χ ∈ Cϑ(Σ+).
(IV) (Quasicompactness) {spectrum of L} \ {λ} is contained in a disk strictly smaller
than λ.

Proof. (I) Let us define the map G on the σ-invariant probability measuresM(σ) on Σ+

by

G(µ) =
L∗µ
L∗µ(1)

.

SinceM(σ) is a convex and compact set (in the weak topology), by Schauder-Tychonoff2

there exists a fixed point ν ∈ M(σ), that is G(ν) = ν. Consequently L∗ν = λν, where
λ = L∗ν(1) ∈ (0,∞)

Now we prove the existence of h. Put

Bn = exp

(
|f |ϑ

ϑn

1− ϑ

)
= exp

(
|f |ϑ

∞∑
k=n

ϑk

)
= Bn+1e

|f |ϑϑn

2It says that a continuous map from a convex compact Banach space into itself has a fixed point (a
generalisation of Brower’s fixed point theorem).
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and
Λ =

{
g ∈ Cϑ(Σ+) : g ≥ 0, ν(g) = 1, g(x) ≤ Bng(y) if xi = yi∀i ≤ n

}
.

Note that Λ is closed and convex. Define the operator M on Λ by Mχ = Lχ
λ

.

Lemma 67. M : Λ→ Λ

Proof. We check the three conditions in the definition of M. First note that Mχ ≥ 0 if
χ ≥ 0 as L is a positive operator. Second we note that ν(Mχ) = 1

λ
ν(Lχ) = 1

λ
L∗ν(χ) =

ν(χ) = 1. Third we check on the regularity condition. Let x, y ∈ Σ+ be so that xi = yi
for i ≤ n for some n, then

Mχ(x) =
1

λ

∑
α

ef(αx)χ(αx)

≤ 1

λ

∑
α

ef(αx)Bn+1χ(αy)

≤ Bn+1

λ

∑
α

χ(αy)ef(αy)ef(αx)−f(αy)

≤ Bn+1

λ

∑
α

χ(αy)ef(αy)e|f |ϑϑ
n+1

≤ Bn

λ
Lχ(y)

= BnMχ(y)

as |f(αx)− f(αy)| ≤ varn+1f ≤ |f |ϑϑn+1.

Lemma 68. There exists a constant K so that |χ|∞ ≤ K for all χ ∈ Λ.

Proof. Let χ ∈ Λ and y and arbitrary point in Σ∗. Since A is irreducible and aperiodic,
there exists and integer N so that AN is strictly positive. So, if x ∈ Σ is chosen then
there exists a point z ∈ σ−nx so that z0 = y0 and therfore g(y) ≤ B0g(z). Moreover

LNχ(x) =
∑

w∈σ−nx

ef
N (w)g(w) ≥ ef

N (z)g(z) ≥ e−N |f |∞B−1
0 g(y)

and since 1
λN

nu(LNχ) = 1 we can choose x ∈ Σ+ so that 1
λN
Lnχ(x) ≤ 1 and therefore conclude that

g(y) ≤ K where K ≤ eN |f |∞λNB0. Since y ∈ Σ+ is arbitrary we get |χ|∞ ≤ K.

Let us now observe that Λ is a family of equicontinuous functions since by the third
property we have

|χ(x)− χ(y)| ≤ (Bn − 1)|χ|∞ ≤ (Bn − 1)K ≤ Ke
1

1−ϑ |f |ϑϑn

for every χ ∈ Λ, every x, y ∈ Σ so that xi = yi∀i ≤ n and every n.
We thus conclude that by the theorem of Arzela-Ascoli, Λ is compact in the | · |∞-

norm. Since moreover Λ is convex, we can apply the theorem of Schauder-Tychonoff and
conclude that M has a fixed point h ∈ Λ: Mh = h. This implies that Lh = λh, where
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λ = |Lh|∞. It remains to show that (a) h is strictly positive, i.e. has no zeroes, and (b) h
is unique up to scalar multiples, i.e. λ is simple.

(a) To get positivity of h let us note that h ≥ 0 as h ∈ Λ and suppose h(x) = 0 for
some x ∈ Σ+. Then for all n = 1, 2, . . . ,

0 = h(x) =
1

λn
Lnh(x) =

1

λn

∑
|α|=n

ef
n(αx)h(αx).

Since ef
n(αx) > 0 for all αx ∈ Σ+ we must have h(αx) = 0 for all α, or h vanishes on σ−nx

for any n ∈ N. Hence h is zero on
⋃
n σ
−nx which is dense in Σ+. Hence h is identically

zero. This is a contradition.
(b) To show that λ is a simple eigenvalue suppose there exists another eigenfunction

h′ ∈ Λ so that Lh′ = λh′. If t = infx
h′(x)
h(x)

then h′ − th ≥ 0 and h′(x) − th(x) = 0 for

some x ∈ Σ+. As h′ − th ≥ 0 ⇒ h′ − th ∈ Λ (by convexity) and L(h′ − th) = λ(h′ − th)
we see that h′ − th is and eigenfunction with a zero and thus by part (a) above must be
identically zero. Thus h′ is a scalar multiple of h. This finishes the proof of part (I) of
the Ruelle Perron-Frobenius theorem.

(II) By standard Banach space theory there exists a ν ∈ C∗ϑ(Σ+) so that L∗ν = λν. We
can normalise so that ν(h) = 1. Then χ → ν(χ)h is the projection onto the eigenspace
spanned by h. This concludes part (II) of the RFP.

(III) To prove convergence λ−nLnχ → ν(χ)h we normalise the transfer operator. Put
f̄ = f − log λ − log h ◦ σ + h which lies in Cϑ since h ∈ Cϑ is strictly positive. Then
f̄n = fn − n log λ + log h ◦ σn + log h. Put L̄ = Lf̄ for the normalised transfer operator
which acts on functions as L̄ϕ = 1

λh
L(hϕ) and for higher powers L̄nϕ = 1

λh
Ln(hϕ). The

leading eigenvalue of L̄ is 1 which has the associated eigenfunction 1 as L̄1 = 1
λh
L(h1) =

1
λh
λh = 1 which means that

∑
α e

f̄(αx) = 1 for all x ∈ Σ+.

Lemma 69. (Lasota-Yorke or Doeblin-Fortet inequality) There exists a constant C so
that ∣∣L̄nϕ∣∣

ϑ
≤ ϑn|ϕ|ϑ + C|ϕ|∞

for all n ∈ N and ϕ ∈ Cϑ.

Proof. To estimate varkL̄nϕ let x, y ∈ Σ+ be so that x1 · · ·xk = y1 · · · yk. Then

∣∣L̄nϕ(x)− L̄nϕ(y)
∣∣ =

∣∣∣∣∣∣
∑
|α|=n

(
ef̄

n(αx)ϕ(αx)− ef̄n(αy)ϕ(αy)
)∣∣∣∣∣∣

≤
∑
|α|=n

ef̄
n(αx)|ϕ(αx)− ϕ(αy)|+

∑
|α|=n

|ϕ(αy)|ef̄n(αy)
∣∣∣1− ef̄n(αy)−f̄n(αy)

∣∣∣
≤ (varn+kϕ)

∑
|α|=n

ef̄
n(αx) + |ϕ|∞

∑
|α|=n

ef̄
n(αy)c1ϑ

n|f̄ |ϑ

≤ ϑn+k|ϕ|ϑ + c1|ϕ|∞ϑn|f̄ |ϑ
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for a constant c1 where we used that

|f̄n(αy)−f̄n(αy)| ≤
n−1∑
j=0

|f̄(σjαy)−f̄(σjαy)| ≤
n−1∑
j=0

varn+k−j f̄ ≤
n−1∑
j=0

ϑn+k−j|f̄ |ϑ ≤
ϑn

1− ϑ
|f̄ |ϑ

(as (σjαx)i = (σjαy)i for i = 1, . . . , n + k − j) and the normalisation
∑
|α|=n e

f̄n(αx) = 1
for all x. Thus

varkL̄nϕ ≤ ϑk(ϑn|ϕ|ϑ + C|ϕ|∞)

which implies |L̄nϕ|ϑ ≤ ϑn|ϕ|ϑ + C|ϕ|∞.

The lemma in particular implies that for every ϕ ∈ Cϑ the set {L̄nϕ : n ∈ N} is equicon-
tinuous and has by the theorem of Arzela-Ascoli an accumulation point `ϕ ∈ C(Σ+)
(though not necessarily in Cϑ(Σ+).)

We will now show that `ϕ is a constant. Indeed, since

inf ϕ ≤ inf L̄ϕ ≤ inf L̄2ϕ ≤ inf L̄3ϕ ≤ · · ·

we conclude inf `ϕ = inf L̄n`ϕ for all n. If x ∈ Σ+ is such that `ϕ(x) = inf `ϕ then

by convexity `ϕ(x) =
∑

y∈σ−nx e
f̄n(y)`ϕ(y) implies `ϕ(y) = inf `ϕ for all y ∈ σ−nx as∑

y∈σ−nx e
f̄n(y) = 1. Since this applies to every n we must have `ϕ = inf `ϕ on the set⋃

n σ
−nx which is dense in Σ+. So `ϕ is constant.

In this way we obtain a positive linear functional ϕ 7→ `ϕ on Cϑ which by Riesz’s
representation theorem implies the existence of a measure µ so that `ϕ =

∫
Σ+ ϕdµ for all

ϕ ∈ Cϑ. We assume µ is normalised to have mass 1. Since `ϕ = L̄`ϕ = `L̄ϕ one has

µ(ϕ) = `ϕ = L̄`ϕ = µ(L̄ϕ) = (L̄∗µ)(ϕ) ∀ϕ ∈ Cϑ
i.e. L̄∗µ = µ.

It remains to verify that µ = hν where ν is the eigenfunctional to the eigenvalue λ
(from part (II)). Indeed, since for every ϕ ∈ Cϑ,(

1

h
µ

)
(ϕ) = µ

(ϕ
h

)
= µ

(
L̄ϕ
h

)
= µ

(
1

λh
Lhϕ

h

)
= µ

(
1

λh
Lϕ
)

=
1

λ

(
L̄∗ 1

h
µ

)
(ϕ)

the functional 1
h
µ ∈ C∗ϑ is an eigenfunctional to the simple eigenvalue λ of the non-

normalised transfer operator L. Since µ(Σ+) = 1 and ν(h) = 1 we conclude that ν = 1
h
µ.

Hence L̄nϕ→ `ϕ = (hν) (ϕ) in the infinity norm as n→∞ for all ϕ ∈ Cϑ. If we write
ψ = hϕ (as h is positive), then

1

λn
Lnψ = h

1

λnh
Ln(hϕ) = hL̄nϕ→ hµ(ϕ) = ν(ψ)h.

This concludes part (III) of the RPF theorem.

(IV) We use the normalised transfer operator L̄ and put

R⊥ = {ϕ ∈ Cϑ : µ(ϕ) = 0}

for the orthogonal complement to the eigenspace R1 in Cϑ. We will show that the spectral

radius of L̄ restricted to R⊥ is strictly less than 1, that is ρ̄ = lim supn→∞ ‖L̄nϕ‖
1
n
ϑ < 1
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for all ϕ ∈ R⊥. Clearly, for ϕ ∈ R⊥ one has by part (III) L̄nϕ → µ(ϕ) = 0 as n → ∞.
By Lasota-Yorke-Doeblin-Fortet∣∣L̄2nϕ

∣∣
ϑ
≤ ϑn

∣∣L̄nϕ∣∣
ϑ

+ C
∣∣L̄nϕ∣∣∞ .

Without loss of generality we can assume that ‖ϕ‖ϑ = 1. By compactness of the unit-
sphere {ϕ ∈ Cϑ : ‖ϕ‖ϑ = 1} in the supremum norm, one has

sup
ϕ∈R⊥,‖ϕ‖ϑ=1

∣∣L̄nϕ∣∣∞ → 0

as n→∞. Thus for ε > 0 small supϕ∈R⊥,‖ϕ‖ϑ=1

∣∣L̄nϕ∣∣∞ < ε for large enough n. Then∣∣L̄2nϕ
∣∣
ϑ
≤ ϑn (ϑn |ϕ|ϑ + C |ϕ|∞) + C

∣∣L̄nϕ∣∣∞
≤ ϑnc1‖ϕ‖ϑ + Cε

≤
√
ε

(c1 ≤ max(1, C)) for n large enough and ε small enough. Therefore

‖L̄2nϕ‖ϑ ≤ |L̄2nϕ|∞ + |L̄2nϕ|ϑ ≤ 2
√
ε

and consequently ‖L̄2nkϕ‖ϑ ≤ (2
√
ε)k‖ϕ‖ϕ for all ϕ ∈ R⊥ and k. Finally we obtain

ρ̄ ≤ limk→∞ ‖ L̄2nk
∣∣
R⊥
‖ 1

2nk ≤ (2
√
ε)

1
2n < 1 (ε small).

As an example we describe an ingredient which is used to determine the page rank in
Google’s search algorithm. The page rank is partly based on the number of times a page
is linked to. Assume there are M websites (M � 1) and add the ‘super site’ 0 to make it
the alphabet A = {0, 1, 2, . . . ,M}. The site 0 makes the system irreducible. One defines
the (M + 1)× (M + 1)-transition matrix A by

Aij =


0 if i = j = 0
1 if either i = 0 or j = 0 but not (0, 0)
1 if i links to j
0 otherwise

and the compatible stochastic matrix B as follows

B00 = 0

B0j =
1

M
for j 6= 0

Bi0 =

{
1 if

∑
j Aij = 1 (i.e. no links from ith site for i ≥ 1)

1− β if
∑

j Aij ≥ 2

Bij =

{
0 if Aij = 0
β∑
k Aik

if Aij = 1
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for a parameter β ∈ (0, 1). Note that this corresponds to choosing a potential function f
which depends only on two coordinates (f(~x) = fx0x1):

f00 = 0

f0j = − logM for j 6= 0

fi0 =

{
0 if

∑
j Aij = 1

log(1− β) if
∑

j Aij ≥ 2

fij =

{
0 if Aij = 0

log β − log
∑

k Aik if Aij = 1
.

By the Perron-Frobenius theorem there exists a left eigenvector ~p = (p0, p1, . . . , pM) so
that ~pB = ~p, B1 = 1. The value pj is the page rank of the jth site (j ≥ 1). To compute
~p one uses the fact that pj = (B∞)ij for any i, where B∞ = limnB

n (see section 4.5).
In practice it is enough to compute some iterates of B in order to get a reasonable
approximation of ~p.

Let us observe that the measure µ from RPF theorem is σ-invariant because

(σ∗µ)(ϕ) = ν(h(ϕ◦σ)) =
1

λ
(L∗ν)(h(ϕ◦σ)) =

1

λ
(L(h(ϕ◦σ))) =

1

λ
ν(ϕLh) = ν(ϕh) = µ(h)

for all ϕ ∈ Cϑ.

9.3. Spectrum of the transfer operator. Next we determine the spectrum of L of
which we currently only know the dominant eigenvalue λ.

Theorem 70. The spectrum of L has a simple dominating eigenvalue λ ∈ (0,∞), discrete
eigenvalues of finite multiplicities in the annulus {z : ϑλ < |z| < λ} and an essential
spectrum that fills the disk {z : |z| ≤ ϑλ}.

Equivalently the spectrum of the normalised transfer operator L̄ has a simple dominating
eigenvalue 1 discrete eigenvalues of finite multiplicities in the annulus {z : ϑ < |z| < 1}
and an essential spectrum that fills the disk {z : |z| ≤ ϑ}. To find the essential spectrum
we proceed in two stages.

Lemma 71. (Keller) The essential spectrum of L has radius ≤ ϑλ.

Proof. We use an essential spectrum formula due to Nussbaum according to which the
essential spectrum has radius ρ which is given by

ρ = inf
{Kn}

lim sup
n→∞

‖Ln −Kn‖
1
n
ϑ

where the infimum is over all sequences {Kn : n} of compact operators in Cϑ. In order
to define a sequence of compact operators Kn which will give us an upper bound, we
introduce the projection Sn given by

Snϕ =
∑
|α|=n

χα
1

µ(χα)

∫
U(α)

ϕ(x) dµ(x)



56 NICOLAI HAYDN

for ϕ ∈ Cϑ, where χα is the characteristic function of the cylinder set U(α). Clearly Snϕ is
a locally constant function on the n-cylinders U(α), where α ranges over all permissible n-
words. The range of Sn is a finite dimensional subspace of Cϑ of dimension |An| = ‖An−1‖.
We define Kn = LnSn which is a compact operator on Cϑ for every n.

If ϕ ∈ Cϑ and ψ = ϕ− Snϕ = (1− Sn)ϕ then

|ψ|∞ ≤ varnϕ ≤ |ϕ|ϑϑn

and

varkψ ≤
{

2|ψ|∞ if k ≤ n
varkϑ if k > n

.

Then |L̄ψ|∞ ≤ |ψ|∞ ≤ |ϕ|ϑϑn and therefore |Lψ|∞ ≤ c1|ϕ|ϑϑnλn. To estimate varkLnψ
let x, y ∈ Σ+ so that x1 · · · xk = y1 · · · yk. Then

|Lnψ(x)− Lnψ(y)| ≤
∑
|α|=n

∣∣efn(αx)ψ(αx)− efn(αy)ψ(αy)
∣∣

≤
∑
|α|=n

ef
n(αx)|ψ(αx)− ψ(αy)|+

∑
|α|=n

|ψ(αy)ef
n(αy)

∣∣1− efn(αx)−fn(αy)
∣∣

≤ (varn+kψ)Ln1(x) + |ψ|∞Ln1(y)c1varkf

≤ c2(ϑλ)nϑk|ϕ|ϑ + c3(ϑλ)n|ϕ|ϑϑk

≤ c4(ϑλ)nϑk|ϕ|ϑ
where we have used that Ln1(x) ≤ c2λ

n for a constant c2. Consequently |Lnψ|ϑ ≤
c4(ϑλ)n|ϕ|ϑ and ‖Lnψ‖ϑ ≤ c5(ϑλ)n‖ϕ‖ϑ. Since Lnψ = Ln(1−Sn)ϕ = (Ln−Kn)ϕ we get
‖Ln −Kn‖ϑ ≤ c6(ϑλ)n and therefore ρ ≤ ϑλ.

Lemma 72. (Parry) The essential spectrum of L contains the disk {z : |z| < ϑλ}, that
is ρ ≥ ϑλ.

Proof. We show that for the normalised transfer operator L̄ every value γ with |γ| < ϑ
is an eigenvalue of L̄.

(I) We find a ϕ ∈ Cϑ so that L̄ϕ = 0. For this we choose ϕ|U(1) ∈ Cϑ arbitrarily and
we assume that there are points x ∈ Σ+ so that A1x1 = A2x1 = 1 (otherwise replace the
symbols 1, 2 by some other two symbols of the alphabet). Put{

ϕ(x) = 0 if x1 6= 1, 2

ϕ(2x) = −ϕ(1x)ef̄(1x)−f̄(2x) otherwise

Then

(L̄ϕ)(x) =
M∑
α=1

ef̄(αx)ϕ(αx) = ef̄(1x)ϕ(1x)+ef̄(2x)ϕ(2x) = ϕ(1x)
(
ef̄(1x) + ef̄(2x)

(
−ef̄(1x)−f̄(2x)

))
= 0

and we define

χ =
∞∑
k=0

γk(ϕ ◦ σk)

for |γ| < ϑ.
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(II) We now show that χ lies in Cϑ. The infinity norm estimates as follows

|χ|∞ ≤
∑
k

|γ|k|ϕ ◦ σk|∞ ≤
|ϕ|∞

1− |γ|
<∞

and the Hölder constant like this

var`χ ≤
∑
k

|γ|kvar`ϕ ◦ σk

≤
∑̀
k=0

|γ|kvar`−kϕ+
∞∑

k=`+1

|γ|k|ϕ|∞

≤
∑̀
k=0

|γ|kϑ`−k|ϕ|ϑ + |ϕ|ϑ
|γ|`+1

1− |γ|

≤ ϑ`|ϕ|ϑ
∑̀
k=0

(
|γ|
ϑ

)k
+
|ϕ|ϑ

1− |γ|
|γ|`+1

≤ c1‖ϕ‖ϑϑ`

as |γ| < ϑ. Therefore |χ|ϑ ≤ c1‖ϕ‖ϑ which implies that χ ∈ Cϑ.
(III) Now we show that χ is an eigenfunction for L̄ to the eigenvalue γ. Indeed

L̄χ =
∞∑
k=0

γkL̄(ϕ ◦ σk) = L̄ϕ+
∞∑
k=1

γkϕ ◦ σk−1L̄1

as L̄(ϕ ◦ σk1) = ϕ ◦ σk−1L̄1 for k ≥ 1. Since L̄ϕ = 0 by construction and L̄1 = 1 we
obtain

L̄χ =
∞∑
k=1

γkϕ ◦ σk−1 = γχ

The last two lemmas prove the theorem.

9.4. Gibbs states.

Definition 73. An invariant measure µ ∈M (σ) is a Gibbs state for f ∈ C(Σ+) if there
exists a P ∈ R and a constant C > 0 so that

1

C
≤ µ(U(x1x2 · · · xn))

efn(x)−nP ≤ C

for all x ∈ Σ and for all n.

Lemma 74. If µ, µ′ are Gibbs for some f ∈ C(Σ+) then P = P ′ and µ, µ′ are equivalent
and equal if one of them is ergodic.

Proof. µ Gibbs implies that µ(U(x1 · · ·xn))ef
n(x)−nP ∈

[
1
C
, C
]

and µ′ Gibbs implies

µ′(U(x1 · · ·xn))ef
n(x)−nP ′ ∈

[
1
C′
, C ′
]
.
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(I) We first show P = P ′. Since∑
x1···xn

ef
n(x)−nP ≤

∑
x1···xn

Cµ(U(x1 · · ·xn)) = C

and ∑
x1···xn

ef
n(x)−nP ′ ≥

∑
x1···xn

1

C ′
µ′(U(x1 · · ·xn)) =

1

C ′

one has P ′ ≤ limn
1
n

logZn ≤ P . In a similar fashion one obtains P ≤ limn
1
n

logZn ≤ P ′.
This implies that P = P ′ = P (f) the pressure of f .

(II) Now we show that µ and µ′ are equivalent. Indeed, for all x ∈ Σ+ and for all n one
has

1

CC ′
µ′(U(x1 · · ·xn)) ≤ µ(U(x1 · · ·xn)) ≤ CC ′µ′(U(x1 · · · xn))

which implies µ′ � µ � µ′. In particular µ′ = gµ where the Radon-Nikodym derivative
g is positive on full measure set and σ-invariant. Thus, if either µ or µ′ is ergodic, g is a
constant and consequently µ = µ′.

Lemma 75. Let f ∈ Cϑ and µ = hν ∈ M (σ), Lh = λh, L∗ν = λν where λ is the
dominante eigenvalue of L given by the RPF theorem. Then µ is a Gibbs state for f and
λ = eP .

Proof. Let x ∈ Σ+, then

µ(U(x1 · · ·xn)) = µ(χx1···xn) = ν(hχx1···xn) =
1

λn
ν(Lnhχx1···xn),

where (with α = x1 · · ·xn and χα being the characteristic function of the cylinder set
U(α))

Ln(hχα)(y) =
∑
|β|=n

ef(βy)χα(βy)h(αy)ef
n(αy) ≤ |h|∞ef

n(x)+
∑n−1
j=0 varjf ≤ c1e

fn(x)

for a constant c1, where we used that
∑n−1

j=0 varjf ≤ |f |ϑ 1
1−ϑ . Similarly one gets the lower

bound Ln(hχα)(y) ≥ c2e
fn(x) for a constant c2 > 0. Thus

1

C
ef

n(x)λ−n ≤ µ(U(x1 · · ·xn)) ≤ Cef
n(x)λ−n

for some C > 0. Consequently λ = eP .

Lemma 76. If µ is an equilibrium state for f ∈ Cϑ(Σ+), then it is a Gibbs state for f .

Proof. We use the fact from the proof of the variational principle that µ is a weak* limit
of the sequence µk as k →∞ where

µk =
1

k

k−1∑
j=0

σ∗jνk

and

νk =
1

Zk

∑
|α|=k

ef
k(α)δα
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where with fk(α) we mean it evaluated by an arbitrarily chosen (and fixed) point in U(α)
and similarly δα is the point mass at that point. Now let x ∈ Σ+ and put β = x1 · · ·xn.
Then

µ(U(β)) ≈ µk(U(β)) =
1

kZk

k−1∑
j=0

∑
|α|=k

ef
k(α)σ∗jδα(χβ) =

1

kZk

k−1∑
j=0

∑
|α|=k

ef
k(α)δα(χσ−jU(β)).

Now we write α = ωβγ where |ω| = j, |β| = n and |γ| = k − j − n. Then

µk(U(β)) =
1

kZk

k−1∑
j=0

∑
|ω|=j,|γ|=k−j−n

ef
k(ωβγ)

and with the decomposition

fk(ωβγ) = f j(ω) + fn(β) + fk−j−n(γ) +O
(

3|f |ϑ
1− ϑ

)
one obtains

µk(U(β)) = O(1)ef
n(β) 1

kZk

k−1∑
j=0

∑
|ω|=j

∑
|γ|=k−j−n

ef
j(ω)ef

k−j−n(γ)

= O(1)ef
n(β) 1

kZk

k−1∑
j=0

Zj−NZk−j−n−Ne
O(2N |f |∞)

where N is a (fixed) number so that AN > 0. We now also use the fact that

Zk = Zj−NZnZk−j−n−Ne
O(2N |f |∞)

and obtain

µk(U(β)) = O(1)
1

Zn
ef

n(β) 1

k

k−1∑
j=0

eO(4N |f |∞) = O(1)
1

Zn
ef

n(x) = O(1)e−nP ef
n(x).

Now take a subsequence kj →∞ for which µkj converges to µ.

9.5. Correlation function. For f ∈ Cϑ(Σ+) we have as above the transfer operator
Lf : Cϑ → Cϑ. For simplicity’s sake let us assume that the discrete eigenvalues λj ∈ {z :
ϑλ < |z| < λ}, j = 1, 2, . . . , are simple. Let |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . , λ0 = λ. Moreover
let hj ∈ Cϑ be the eigenfuctions of λj and νj ∈ C∗ϑ the eigenfunctionals where we assume
the normalisation νj(hj) = 1∀j. Then Pj is the projection onto the eigenspace spanned
by hj, i.e. Pjϕ = νj(ϕ)hj. Then

L =
∑
j

λjPj +R

where the remainder term R : Cϑ → Cϑ has spectral radius ϑλ, i.e. ‖Rn‖ϑ ≤ c1(ϑ′λ)n for
any ϑ′ > ϑ and some constant c1 (depending on ϑ′). Similarly Ln =

∑
j λ

n
j hj +Rn.

Let G ∈ Cϑ, H ∈ L 1 be two functions on Ω and define the correlation function

ρ(n) =

∫
Σ+

G · (H ◦ σn) dµ,
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where µ = hν is the equilibrium state for f . We expect that ρ(n)→ µ(G)µ(H) as n→∞.
Indeed we get for the powerspectrum

ρ̂(ω) =
∞∑
n=0

e−iωnρ(n)

=
∞∑
n=0

e−iωnν(hG(H ◦ σn))

=
∞∑
n=0

e−iωn
1

λn
(L∗nν)(hG(H ◦ σn))

=
∞∑
n=0

e−iωn
1

λn
ν(LnhG(H ◦ σn))

=
∞∑
n=0

e−iωn
1

λn
ν(HLnhG)

=
∞∑
n=0

e−iωn
1

λn

(∑
j

ν(Hλnj hjνj(hG)) + ν(HRnhG)

)

=
∞∑
n=0

e−iωn
(
λj
λ

)n∑
j

ν(Hhj)νj(hG) + ρ̃(ω),

where

ρ̃(ω) =
∞∑
n=0

e−iωn
1

λn
ν(HRnhG)

is majorised by the series
∑∞

n=0 e
−i=ωn 1

λn
‖HRnhG‖ϑ which converges for |=ω| < | log ϑ′|

as ‖RnhG‖ϑ ≤ c2(ϑ′λ)n for some constant c2. Since ϑ′ > ϑ is arbitrary we conclude that
ρ̃(ω) is analytic for |=ω| < | log ϑ|. Therefore

ρ̂(ω) =
∑
j

ν(Hhj)νj(hG)

1− λj
λ
e−iω

+ ρ̃(ω)

is meromorphic in the strip |=ω| < | log ϑ| with poles whenever
λj
λ
e−iω = 1 that when ω

equals the values ωj = log
λj
λ

. The residue at ωj is ν(Hhj)νj(hG) (h = h0, ν = ν0) and
in particular the principal pole at ω0 = 0 has residue ν(Hh)ν(hG) = µ(H)µ(G) which
vanishes if µ(H)µ(G) = 0 or if the integrand in the definition of the correlation function

ρ(n) is replaced by G(H ◦ σn)− µ(H)µ(G). Then ρ̂ is analytic in the strip |=ω| < log |λ1|
λ

and by Paley-Wiener∣∣∣∣∫
Σ+

G · (H ◦ σn) dµ−
∫

Σ+

Gdµ

∫
Σ+

H dµ

∣∣∣∣ ≤ c3γ
n

decays exponentially fast for any γ >
∣∣λ1
λ

∣∣. Thus the rate of decay is given by the ‘spectral
gap’ between the leading eigenvalue λ and the rest of the spectrum.
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9.6. Dynamical Zeta function for subshifts. Let us put Pn = {x ∈ Σ+ : σnx = x}
for the set of periodic points with period n. For f ∈ Cϑ we put ζn =

∑
x∈Pn e

fn(x) and
define the dynamical zeta function by

ζ(z) = exp−
∑
n

1

n
ζnz

n

where z is a complex variable.
In the special case when f = 0 we get the Artin-Mazur zeta function which is

ζ(z) = exp−
∑
n

zn

n
traceAn = exp−

∑
n

zn

n

∑
λ

λn = exp− log det(id−zA) =
1∏

λ(1− zλ)

as |Pn| = traceAn, where λ are the eigenvalues of A. This is a meromorphic function in
the entire plane and is analytic for |z| < e−htop and has a simple pole at e−htop (Bowen-
Lanford).

Theorem 77. [16] Let f ∈ Cϑ, An > 0 for all n large enough. Then
(I) ζ(z) is analytic for in the disk |z| < eP (f)

(II) ζ(z) has a meromorphic extension to |z| < ϑ−1eP (f) with a simple pole at eP (f).

Proof. (I) In order to get analyticity note that

ζn =
∑
x∈Pn

ef
n(x) ≤

∑
|α|=n

ef
n(α) = Zn.

Thus

lim sup
n

(
ζn
n

) 1
n

≤ lim sup
n

(
Zn
n

) 1
n

= lim sup
n

(
Zn
n

) 1
n

= P (f)

which by Hadamard’s formula implies that ζ(n) is analytic for |z| < 1
eP

. We can also note
that since AN > 0 for a some N ∈ N one has

ζn ≥
∑

|α|=n−N

ef
n(α)− |f |ϑ

1−ϑ−N |f |∞ ≥ const.Zn−N .

(II) To get meromorphicity we use the spectral decomposition of L as

Lnϕ =
∑
|λ|>ϑeP

λnhλνλ(ϕ) +Rnϕ

where ‖Rnϕ‖ϑ ≤ c1‖ϕ‖ϑ(ϑ′eP )n for any ϑ′ > ϑ and where hλ, νλ are the eigenfunctions
and eigenfunctionals to the eigenvalues λ (for simplicity’s sake we assume the eigenvalues
are simple). Denote by

ωα(ϕ) =
1

µ(U(α))

∫
U(α)

ϕ(x) dµ(x)

the average value of the function ϕ over the cylinder U(α) where α is an n-word. We have

ωα(Lnχα) =
1

µ(U(α))

∫
U(α)

∑
|β|=n

ef
nβx)χα(βx) dµ(x) =

1

µ(U(α))

∫
U(α)

ef
nαx) dµ(x)
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as χα(βx) = 1 if and only if β = α. In particular (as α∞ ∈ Pn is a periodic point of
period n if α can be concatenated with itself)∣∣ωα(Lnχα)− ef(α∞)

∣∣ ≤ ef(α∞)

(
e
|f |ϑϑ

n

1−ϑ − 1

)
as

|fn(αx)− fn(α∞)| ≤
n−1∑
j=0

var2n−jf ≤
|f |ϑϑn

1− ϑ

for x ∈ U(α). Thus ∣∣∣∣∣∣
∑
|α|=n

ωα(Lnχα)− ef(α∞)

∣∣∣∣∣∣ ≤ c2

∑
|α|=n

ef(α∞) = c2ζn

and therefore ∣∣∣∣∣∣
∑
|α|=n

ωα(Lnχα)− ζn

∣∣∣∣∣∣ ≤ c3(ϑ′eP )n.

The next step is to compare
∑

α ωα(Lnχα) to
∑

λ λ
n. Here we use the decomposition of

L:

ωα(Lnχα) = ωα

(∑
λ

λnhλνλ(χα) +Rnχα

)
=
∑
λ

λnωα(hλ)νλ(χα) + ωα(Rnχα).

In order to replace the term ωα(hλ) by the function hλ inside the functional νλ let us look
at the error function

Sα,λ(αy) = ωα(hλ)1(y)− hλ(αy)

where αy ∈ Σ+ is the variable. Clearly Sα,λ ∈ Cϑ, although its norm will be too big for
us in that space. We estimate

|Sα,λ|∞ ≤ varnhλ ≤ |hλ|ϑϑn

and also
varkSα,λ ≤ varkhλ ≤ |hλ|ϑϑk

for k > n as Sα,λ defined only on the cylinder U(α). The function Sλ =
∑

α χαSα,λ is
defined on the entire space Σ+ and satisfies

|Sλ|∞ ≤ max
α
|Sα,λ|∞ ≤ c4ϑ

n

and

varkSλ ≤
{

2|Sλ|∞ ≤ c5ϑ
n if k ≤ n

maxα varkSα,λ ≤ c5ϑ
k if k > n

.

For ever λ we estimate now in a better function space, namely we take ϑλ <
|λ|
eP

and note
that λ is a discrete eigenvalue of L : Cϑλ → Cϑλ (of the same multiplicity) and has the
eigenfunction hλ ∈ Cϑλ and the eigenfunctional νλ ∈ C∗ϑλ . Then

|Sλ|ϑλ = sup
k
ϑ−kλ varkSλ ≤ c5

(
ϑ

ϑλ

)n
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and therefore

‖Sλ‖ϑλ ≤ c6

(
ϑ′eP

|λ|

)n
.

Since ωα(hλ)νλ(χα) = νλ(χαωα(hλ)) = νλ(χα(hλ + Sα,λ)) we get∑
α

ωα(hλ)νλ(χα) = νλ

(∑
α

χα (hλ + Sα,λ)

)
= νλ(hλ) + νλ(Sλ) = 1 + νλ(Sλ)

where

|νλ(Sλ)| ≤ ‖νλ‖ϑλ‖Sλ‖ϑλ ≤ c6‖νλ‖ϑ
(
ϑ′eP

|λ|

)n
.

Summarising what we have done till now:

ζn =
∑
α

ωα(Lnχα) +O((ϑ′eP )n)

=
∑
λ

λn
∑
α

ωα(hλ)νλ(χα) +Qn +O((ϑ′eP )n)

=
∑
λ

λn
(

1 +O
((

ϑeP

|λ|

)n))
+Qn +O((ϑ′eP )n)

=
∑
λ

λn +Qn +O((ϑ′eP )n)

where Qn =
∑

α ωα(Rnχα) has still to be estimated.
To estimate the remainder term Qn which comes from the essential spectrum let P be

the projection operator for which Rn = LnP = PLn. For every α pick a point xα so that
αxα ∈ Σ+ depends only on the last symbol of α. Then

ωα(Rnχα) = ωα(PLnχα) = ωα(Pefn(α·)) = ef
n(αxα)ωα(PΦα),

where Φα(αx) = ef
n(αx)−fn(αxα) ∈ Cϑ is defined on U(α). Clearly |Φα|∞ ≤ e

|f |ϑ
1−ϑ = O(1).

As P is a bounded operator on Cϑ one has

|ωα(PΦα)− PΦα(αxα)| ≤ ‖PΦα‖ϑϑn

and thus ∑
α

ωα(Rnχα) =
∑
α

ωα(PLnχα)

=
∑
α

ef
n(αxα) (PΦα(αxα) +O(ϑn))

=
∑
α

ef
n(αxα)PΦα(αxα) +O((ϑeP )n).

In order to estimate
∑

α e
fn(αxα)PΦα(αxα) let us write Φα =

∑n
i=1 Φi,α, where we put

Φ1,α(αx) = efσ
n−1(αx)−fσn−1(αxα)

and then successively

Φi,α(αx) = e
∑i
j=1(fσn−j(αx)−fσn−j(αxα)) − e

∑i−1
j=1(fσn−j(αx)−fσn−j(αxα))
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and notice that if we write α = βγ with |β| = n − i the first n − i symbols and |γ| = i
the last i symbols of α then Φi,α = Φi,γ is independent of the first n− i symbols β. Since∣∣∣efσn−i(αx)−fσn−i(αxα) − 1

∣∣∣ ≤ evark+if − 1 one has

varkΦi,α(αx) ≤ e
∑i−1
j=1(fσn−j(αx)−fσn−j(αxα))

(
evark+if − 1

)
which implies |Φi,γ|ϑ ≤ c7ϑ

i and also ‖Φi,γ‖ϑ ≤ c8ϑ
i and allows us to proceed as follows

(xα = xγ)∑
α

ef
n(αxα)PΦα(αxα) =

∑
i

∑
|α|=n

ef
n(αxα)PΦi,α(αxα)

=
∑
i

∑
|γ|=i

ef
i(γxα)

∑
|β|=n−i

ef
n−i(βγxγ)PΦi,γ(βγxγ)

=
∑
i

∑
|γ|=i

ef
i(γxα)

∑
|β|=n−i

Ln−iPΦi,γ(γxα).

Since |Ln−iPΦi,γ| ≤ ‖Ln−iP‖ϑ‖Φi,γ‖ϑ ≤ c9(ϑ′eP )n−iϑi one obtains∣∣∣∣∣∑
α

ef
n(αxα)PΦα(αxα)

∣∣∣∣∣ ≤ c10

∑
i

∑
γ

ef
i(γ)(ϑ′eP )n−iϑi ≤ nc11(ϑ′eP )n

for all ϑ′ > ϑ which implies |Qn| ≤ c12(ϑ′eP )n.
Combining all the estimates yields∣∣∣∣∣ζn −∑

λ

λn

∣∣∣∣∣ ≤ const.(ϑ′eP )n

for all ϑ′ > ϑ and therefore

ζ(z) = exp−
∑
n

zn

n
ζn = exp−

∑
n

zn

n

(∑
λ

λn +O(ϑ′eP )n

)
=

1∏
λ(1− zλ)

ψ(z)

where ψ(z) is analytic for |z|ϑ′eP < 1∀ϑ′ > ϑ, i.e. for |z| < 1
ϑeP

.

10. Coboundaries

In this section we show how a two-sided function can be reduced to a one-sided function
by adding a coboundary. Then we also show that two equilibrium states are equal if and
only if the potentials differ by a constant and a coboundary.

Let us note that if µ is a σ-invariant probability measure on Σ+ then it has an extension
to the two-sided shift-space Σ by putting for cylinder sets (k < `)

µ(U(x−k · · ·x`)) = µ(σ−kU(x−k · · · x`))

using that σ is invertible on Σ. (As before we assume An > 0 for all large n.)

Theorem 78. Let g ∈ Cϑ(Σ). Then there exists a u ∈ C√ϑ(Σ) so that f = g + u− u ◦ u
depends only on positive coordinates, that is f(x) = f(y) if xi = yi for i < 0.
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Proof. For each symbol a ∈ {1, . . . ,M} we pick a left-infinite sequence ya = · · · y−2y−1

in Σ so that Ay−1a = 1 i.e. yaa is an allowed sequence in Σ. Then we define π : Σ → Σ
by π(x) = yx0x0x1x2 · · · for x ∈ Σ. Define

u =
∞∑
j=0

(g ◦ σjπ − g ◦ σj).

To show convergence of the sum note that (σjπx)i = (σjx)i for all |i| ≤ j. Hence

|u(x)| ≤
∞∑
j=0

varjg ≤ |g|ϑ
∞∑
j=0

ϑj <∞

which in particular proves that |u|∞ <∞. To show that u belongs to C√ϑ(Σ) we have to
estimate varku for any k. To that end let x, y ∈ Σ so that xi = yi for all |i| ≤ k. Then

|u(x)− u(y)| =

∣∣∣∣∣
∞∑
j=0

(gσjπx− gσjx)−
∞∑
j=0

(gσjπy − gσjy)

∣∣∣∣∣
≤

[k/2]∑
j=0

|gσjy − gσjx|+
[k/2]∑
j=0

|gσjπx− gσjπx|

+
∞∑

[k/2]+1

|gσjπx− gσjx|+
∞∑

[k/2]+1

|gσjπy − gσjy|

≤
[k/2]∑
j=0

2vark−jg +
∞∑

[k/2]+1

2varjg

≤ 2|g|ϑ
[k/2]∑
j=0

ϑk−j + 2|g|ϑ
∞∑

[k/2]+1

ϑj

≤ c1|g|ϑϑ
k
2

for some c1. Hence ‖u‖√ϑ <∞ and thus u ∈ C√ϑ(Σ).
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It remains to show that f = g + u− u ◦ u is independent of negative coordinates. One
has for every M

f(x) = g(x) +
∞∑
j=0

(gσjπx− gσjx)−
∞∑
j=0

(gσjπσx− gσj+1x)

= g(x)−
M∑
j=0

(gσjx− gσj+1x) +
M∑
j=0

(gσjπx− gσjπσx)

+
∞∑

j=M+1

(gσjπx− gσjx)−
∞∑

j=M+1

(gσjπσx− gσj+1x)

= g(πx) + gσM+1x− gσM+1πx+
M∑
j=0

(gσj+1πx− gσjπσx)

+
∞∑

j=M+1

(gσjπx− gσjx)−
∞∑

j=M+1

(gσjπσx− gσj+1x)

and for M →∞ we obtain

f = g ◦ π +
∞∑
j=0

(g ◦ σj+1 ◦ π − g ◦ σj ◦ π ◦ σ)

which is independent of negative coordinates since all terms involve the projection π.

Recall that µf is a Gibbs state for f ∈ Cϑ(Σ) is σ∗µf = µf and there exists C > 0, Pf ∈ R
so that

1

C
≤ µf (U(x0x1 · · ·xn−1))

ef
n(x)−nPf

≤ C

for all x ∈ U(x0x1 · · ·xn−1) and for all n.

Theorem 79. Let f, g ∈ Cϑ(Σ) and µf , µg be respective Gibbs states. Then the following
are equivalent:
(I) µf = µg,
(II) there exists a constant K so that fn(x) = gn(x) + nK for all periodic points x of
period n,
(III) there exists a K and u ∈ Cϑ(Σ) so that f = g + u− u ◦ u+K,
(IV) there exists K,S so that |fn(x)− gn(x) + nK| < S for all x ∈ Σ and all n ∈ N.

Proof. “(III)⇒(IV)” is obvious.
“(IV)⇒(I)”: Assume

µf (U(x0 · · · xn−1))

ef
n(x)−nPf

∈
[

1

C
,C

]
,

µg(U(x0 · · ·xn−1))

egn(x)−nPg
∈
[

1

C
,C

]
and gn = nK + fn +O(S). Then

µg(U(x0 · · ·xn−1))

efn(x)−nPg+nK
∈
[

1

C
e−S, CeS

]
,



NOTES FOR MATH 625, FALL 2018 67

for all x ∈ U(x0 · · ·xn−1) and all n. Since µf (U(x0 · · ·xn−1)) ≥ C−1ef
n(x)−nPf and Pg −

K = Pf (cf. section 9.4) we get

µg(U(x0 · · · xn−1)) ≥ C2eSµf (U(x0 · · ·xn−1))

and similarly µf (U(x0 · · ·xn−1)) ≥ C2eSµg(U(x0 · · ·xn−1)). Hence µf , µg are equivalent.
We now show that they are ergodic which then implies µf = µg. We use the characterisa-
tion that µf is ergodic if and only if for all V,W ⊂ Σ of non-zero measures there exists a j
so that µf (V ∩ σ−jW ) > 0 (see section 3). It is enough to assume that V,W are cylinder
sets. Hence let V = U(α),W = U(β) for some words α, β in Σ. Let N be so that AN > 0
i.e. any two symbols can be connected by a string of length N − 1. Take j > N + |α|.
Then there exists a word γ of length |γ| = j − |α| > N so that αγβ is an allowed word.
Since

U(αγβ) ⊂ U(α) ∩ σ−jU(β)

we get that

µf (U(α) ∩ σ−jU(β)) ≥ µf (U(αγβ)) ≥ 1

C
ef

j+|β|(x)−(j+|β|)Pf > 0

for any x ∈ U(αγβ). Since α, β were arbitrary, µf , µg are ergodic and thus equal.
“(I)⇒(II)”: Since by assumption µf = µg one has

1

C2
≤ ef

n(x)−nPf

egn(x)−nPg
≤ C2

for all x ∈ Σ and n. Hence fn(x)−gn(x)+n(Pg−Pf ) = P(1) and if x is periodic with period
n, i.e. σnx = x, then also σknx = x for all integers k and therefore fkn(x)−gkn(x)−knK =
O(1) where we put K = Pg − P − f . Since fkn(x) = kfn(x), gkn(x) = kgn(x) we get

fn(x)− gn(x)− nK = O
(

1

k

)
.

Letting k →∞ yields fn(x)− gn(x)− nK = 0 for all periodic x of period n.
“(II)⇒(III)”: This is the hard part of the theorem. Assume that fn(x) = gn(x) + nK
for some constant K and all periodic points x of period n and for all periods n. Put
ϕ = f − g+K. Clearly ϕ ∈ Cϑ(Σ) and ϕn(x) = 0 for all periodic x of period n. We have
to find u ∈ Cϑ(Σ) so that ϕ = u ◦ σ − u is a coboundary.

Let x ∈ Σ be a transitive point, i.e. its orbit Γ = {σjx : j ∈ N0} is dense in Σ. We have
Γ̄ = Σ. Define u : Γ→ R as follows: if y ∈ Γ and j ≥ 0 is so that σjx = y, then we put

u(y) = u(σjx) = ϕj(x) =

j−1∑
k=0

ϕ(σkx)

We now claim u is continuous and has an extension to the full space Σ which lies in
Cϑ(Σ). To that end let y, z ∈ Γ so that yi = zi for |i| ≤ k for some k ≥ 1 and estimate
u(z) − u(y). Let m,n ≥ 0 be so that y = σmx, z = σnx and assume (without loss of
generality) that n > m. Put w = σ−m((xmxm+1 · · · xn−2xn−1)∞) for the periodic point in
Σ of period n −m which agrees with x on the coordinates from m to n − 1. This point
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exists as k ≥ 1. Evidently w 6∈ Γ and in fact satisfies wi = xi∀i = m− k, . . . , n+ k. Since
by assumption ϕn−m(w) = 0 we can thus estimate

|u(z)− u(y)| = |ϕn(x)− ϕm(x)|

=

∣∣∣∣∣
n−1∑
j=m

ϕ(σjx)

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
j=m

ϕ(σjx)− ϕn−m(σmw)

∣∣∣∣∣
≤

n−1∑
j=m

∣∣ϕ(σjx)− ϕ(σjw)
∣∣

≤
n−1∑
j=m

varmin(j−(m−k),n+k−j)ϕ

≤ 2
∞∑
`=k

var`ϕ

≤ 2|ϕ|ϑϑk
1

1− ϑ
Hence varku|Γ ≤ c1ϑ

k and therefore u has a continuous extension to Γ̄ = Σ such that
|u|ϑ <∞ and therefore u ∈ Cϑ(Σ).

To show that ϕ = u ◦ σ − u observe that for y = σmx ∈ Γ one has σy = σm+1x and
therefore

u(σy)− u(y) = ϕm+1(x)− ϕm(x) =
m∑
k=0

ϕ(σkx)−
m−1∑
k=0

ϕ(σkx) = ϕ(σmx) = ϕ(y).

By continuity ϕ = u ◦ σ − u on Σ.
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