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1. INTRODUCTION

Given a map T : 2 — 2 on a space €2 which could be a manifold or simply a measure
space. We look at longterm behaviour of orbits {77z : j} for generic points z € €. For
instance, if A C 2 is a subset and we can observe the frequency with which a point returns
to A. That is, if we put N,(z) =|{j : 0 < j <n— 1,77 € A}| for the number of hits in
A the point x takes along the orbit segment of length n then we would like to find the

limit D(z) = lim,, o, N%(x) if it exists.

1.1. Example. Let us consider the irrational rotation on the unit interval (or circle). Let
€ (0,1) \ Q be irrational and define R, : [0,1) — [0,1) (here we use 2 = [0,1) which
mod 1 is the circle T') by
R,x =z 4+« mod 1.
Its iterates are B), = x + ja mod 1. We will later find out that for #!-functions f one
has %2?2—01 (Rlx) — [ fdx as n — oo almost surely (pointwise ergodic theorem). In
particular we can choose f = (44, the characteristic function of the interval A = (a,b)
(0<a<b<1). Since N,(z) = 3" X(ap) Rl we obtain D(z) = b — a almost surely.
The following interesting application is due to Arnold. Let I' = {2/ : j = 0,1,2,...}
be the powers of 2, i.e.

I ={1,2,4,8,16,32,64, 128,256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072.. .. }.

We look at their first digit (in base 10 expansion) and obtain the sequence
1,2,4,8,1,3,6,1,2,5,1,2,4,8,1,3,6,1...

and want to know what is the frequency of a digit occurring in first position. Let k €
{1,2,...,9} be one of the ten digits and

Ni(n) =|{j : 0 < j <n—1,the decimal expansion of 2 begins with the first digit k}|.

What is the limit of N"T(n) as n goes to infinity? If the decimal expansion of 2 begins with

k then
2 = kajasas - am =k -10™ 4+ a1 - 10 fag - 1024+ -y - 10+ ayy,
for some m where a; € {0,1,...,9}. Thus
2/ = k- 10" + 1,
where the remainder r; > 0 has at most m digits and is therefore less than 10™. Therefore
k-10m <27 < (k+ 1)10™ and taking logarithms to the base 10 yields
logg k+m < jlog;,2 < logo(k+ 1) +m
and if we put a = log;, 2 (which is an irrational number), then we get
logio k < R%,(0) < logyo(k +1)
as jlog;y2 = R?(0) and R, is the irrational rotation by « on the unit interval. Thus

n—1

Ni(n) = Z X[logyo k,logm(k+1))(Rzy(0))

Jj=0
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and by the result mentioned above

. Ni(n k+1
Dy = lim TE ) logyo(k + 1) — logyo k = logy, 2

In particular Dy = log, 2, Dy = log,, %, ..., Dy = log,, % and of course ZZ:O Dy = 1.
Naturally this game can be played with any base d expansion for which log, 2 is irrational
(don’t use the binary expansion d = 2).

1.2. Poincaré recurrence theorem.

Theorem 1. (Poincaré recurrence theorem) Let T : Q — Q and p be a T-invariant
probability measures. For U C Q put 1y(z) = min{k > 1: T*x € U} for the return time
of x € Q (we have Ty(x) = oo if the forward orbit of x never intersects U). If n(U) > 0,
then y(x) < oo for almost every x € U.

Proof. Let U C () have positive measure and put U, = U]Oin T—U for the set of
points x € () that enter U at least once after time n. Obviously Uy D U; D Uy D ---

We also have U, = T~'U, ; which implies by invariance of the measure that u(U,) =
(T~ Up11) = p(Upta) and consequently wu(Uy) = w(U,) ¥V n. Now W = (>, U, =
{z € Q enters U infinitely often} and V.= W NU = {x € U enters U infinitely often}.
Since u(Uy) = p(U,) we obtain that u(W) = u(Up) and since U C Uy we conclude that

u(V) = u(U). !

The recurrence statement is not true if the measure is infinite. As an example one can
take the Lebesgue measure on R and the map 7' : R — R given by Tx = x + 1. No set of
positive measure is recurrent.

2. ERGODIC THEOREMS

Let (Q,T, ) be a dynamical system that consists of a space 2, a map T : 2 — 2 and
a T-invariant probability measure p on Q (u is T-invariant if p(U) = p(T-'U) for all
measurable U C Q).

For a real valued (or complex valued) function f on 2 we write f™ = Z;L:_& foT7 (nth
ergodic sum) and put % f™ for the time average along orbit segments of lengths n. If n
goes to infinity then we obtain the time average of f over an orbit. Ergodic theorems
are concerned with the existence of the limit and its value. Ergodic theorems relate these

time averages to spacial average [, f(z)du(x). We first prove the von Neuman Mean
Ergodic Theorem which was published in 1932.

Theorem 2. (Mean Ergodic Theorem) Let S = {g € £? : goT = g} and P the projection
from £? to S. Then for all f € £? one has

1
—f*"—=Pf
n

asn — oo in L2,

Proof. Let us define the Koopman operator U : £* — £?> by Uf = foT. If T is
invertible then so it U. Let us note that U is an isometry on #2. This is because by
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T-invariance of p one has

(Uf,Ug) = / (U 1) (@)(Ug)(x) dpu(x)
- / (f9) o T(x) du(x)

- / (f9)(z) du(x)

= (f.9)

This identity also implies that (f,g) = (Uf,Ug) = (U*Uf,g) for all f, g € £?*. Hence
U*U is the identity operator on .Z2.

Let us now put W = {Ug — g : g € £?}. We claim that W+ = S. To show that
ScWhlet fe £ andgec W. That is Uf = f and there exists an h € #? so that
g=Uh —h. Then

(f,g)zzf,LUL—-h)::(f,LUO'—(f,h>:Z(UJZL”0'—<f,h>::(f,h)——(f,h)ZZO
and therefore f € W+. Since f € S was arbitrary, we obtain S ¢ W+. To get the
inclusion W+ C S let f € W+ which means (f,g) = 0 for all g € W. Since g = Uh — h
for some h € £? we get (f, Uh—h) = 0 implies that (f,Uh) = (f,h) and (U*f, h) = (f,h).
Since h was arbitrary we get U* f = f. With this we now get
\Uf=f1* = Uf=£U0f-1)

= (ULUN) =, 1) = WUf. [)=(f.Uf)

= 2fI* = (f,U"f) = (U}, f)

= 2|fI* —2(f, /) =0.
Hence f € S.

Now if f € S, then Lfm = LN Uif = Inf = f = PfasUif = f. If g =
Uh—h € W, then Y/~ 1 U7g = Y "=/ (U7*'h — U’h) = U"h — h which implies that
%Z?;& Ulg=L(U"h —h) = 0=Pgasn— o0

We have 2 = S @ W. Let g € W, then there exists a sequence g; € W which in .#?
converges to g. Let € > 0 and ¢ so that ||g — g;||» < e. Then

n—1 n—1 n—1
1 , 1 . 1 .
- Uglls < — U9 —gi)ll2 + — U’ gill2 < 2¢
I 2 U0l < L 10 =l + 1 Vad

as U is an isometry and we can choose n large enough so that the second sum is less than
€. Since € > 0 was arbitrary we get that % Z;:Ol Ulg — 0in .2 as n — oo. For arbitrary
F e % we write F = f + g where f € Sand g € W. Then 2F" = Lfm 4 1gn — f ag
f = PF. I

Corollary 3. (Mean Ergodic Theorem in £') Let f € £*, then Lf" — f* in £ as
n — oo, where f* € £ is a T-invariant function.

Proof. We use the fact that bounded Z*' functions are dense in Z! and are in .Z?. In
other words, the set 4} = {g € £ : ||g]|oo < o0} is dense in £ and also lies in Z2. If
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g € £}, then by the Mean Ergodic Theorem +¢" — g*, where g* € S C £? (9" = Pg).
Also, as [|g"[[sc < nllglls, We get |19" |l < [|glloc which implies that [|g" ]| < [|glle < o0.
Since || - |1 < || - [l we get that g™ converges in £ to g*.

Now let f € Z" and € > 0, then there exists a g € 4 so that || f —g[}; < e and [|[£g"—
g*|l1 < e for all n big enough. As || " —2g"|; < ¢ for all n, we obtain || f* — g*||; < 2¢
for all n big enough. Eliminating ¢* from the estimates yields || f™ — £ f™||; < 4e for all
n, m big enough. This means that {%f” :n =1,2,...} is a Cauchy sequence which has
a limit f* in . Obviously f* is T-invariant. i

The Mean Ergodic Theorem is strengthened considerably by the Pointwise Ergodic The-
orem which is due to Birkhoff and was published in 1931 although it was preceded by von
Neuman’s MET which appeared later.

Theorem 4. (Pointwise Ergodic Theorem) For f € £, then the limit
R N

Jim —f*(2) = f*(2)
exists almost everywhere, where f* € £ is T-invariant and satisfies [, f*dp = [, f dp.
The main ingredient in the proof of the PET is the following result:
Theorem 5. (Maximal Ergodic Theorem, Garsia 1965) Put E(f) = {x € Q : sup,,>, f"(v) >
0}. Then fE(f) fdu>0.
Corollary 6. If E,(g) = {z € Q:sup,>, -¢"(z) > a}, then fEa(g) gdu > ap(EL(f)).

Proof. We put f = g—a which implies that f™* = ¢" —na and thus gives us E(f) = E.(g)
and therefore by the Maximal Ergodic Theorem

0< di = —a)dy = di — au(E,(g)).
_/E(f)fu /a(g)(g ) dp /Ea(g)gu ap(Ea(g))

Corollary 7. If A C E(f) is T-invariant, i.e. T"'A= A, then [, fdu > 0.

Proof. Let x4 be the characteristic function of A. As A is T-invariant x4 077 = x4 and

therefore )

(fxa)" =D (xaf) o T9 = yaf"

=0
which leads to

E(fxa) = {re€Q: igl;(fx/x)”(:v) > 0}
= {r€Q:xal2) sup [*(x) > 0}

= E(f)nA=A
as A C E(f). Thus by the Maximal Ergodic Theorem

/fdu=/ JSxadu = 0.
A E(fxa)
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Combining the last two corollaries yields the following result.
Corollary 8. If A C E.(f) is T-invariant, then [, fdu > ou(A).
Proof of the Pointwise Ergodic Theorem. Put

fr@) = Tmsup ()

fo@) = Tmint ()

Obviously f~(z) < f(x) and the two functions are T-invariant. We have to show that
f~(z) = fT(x) almost surely, i.e. we have to show that the set £ = {x € Q : f~(x) <
fT(x)} has zero p-measure. Let a < f and put E 5 ={x € Q: f~(2) < a, fT(x) > B}
Since the functions f~, f* are T-invariant, the set E, 5 too is T-invariant. We will prove
that u(Fa3) = 0. Put Ej = {x € Q; f*(z) > B}. One has Eog C Ej C E(f — ) since
if z € £} then = fF(z) > B for some k € N. Hence f*(z) — kB > 0 which implies that
x € E(f — B). Thus by the above corollaries

/ (f=B)dp =0
Eap
which implies

[ pduzoulE.),
Eop

Similarly one shows that [, Js ap(E, 3). One therefore gets that

B1(Eag) < /E fdp < au(Eas)
o,

which for o < f can only be satisfied if u(E, g) = 0. To represent E as a countable union,
one restricts to rational values for o and . Thus, since

E= |J Eup

a<fia,feQ
we get that pu(F) = 0. Thus the limit exists. From the Mean Ergodic Theorem we
know that = f™ converges in £* to the limit f*. Since [1f"du = [ fdup we get that
[ frdu= [ fdp.
Proof of the Maximal Ergodic Theorem. Put Fy(z) = maxg<p<y f¥(x) where
we use the convention that f = 0. Thus Fy > 0 and forms an increasing sequence:

o < Fy < Fyy1 < .... Thesets Ey = {z € Q: Fy(z) > 0} form a nested sequence
which gives E' = | En. Note that Fy(z) =0 for z ¢ Ey. Now

Fi(Ta) + f() = f(0) + max f(Ta) > f(x) + [(Tx) = ()

for any k = 0,...,N. Thus f(z) > f*(x) — Fx(Tz) for k = 1,2,...,N + 1, and for
r € Ey one has Fy(z) = max;<,<n f¥(x) which then gives f(z) > Fy(x) — Fy(Tx).
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Hence, since Fiy = 0 on 2\ Ey and is otherwise non-negative we get

fdp > / FNd,u—/ FyoTdu
o Ey

= /FNd,u—/ FyoTdu
Q En

> /FNd,u—/FNon,u:O
Q Q

by invariance of the measure. By the Dominated Convergence Theorem one now gets
fENfd,u—>fEfd,uZO. |

Theorem 9. (Mean Ergodic Theorem in £P) Let p € [1,00), then if f € LP there exists
an f* e P, T-invariant, so that %f” — f*in ZLP.

En

Proof. Let f € Z? and € > 0. We approximate f by a bounded function g € Z? so
that || f — g|l, < e. Then

@) [15f" = 59"l < If = gll, < & for all n.

(ii) ¢g* = lim, % g" exists by the Pointwise Ergodic Theorem and is moreover a bounded
function ([|g*]loc = [lgllec < o0).

(iii) f* =lim, 1 f™ exists because one can approximate for every k € IN one has

flx) if |f(x k
wo-{4 1 idst

now let k& — oo.
(1) 1f* = g*l, < IIf — gll, < &, since by Fatou’s lemma

lim inf / ‘ —q")
n—oo

Hence [|2 f™ — f*||, < 3¢ for n big enough. i

d,ug/hmmf—|f" g"|" dp = /]f g P du < €P.

3. ErcobpiIcITY

Here we want to focus on ‘primitive’ measures, which are probability measures that are
minimal in the sense that they don’t have genuine invariant subsets.

Definition 10. Let (2, %, 1) be a probability space (% a o-algebra) and T : Q@ — Q a
measure preserving map. We say p is ergodic if for all T-invariant A € B nu(A) is either
0 or 1.

Consequences:
(I) p ergodic <= if u(BAT'B) =0 then u(B) =0, 1.

Proof. “=7: Assume u(BAT 'B) =0 and put C,, = J,—, T"B. Then C,, D Cy41 D
- and T71C, = C,41. Hence C = N, Cn is T-invariant, i.e. T-'C = C. Now note that

BAC, = BA G T BcC D(BATJ’B)

Jj=n j=n
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and since BATB C JI_y(T"*BAT*'B) c Ul_, T"*(BAT'B) we conclude that
w(BAT7B) = 0. Consequently u(BAC,) = 0 which implies u(BAC) = 0. Since C' is
T-invariant we get by ergodicity that x(C) = 0,1 and thus u(B) =0, 1.

“<”: If C is T-invariant then put B = C. Clearly u(BAC) = 0. i
(IT) p ergodic <= every T-invariant function f is a constant (almost everywhere).
Proof. “=": Assume p is ergodic and let f be invariant, i.e. f oT = f. For any real
aput B, ={x € Q: f(x) < a}. Clearly E, is a T-invariant subset of 2 and since p is

ergodic its measure is either 0 or 1. Thus f is constant almost surely.

“<=": Let A € & be T-invariant and x 4 its characteristic function. Then x4 07T = x 4.
By assumption y 4 is constant, which means x4 is either 0 or 1 almost surely. Hence p is
ergodic.

(ITI) 4 is ergodic <= For all f € £, then £ f"(z) — u(f) almost surely.

Proof. "=": If f € £ then by the Pointwise Ergodic Theorem %f” — * where fx
is T-invariant and satisfies p(f*) = u(f). It now follows from (II) f* is a constant and
therefore equal to u(f).

“<": Let U C Q) be a T-invariant set and put f = xy. Then f* = x{, = nxy = f which
implies that lim,, %X% = xv = p(xv) = (U) almost surely by the Pointwise ergodic
theorem. Thus yp is almost surely either equal to 0 or equal to 1. Hence pu(U) = 0, 1 and
since U was an arbitrary invariant set we conclude that u is ergodic. i

(IV) p ergodic <= for all U,V € 2 one has %Zj;ol pw(UNTV) = w(U)u(V).

Proof. “=": Assume p is ergodic and let U,V € ZA. Put f = xy and use the pointwise
ergodic theorem: %X;} — [ xvdp = p(U) almost surely. Thus %X@XV — w(U)xv.
Integration yields (by the Dominated Convergence Theorem)

1
- /XZXV dp — /M(U)XV dp = p(U)pu(V).

“<”: Assume that %Z;:Ol w(UNTV) = pw(U)u(V) and let U be a T-invariant
subset. With V' = U we obtain

W) = 5 S U NTI0) = (U

and therefore ©(U) = 0,1 which means p is ergodic. i

(V) p ergodic <= for all A € % with ;(A) > 0 one has (J2T7A = Q (up to
nullsets).

Proof. “=": Assume p is ergodic, let A C Q, u(A) > 0, and put U = U;’io T A.
Clearly T7'U C U and u(T7'U) = pu(U) as p is T-invariant. Hence T7'U = U (up to
nullsets) and therefore u(U) = 1 by ergodicity of p as u(U) > u(A) > 0.

“<": Let A C Q be T-invariant. If y(A) > 0 then by assumption U = |J;Z, 777 A has
full measure. But since T7A = A we have U = A and therefore p(A) = 1. i

(VI) p ergodic <= For all U,V € £ with u(U),u(V) > 0 there exists a j so that
w(UNTV) > 0.

Proof. “=": If p is ergodic then by (V) U2, TV = Qif u(V) > 0. Thus U C
U2 T~V which implies that x(U NT~7V) > 0 for some j provided u(U) > 0.
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“e”: Let A C Q be T-invariant, i.e. T7'A = A, T71A¢ = A¢. With U = A,V = A¢
we get by assumption u(UNT7V) = p(ANT7A) > 0 for some j. This is impossible
if u(A), p(A°) > 0. i

4. EXAMPLES

4.1. Bernoulli shift. Let A= {1,2,..., M} be an alphabet and put ¥ = AN = {7 =
(xox122...) @ x; € A} for the set of infinite sequences composed from the alphabet A.
The map o : ¥ — X is given by (07); = (Z);41 and called the shift transformation. The
topology is generated by the following metric: Let ¥ € (0,1) and put d(Z,7) = 99,
where n(Z,y) = min{|j| : z; # y;}. A basis for the topology (and the Borel o-algebra)
consists of cylinder sets U(xixe...x,) = {4 € X y1...Yp = T1...2,} and their shifts.
Notice that balls in 3 are open-closed and that every § € B.(Z) lies in the centre of the
ball, i.e. B.(y) = B.(Z) V i € B.(%).

Let p'= (p1,p2,...,pm) be a positive probability vector, i.e. p; > 0 and > ;p; = 1.
Then we have a probability measure 1 on ¥ which on cylinder sets is given by

M(U(xle e an)) = Pz1Pzsy " * " Py -

It is clear that p is o-invariant since

M
o U(zg... 20 1) = U Ulazy ... Tp-1)

a=1

(disjoint union of (n + 1)-cylinder sets. Hence

plo U (xg. . 2, 1)) = Z p(Ulazg ... xn-1)) = Zpa]%O Py = p(U(xg ... 2po1))

as y_ ., Pa = L.
Lemma 11. The Bernoulli measure p is ergodic.

Proof. By (V) it is enough to show that for V,W C X (both with positive measure) one
has u(V No™7W) > 0 for some j. This is shown for generators of the o-algebra. Assume
V=U(xy...x,), W=U(yy...ym) are cylinder sets. Then

VATIW = ) Uz 2z 2ol Ym)
21 Zj—n
is a disjoint union where the union is over all z; --- 2;_,, € Ai=" Thus for j >n

pV 0 T_jW) = Z Day v PanPzy " Pz Pyr * " Pym

21...Zj—n
— pxl...pxnpyl...pym
= pu(V)u(W) >0

as sz P, = 1. Hence p is ergodic. In fact we have proven a much stronger result here. i
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4.2. Irrational rotation. Let 2 =[0,1) and o € (0,1) an irrational number and define
the map T : Q@ — Q by Tx = x + @ mod 1. Obviously T is invertible. Let A be the

Lebesgue measure on [0,1). Since % = 1 one has that T" preserves A, i.e. T*\ = \.

Lemma 12. )\ is ergodic.

Proof. We use the fact that ) is ergodic iff every T-invariant function f € #* is constant
almost everywhere. Since .#? is dense in ! it is sufficient to prove it for f € £2. If
f € L' is T-invariant then so are the approximating functions f,, which are defined by
putting f,(x) = f(z) if |f(z)] < n and equal to 0 if |f(x)| > n. This follows from the
T-invariance of the sets {x : |f(z)| < n} are T-invariant. We write f as a Fourierseries:

flx) =377 a,e*™™* where a, = f01 f(t)e 2™ dt are the Fourier coefficients. Since

o0 o0

f(TZL‘) _ E an€27rm(z+a mod 1) _ E an627rzna627rzn:v

n=—oo n=—oo

we get by uniqueness of the Fourier expansion that a, = a,e*™"* for every n € Z. Since
« is irrational, 2™ =£ 1 for all n # 0 and thus a,, = 0 for all n # 0. Hence f(z) = ay is
a constant and therefore \ is ergodic.

4.3. Affine expanding maps on the interval. Let Q = [0,1) and d > 2 an integer
(degree). Then we define the map T on Q by Tx = dz mod 1. Clearly T is not invertible
and every point x has d preimages. In fact T7'z = {2 + % :7=0,1,2,...,d—1}. Again
let A be the Lebesgue measure.

Lemma 13. )\ is T-invariant.

Proof. We show that A(T~'I) = A(I) for intervals I = [a,b), 0 < a < b < 1. We have

)
that 7711 = U;;Ij (disjoint union), where I; = [§ + (%, g + ]%1) Thus

d—1 d—1 . .
_ b j+1 a J
T = 1) = -+ — | —-(=4+= =b—a= 1)
AT ZA(]) Z(<d+ d) <d+d)> b—a=\I)
7=0 7=0
Since this is true for any 0 < a < b < 1 one sees that A is T-invariant. i

Lemma 14. )\ is ergodic

Proof. As above we show that any T-invariant f € .#? must be a constant. We use
the Fourier expansion f(x) =7 a,e*™* where the coefficients a,, satisfy Parseval’s

identity > |a,|* = fol | f(t)|* dt < co. We have

o0 o0

f(T{E) _ Z an€27rin(dac mod 1) _ Z an627rindw

n=—oo n=—oo

and comparing coefficients with f(z) = .77 _ a,e*™ we see that a,, = a4,. Iterating
yields a, = ag, = aq2,, = ags, = ---. By Parseval’s identity we conclude that a,, = 0 for
all n # 0 and hence f(x) = ag is a constant. Since £? is dense in .Z! we obtain the same

result for f € #*! and therefore ) is ergodic. i
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We use this result to show a well-known result on the distribution of digits in a base d
expansion of real numbers (d > 2). For z € [0, 1) let
r = 0.a1a%a3 - - = d—j
j=1
be its base d expansion. We are interested in the distribution of the digits a; € {0,1,2,...,d—
1}.
Theorem 15. (Borel’s law on the normality of numbers) For \-almost every x € [0,1)
the density
1:0< < =k
n—00 n

exists and equals % forallk € {0,1,...,d—1}.
Proof. Let k € {0,1,...,d — 1} and put

xk(a:)z{l if ze |

0 otherwise

ulm
|?v
—
~—

' d

One has yx(z) = 1 if a; = k and 0 otherwise and similarly xx(Tjz) = 1 iff a; = 1, where
T is the affine stretching map from the previous example and a; are the digits in the base
d expansion of x. Thus

n—1
|{j:0§j<n,aj:k}]:ZXk(Tj3:)
=0

%XZ($) exists almost surely by the pointwise ergodic

4.4. Gauss map. Again we use the unit interval and put Q = (0,1]. The Gauss map T
on {2 is defined by Tz = % mod 1 and is related to the continued fraction expansion of

real numbers. Any = € () can be written as a continued fraction expansion
1

1
ay + ———
azt oo

and the limit Dy(z) = lim,

theorem and equals fol xe(z) dA(z) = 1.

xr =

where the integers a; € IN are uniquely determined by z. We also write z = [ay, as, a3, . . . |
and note that the sequence is finite if and only if x is a rational number. The rational
numbers
Pn
n
which are the truncated continued fraction expansions are the approzimants of x and
satisfy the recursion formulas

= [al,a2,...,an]

Pn = QuPn-1+ Pn-2
Qn = QpQn-1 T Gn—2

with the initial values pg = 0,p1 = 1,90 = 1, ¢1 = a;. The golden mean has the continued
fraction expansion 1(v/5 — 1) = [1,1,1,...] and the sequence {p,} are the Fibonacci
numbers.
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If we denote by n(x) for x € € the function with values in IN that is given by Tz =
% — n(x) then we can solve for x and obtain z = [teration yields

1
n(x) + L

n(Tx)+ n<T2x)+‘W ;)+m

1
Tz+n(z)"

Tr =

which implies that a; = n(7?"'z). The Gauss measure p on (0,1] is the probability

measure 4 which has the density Wl%ﬁ ie.
1 (" dx 1 1+b
b = 1
pi(la, b)) = 10g2/a 1+2 log2 Ogl—i—a

forO0<a<b<l1.
Lemma 16. The Gauss measure is invariant under the Gauss map.

Proof. Clearly T is not invertible, in fact

1
T_lm:{ 71 =1,2,. }
T+

since y € T~'2z means that x = Ty =  — j for some j € IN and therefore y = . Hence,
if I = (a,b,0<a<b<1,isan 1nterval then 7711 = UJ olj, where I; = [bﬂ a}ﬂ)
(notice that T reverses orientation). Therefore
W) = S0y
j=1
0o 1
- > gl
1
o log 2 1+ i
oo

T Zlog2 bt itlat

j=1
N Y (T bt
T log2 = \ b1 %
1 b+1
log20a+1 ul)

Lemma 17. The Gauss measure v is ergodic.

Proof. We use that ergodicity is equivalent to the fact when for every U,V C € of
positive measures one has (U NT V) > 0 for some j € N. It is enough to consider the
case when U,V are intervals since the Borel o-algebra is generated by intervals.

Denote by 1; the inverse branches of 7', that is ¢;(z) = F where we also put A; =

P;(Q) = []}rl, —,> for its range. Iterating the inverse maps yields inverse branches of
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higher powers of T'. We denote ¥4,a,...a, = Va, ©*** © Pa, © g, for the inverse branches of
T" where a; € N. Tts range is Agjay..0, = Varas..a, () and (0,1] =, 0. 0. Daras.a, 15 @
disjoint union. Since T is an expanding map we conclude that

Dn — Sup diam(Aa1a2.--an) - 0
(a1,a2,...,an)EN"

Assume U, V are intervals and let n be large enough so that D,, < 1 min{diam(U), diam(V')}.
Then there exist n-words b1bs - - - by, ajas - - - a,, € N" so that Ay 4,5, CV and Ay, ay..0, C
U. Since ¥y, ., > 0 we conclude that pu(s,p,.,(V)) > 0 (u(V) > 0 by assumption)
and thus since

Aayas...an = Dayas...an N UVbibybn (Doy.b,) C U Ny, (V) CUNTV

we obtain (U NT~"V) > 0. This proves that p is ergodic. i
Theorem 18. Let z € (0,1] and [a1(x), as(x), as(x),...]| its continued fraction expansion.
Then for every k € N the limit
Wit <j<nai(e) =k 1 (14 k)?
D = 1 =
o(z) = Jim n log2 *® k(k +2)

exists p-almost everywhere.

Proof. We use the BET and ergodicity of u If we again denote by n(z) the integer
part of 2, i.e. To = L —n(x), then for z € [45, 1) one has n(z) = a;(z) = k. Similarly
aj(z) = n(TV " z). We now put

Xk(x) = {

10 &

1 if T € 7 1)
0 otherwise

and get
[{j:1<j <n,a(x) =k} = Zxk (T7'2) = xj(2).
By the pointwise ergodic theorem we get for the hmlt.

Di(x) = lim Sx2(x)

+
B+l
1 1+
— 1 k
log 2 ©8 1+ k%l
1 k+1)?
= log (k+1) .
log2 ~k(k+2)
The asymptotic is Dy (x) ~ @lek i



14 NICOLAI HAYDN

Lemma 19. The limit

log j

) log 2

:\H

Jim (o)) = I (45

J

exists for Lebesque almost every x.

Proof. Define the function f : (0,1) — R* by putting f(z) =logj for z € ( g %), Jj=
1,2,.... Clearly f € Z'(u) because fo x)de =37, (jl — jﬁ) logj <37, k;%j < oo.
Then by the pointwise ergodic theorem
=Y Jlogay(x) =~ f(T""'2) = —f"(x) — u(f)
j=1 j=1
as n — oo since p is ergodic. For the value of the integral on the RHS we obtain
1 1
u(f) = ;M((m7 3))
- i
log 2 1 +x
. Z log j 1+ J
log 2 14 #
Z logj (j +1)?
log2j(j+2)
Exponentiation yields the statement in the lemma. i

4.5. Subshift of finite type (SFT). Let A ={1,2,..., M} be a finite alphabet and A
a 0, I-valued M x M-matrix. Then we put

S={fe A Ay, =1Vi}

The map is the left shift o : ¥ — ¥ as above. The metric is the same as above for the
Bernoulli shift, that is d(7, %) = 9"@% (J < 1) where n(Z, ) is the smallest |j| for which
T 7 Yj-

For instance the two element alphabet A = {0,1} and the transition matrix A =

11
10
of 0s and 1s so that never any two 1s are consecutive since the transition matrix A allows
for the 2-words 00,01, 10 but disallows 11.

Let P be a stochastic matrix, that is P1 = 1 (1 = (1,1,...,1)) and pP = p for a
left eigenvector 7= (p1, ..., pa) which is positive and satisfies ;p; = 1. This defines a
o-invariant measure on > by putting on cylindersets

p(U(r1my. .. 1)) = Pay Pryay Pryas - Py

give rise to the subshift ¥ that consists of all doubly infinite sequences composed
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Lemma 20. The limit Q) = limn_,oo%ZZ;é P* exists and moreover Q) is a stochastic
matriz. Also PQ = QP = Q = Q>

Xi(x):{ 1 if x € U(i)

Proof. If we put

0 otherwise
then p(x;) = p(U(i)) = p;i. By the pointwise ergodic theorem lim,, o 1x7(z) = Xi(2) p-
almost surely where y; is o-invariant and satisfies pu(x;) = p(x;). Integrating lim,, %X?Xj =

n—1

1
li —§ oTF vadu= | %ix:du.
nggonko/zx X;j ap /Exxyu

Since [;xi o T% xjdp = p(U(j) N T~ U(i)) = p; Pl we obtain lim, . +p; e P =
1(Xix;) Put

n—1

1 1
Qji = —p(Xix;) = lim = > P
J pj ( ]) n—00 1, kX_; i
This proves the first claim of the lemma. It is clear that () is stochastic matrix with left

eigenvector p. It also follows easily that PQ = QP = Q = Q°. |

Lemma 21. Let P be irreducible and aperiodic (i.e. P™ > 0 for all n large enough).
Then all rows of Q) are identical. In fact Q;; = p;.

Proof. Let n be large enough so that P" is positive. Since QP = @ by the last lemma,
we also have QP" = ) which means that Q;; = Zﬁil Qir(P™)j. Since @ is stochastic,
> i Qi = 1 and therefore at least one of the Q;, k = 1,..., M, is non-zero. Since P" > 0
we conclude that @);; > 0 for all 4, 5. Thus @) > 0. To see that all rows are equal let us
put ¢; = max; ();; be the maximum in the j-th column. Assume there is a @;; < g;, then

we get as Q = Q%
Qi =Y QuQi < q; Y Qrj=a;
! !

since one of the Q);; is less than ¢; and the weights Qy;, k add up to 1 (Q;; is a convex
combination of {Qy; : k}). Since i is arbitrary we get that @;; < ¢; for all ¢ which
contradicts the definition of ¢;. Hence Q;; = ¢; for all ¢, j.

To get the values of the entries of () we use that p is a left eigenvector of () to the
eigenvalue 1. To wit p() = p’ and therefore for every j:

pj = ZpiQij = Zpin =dq;

as »_,pi = 1. Thus Q;; = p; for all ¢, 5. |
Lemma 22. p s ergodic.

Proof. We will show that for cylindersets V, W one has
e,
N 2 HWV o™ V) = p(W)u(V)

J=0
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as N goes to infinity. Let W = U(xy---x,),V =U(y1 - Ym), then if j > n one has
Wr‘]o—*]v: U U(:L-l...xnzl...zjinyl...ym)

21°Zj—n

where the union is over all words z;---z;_, in X of length j — n which allow for the

transitions A, ., = A.,_ 4, = 1. Thus
p(Wno V) = Z U(xy- T2y 2l - Ym)
21" Zj—n
= P Porzs Ponsan (P )anys Py Py rym

and consequently
= =
N Z M(W N O-ij‘/) = pz1P:Jc1x2 T Pmnflxn (N Z Pjn) Py1y2 T Pymflym
j=n j=n Tny1

which converges to u(W)u(V) as N — oo since the entry in brackets converges by the
previous two lemmas to p,, and in the averaging n terms will not affect the limit. i

4.6. Linear toral automorphisms. Here we put Q = T" = R"/Z". Let A be an n X n-

matrix with integer entries. Then A induces a continuous map on €2 which is invertible if
det A = +£1.

For instance the matrix A = ( 2

11 ) induces a homeomorphism on T2?. A has

1
eigenvalues \y = %(3 4+ /5), where 0 < A_ < 1 < ;. The eigenvectors 7y = ( 145 )
2

span the expanding manifold and contracting manifolds at the fixed point 0:
W*“0) = {xeT?*:|TVz| — 0 for j — oo}
Ws(0) = {zeT?:|T 72| - 0for j — oo}
There exists a finite partition & = { Ry, Ra, ..., Ry} of Q whose elements have boundaries
that consist of unions of pieces from W#*, W*. To be more precise & satisfies the Markov
condition which is given by:
TOR,NW?*) C ORNW?®
TOR;NW*) D ORNW"
Then one can define a transition matrix on the alphabet A = {1,..., M} by putting
A — 1 if iIltTRZ' N iIltRj # (Z)
K 0 otherwise '

The shiftspace ¥ is then defined as above and has the left shift map o : ¥ — ». Then T
and o are semiconjugate, i.e. moo =T o7 where 7 : ¥ — T? is the map defined by

+oo
(%) = ﬂ TR,
j=—o00

for all © € X.
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5. RETURN TIMES AND THE INDUCED MAP

5.1. Kac’s theorem and the induced map. For U C ) we define the return time
() = min{j > 1 : Tz € U}. By the Poincaré recurrence theorem 7y(z) < oo
for almost every x € U for any finite T-invariant measure p on €. Poincaré’s theorem
doesn’t tell us anything about how big 77 is. The next result gives us the expected value
of 77 on U which in particular implies that 7 is integrable on U (assuming u(U) > 0).

Theorem 23. (Kac 1947) If u is an ergodic T-invariant probability measure on § then
for any U C Q of positive measure one has

/U (@) du(a) = 1.

Proof. Let us put 74 for the kth return time, that is we put 75 = 7y and then define
recursively

76 (2) = 1o (T"'2) + 757 (x)
where we put T'(z) = T™®) (z) for the induced transformation on U (which exists almost
surely by Poincaré). Inductively we also get

Tk:TU—i—TUOT—i—TUOTQ—i—---—i—TUOTk_l,

i.e. the kth return time is the kth ergodic sum of 7 on (U, T) By the pointwise ergodic
theorem we get

n—1
1 .
dp = dp = lim — T’
/UTU H /QXUTU " nLTon;(XUTU)( z)
for p-almost every x €  as u is ergodic. If we take the limit along a subsequence
ny = 15(x) and use the fact that

. 0 if TixgU
J — . ;
Oxoro) (1) = { 7o(Tiz) if TizeU

then we get (with n = 75)
-1 0—1

1 . 1 Ny 1
= lim —— T'z) = li T'z) = lim ———7f(z) = 1.
/UTU"“ Jim iy 2 Como)(T7e) = Jim Zes b ru(Te) = Jim S (@)

=0 =0

It remains to show that xy7y € £*. We use the same argument again but this time cut
off the values of 7i;. For R large we put

1 if TUu\T SR
W<x>:{ 0 if TUEJ;§>R'

Now, since prYuTr € £, we get by the pointwise ergodic theorem
¥YRX g Yy p g

n—1
1 .
N 1 iy
/U prTU dpt = /Q prxUTU dpp = lim JE_I(QORXUTU)(T ) = lim Py

for all values of R. Let R — oo which implies that yymy € £1. i
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Second proof of Kac’s theorem if 7' is invertible. This one uses a representation of
Q2 which is called a Rokhlin tower. Given U C Q (u(U) > 0), then we put Uy ={z € U :
Tw(x) =k}, k=1,2,..., for the level sets of 7;. Then U = U;;Uk is a disjoint union
and the sets T'Uy for j = 0,1,...,k— 1,k = 1,2,..., are pairwise disjoint. Since pu is
ergodic, Q = J, Uf;ll T7Uy and as T is invertible u(77Uy,) = u(Uy). Hence

oo k—1

=3 Y (v = S k() = [ s
k U

k=1 j=0
This uses the representation of €2 by the following tower construction which is due to

Rokhlin. Let F' be a map on a space Ay and assume A is decomposed into a disjoint
union Ag = |J,, Axo. Then, given a (roof) function r : N — IN, we put

oo r(k)—1
a=U U 2

k=1 j=0

(disjoint union), where Ay ; = {(x,j) : « € Uy}. Then there is a map S on A which is
defined by

S Akvj — AkJ’Jrl lfj < 7"(]{) -1
S Ak,r(k)fl — Ao = UAk,O
k
where S(xz,j) = (x,7 + 1) for (x,7) € Ay; and if j < f(k) — 1. If (z,7) € Dpr)—1 then

the map is S(z,j) = (F(x),0). We call the pair (S, A) a Rokhlin tower. In the case of
Kac’s theorem Ay = U and the roof function is f(k) = k.

For a subset U C Q, u(U) > 0, let us denote by T =T7 : U — U the induced map.
T exists by Poincaré’s (or Kac’s) theorem almost everywhere. We also have the induced
measure [i which is defined on U by [i(A) = % for all measurable A C U.

Lemma 24. The induced measure [i is T-invariant.

Proof. Let A C U and decompose its pullback T4 as follows:
T'A = U T*ANU)

(disjoint union), where Uy = {z € U : 7y(x) = k} and

k—1
T*ANU,=UN (T-m\ U T‘jU> :

J=1

If we put A, =T *A\ U2y 79U then Ay = A and A, NU =0 for k > 1. We have
THANU, =UNT A,

and hence
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Now note that T7'A; = (T"'A, NU) U Ay (disjoint union as Az = T 1A, NU®) and
thus

(T AL NTU) = p(Ar) — (Agir)-
As pu(Ao) = p(A) we get

p(T71A) =Y " (u(Ar) = p(Ags))

k=1

which equals p1(A) if (Agy1) — 0 (which is obvious if u is ergodic as then Q = |J, 7% A
if u(A) > 0). We get that u(7T*A) < u(A). The same argument applied to U\ A (instead
of A) yields u(T~H U\ A)) < u(U\ A) = u(U) — u(A). Since TTAUTHU\ A) = U we
get 4(T14) = i(A). I
Lemma 25. Let U C Q, p(U) > 0, T = T™ the induced map and ji = p|y the restricted
probability measure. R

(1) If u is ergodic with respect to T, then [i is ergodic with respect to T

(1) If ju is ergodic w.r.t. T and Q = ;2 T~7U, then p is ergodic w.r.t. T.

Proof. This is the first assignment. i

Lemma 26. Assume i is ergodic and let U C ) have positive measure.
Then for all A C U°”:

p(A) = iu<U N <T’“A \ UTjU>) :

Proof. Let A C U¢ and put
k—1

Ay =TH*A\JT U ={2€Q:T" € A T2 ¢ UVj=0,1,... .k}
j=0

where Ag = A. Then
k—1
Un (T’fA U TjU> =T A1\ Ay
j=1

for k =1,2,.... Note that A, C A,_1Vk. Hence

n

iu(U N <T_kA\ L_J T_jU)> = Z(M(T_lAk—1) — w(Ay))

k=1
= [1(Ag) — p(An)
= w(A) = p(An).
Since Ay C 2\ U?:o T~9U and by ergodicity M(U;io T-9U > = 1 we conclude that

p(Ag) < u(O TjU) —0

Jj=0
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as k — 0. |

Theorem 27. Assume p is ergodic and U C € has positive measure.
Then for all A C 2 one has

Tu(z)—1
:/ Z xa o TF(z) du(z).
U k=0

Proof. As before put U; = {x : 77(x) = j}. Then by the previous lemma
pA) = pANU)+ p(A\U)

= u(ANU) +§:M<Uﬂ (T‘kA\ O T‘jU>>
k=1 =1
T7FAN G Uj)

o]
j=k

= u(AﬂU)+Z

k=1

= u(AnU)+ p(T*"ANU;)

M“‘ 1M8 /t\

= u(AnU)+ p(T*"ANU;)

M 1M

1

£
Il
—

J

oo J

= > ) w(T*rAnyy)

j=1 k=0

8

J

: zz/ xao T dy

j=1 k=0
v (z

\./

Xa 0 T*(x) dp(z).

I
q\..

k=0

This provides us with an alternate proof of Kac’s theorem. Setting A = {2 we get that

TU(ZL‘

/Z xu o TH(x) dp(x) = / v(@) du(z).

5.2. Example. Kac’s theorem states that the return time function 7 is integrable over
U and also gives the value of the integral. Here we give an example of a system for which
Ty is not integrable over the entire space €2 and yet the measure is ergodic under the shift

map.
Let Q = N% where on the state space N we give the transition probabilities: Let
€ (0,1),i = 1,2,..., be a sequence, then we allow for the transition i — i + 1 with
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probability p; and for the transition ¢ — 1 with probability ¢; = 1 — p;. In other words,
we can define a stochastic matrix M by
M1 = g
Mj;0 = pj :
M, = 0 otherwise, ie.if k#1ork#j+1
where the transition probability of the transition j — k is given by the entry M, ;. Then
ML =1as) ;o  Mj =M1+ M1 =qj+p; =1Vj and M has the left eigenvector

¥ = (x1,2,...) (for the dominant eigenvalue 1) which satisfies
Q1 T1 + @2 + q3T3 + 0 = Xy
Tip; = Tj41 fOl"j = 1,2,....
One sees that the components of the left eigenvector are z; = 1P}, 7 = 2,3, ..., where

P; = [[)Z/ pi (P, = 1) and z; is chosen to make & a probability vector (z7! = > P
The first equation above is satisfied as » . qjz; = > (1 — pj)ei Py = 21 (P — Pjya1) =
Py = a2 it P, =+ 0 as j — oo. In this way we obtain a shift invariant probability
measure ;4 on {2 which is ergodic as one can go from any state i to any other state j with
positive probability.

Put A, ={d € Q:wy=j},j=12,...,let U= A; be the return set and 7y its
return/entry time function. If we put A, = A; N {7y = k} then J € A; is of the form
wowy - wip =7+ DG +2)-(J+Ek—2)(j+k—1)1 (symbol sequence of length &k + 1).
One has
Pjiy—1

P.

J

1(Ajr) = 1(A))pipj+1 - - Pivk-2@j+k-1 = 1D Gjrh-1 = 21 Pj 1G4

as (W(A;) = x; = x1P;. The integral of 7y over the entire space is

/ v dp = Z ku(Ajr) = Z kxy Piyk—1Gj1k—1-
@ gk Jik

If we choose p; = (Zfl)a for some a € (1,2) then P; = []/Z; (Hﬁ)a = ]% and since the

—1
P; are summable, 2 = (Z ; Pj> is well defined and positive. Then

1
du = k ——— Qi
/QTU 1% !1012 Z(j+k—1)°‘%+k 1

2 CQZ[{;_]{;:OO’
k

as a < 2, where we used that gj;,—1 =1 — (1 L

T k-1
thus see that the integral of 7;; over the entire space €2 diverges.

This can be converted to an example on a two-state shiftspace ¥ C {0, 1} by the single
element mapping 7 : 2 — ¥ which maps 7(1) = 1 and collapses all other symbols to 0,

(0%
1
) > T for some ¢; > 0. We
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ie. m(7) = 0,7 =2,3,.... The measure p is sent to the probability measure v = 7*u
which is invariant under the shift map.

6. EXISTENCE OF INVARIANT MEASURES AND EXTREMALITY OF ERGODIC MEASURES

Put .#(T) for the set of T-invariant probability measures on (£2,7") where ) is a
compact metric space. The following result affirms that for continuous maps on compact
spaces and invariant maps, invariant measures indeed exist. The mainpart of the proof is
to show that the set of probability measures on € is weak™ compact.

Theorem 28. (Krylov-Bogolioubov) If Q is a compact metric space and T : Q — Q is
continuous, then 4 (T) # (.

Proof. Let x € () be arbitrary and let u,, = % Z;:ll 0,077, where 6, is the unit pointmass
at x. That is, for f € C(Q) one has p,(f) = 2f*(z) = %Z;:ll f(T?x) (here we use

continuity of T' to make sure that T, f = foT liesin C(Q)). Let S = {f1, f2,...} C C(Q)
be dense and countable. Then |u,(f1)| < |file < 0o and consequently there exists a
subsequence n; so that the limit lim;_. ptn,(f1) = L(f1) exists for some number L(f1).
Put p11; = 1, and there exists a subsequence j, so that j; j,(f2) converges to some L( f2)
as { — oo. Put poy = 111, and proceed inductively. We obtain a sequence of sequences
f.j so that py ;(fi) converges to a limit L(f) as j — oo and so that {ug41, : £} is a
subsequence of {yu ; : j} for every k. For the diagonal sequence v, = py. i, the values v (f)
converge to a limit L(f) for every f € S. Thus L defines a positive linear functional on
S which can be extended to all of C'(§2) as follows. Let g € C(Q2) and € > 0. Then there
exists f € S so that |g — floo < €. Hence |v(g) — vik(f)| < e for all k. Moreover there
exists an N so that |v(f) — ve(f)| < e for all k,¢ > N. Hence

v(9) — velg)| < wi(g) — vi()] + [ (f) = ve(P)] + () — velg)] < 3¢
for all k,¢ > N. Thus {v(g) : k} is a Cauchy sequence and converges to a value L(g).
Since L is a positive linear functional on €2, by the Riesz representation theorem there
exists a (Radon) measure p on Q so that L(f) = [, f(z)du(x). Clearly the measure y is
T-invariant as it is a limit of {y, : n} and

1 n—1 n—1

_ o T+l _ oY
n/g(gf -3 T)un
1 -

|Nn(foT) _:un(f)| =

2| f oo
< —|f | — 0
n
as n goes to infinity along a (sub)sequence. i

Example: The requirement that the map be continuous is necessary as the following
example shows where we produce a non-continuous map that does not have an invariant
probability measure. Let 2 = [0,1] and 7" : [0, 1] — [0, 1] defined by

T:U—{ %x if 0<x<1

1 if z=0
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for € [0,1]. Then T not continuous and has no invariant probability measure since
(i) the pointmass Jy is not T-invariant and (ii) if there were an invariant measure pu
with non-zero mass on, say, the interval (%, 1], then by T-invariance of p one would have

p((3.1]) = u((3,3]) = (g, 3]) = -+ = p((279*Y,277]) for j = 0,1,2,.... Since the
intervals (2701 277] are pairwise disjoint, the total measure of (0, 1] would have be to
infinite which is impossible.

Next we will identify the ergodic measures as the irreducible components of invariant
measures. Since the the linear combination of two invariant measures is again an invariant
measures, the set of invariant measures .Z(7") is convex. Its boundary elements are the
ergodic measures.

Definition 29. We say p € 4 (T) is not extremal if there exist py, po € M (T) p1 # o
and o € (0,1) so that pu = apy + (1 — a)us.

Lemma 30. u ergodic <= Aj € #(T) so that i # p, i < p.

Proof. “=": Assume p is ergodic and assume there exists ji € .#(T) so that i < u. If
fi is not ergodic then there exists U C Q,T-'U = U so that a(U), 1(U¢) > 0. However,
aU) >0 = pU) > 0 (as i < p) and similarly, a(U¢) > 0 = p(U¢) > 0. This
contradicts the assumption that p is ergodic. Hence fi is ergodic. In order to show that
= plet U C Q and yy its characteristic function. Then by the pointwise ergodic

theorem . )
1 wU) for p-ae. x
XU — { a(U) for frae. x
Hence u(U) = a(U)YU C Q and therefore fi = p.

“<": Assume there is no g € #(T) so that i < p and g # p. We show that
i is ergodic by contradiction. If we assume that p is not ergodic, then there exists
UcCQT'U =U so that u(U), w(U¢) > 0. Put uy = p|y for the restricted probability
measure, then py is T-invariant as U is T-invariant. Moreover, uy < p and py # p
which contradicts the assumption. Hence p is ergodic.

Corollary 31. For a continuous map T on a compact metric space §2, the set of invariant
probability measures A (T) is convex and ils extremal elements are exactly the ergodic
measures.

If there is only one invariant measure p (i.e. . (T) = {p}) then we call (Q, T, n) uniquely
ergodic as by force pu is ergodic.

Example (Irrational rotation). We give an example of a map which is uniquely ergodic.
Let 2 = [0,1) be the circle T' and T be the rotation by an irrational number «, i.e.
Tx = x4+ a mod 1. Clearly, 7' is continuous and we can use Fourier series on C(]0,1)).
If gr(x) = > then

n—1 n—1 .
1 § j 1 E 2mik(z+jor) 1 ifk=0
E s gk<T]x) = ﬁ € 1Y = %627rik‘z 1—e2mikan if k 7£ 0
J:

=0 1—e2mika

as E?;& 9 =12 if t # 1. Letting n — oo yields Lg7(z) — 0 for all z € T' and for

all k # 0, and ~gii(z) = 1 for all z. If p1 is a T-invariant measure on [0,1) then by the
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ergodic theorem %g,’j(w) — fol gr dp as n — oo for p-almost every x. Hence fol grdp =0
for k # 0 and equal to 1 if k = 0. If P(z) is a trigonometric polynomial >, . argi()
of some degree m, then

1
EP"(JE) — ag

as n — 0o, where ag = fol P(z) d\(x) and also equal to f01 P(x)dp(x). If P; is a sequence
of trigonometric polynomials that converge to a characteristic functions x|, of an interval

la,b) C [0,1), then
1 1
ag 2/ Pdp —>/ Xla,b) Ait
0 0

as j — oo. Hence ag = fol Xiap) dpr = A([0,1)) for all 0 < a < b < 1. Thus p = X and
consequently, A is the only ergodic measure on T*.
Theorem 32. (Ergodic decomposition) For every T-invariant measure on the compact

metric space §) there exists a probability measure p on the ergodic set & = {v € .4 (T) :
v ergodic} of A (T) so that for all f € C(2)

/Qfdu:/g(/gde> dp(v)

That is . (T) is a Choquet simplez (Choquet 1959).

Example. In the shiftspace ¥ = {0, 1}% the ergodic measures form a dense set in . (7).

7. ENTROPY

Definition 33. Given (2, u) with o-algebra 2.
(1) A C A is a partition of Q0 if elements in A are pairwise disjoint subsets of  and

Usen A=
(II) For two partitions A, B we call

AVvB={ANB:Aec A BEeB}

the join of A and B.
(111) We say A is finer than B (B is coarser than A) if for every A € A there exists a
B e B sothat A C B.

Example. For the shiftspace ¥ = {1,2,..., M}% the set A = {U(i) : i = 1,..., M}
forms a partition (U(i) = {# € ¥ : 2y = i} are 1-cylinder sets). Also B = {o71U(3) : i} is
a partition and sois AV B ={U(ij) :4,j=1,...,M}.

Let us now define the function
0 ift=0
2 (t) _{ —tlogt ift>0

which is concave on [0, c0) which means that for z; € [0,00) and weights a; > 0 so that

Yoo =1onehas ¢ (3, ax;) > >, ().
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Definition 34. Let p be a probability measure on 2 and A a partition. Then

=) o(u(A))

AcA

is the entropy of u with respect to the partition A.

If we introduce the information function I4(x) = —log pu(A(z)) = > 4c 4 |1og p(A)[xa(x)
where A(z) € A is the partition element that contains z, then

= S A = [ 1ale) duto)

AcA

Example 1. Let ¥ = {1,..., M} be the full M-shift and p the invariant measure
(Bernoulli measure) generated by the probability vector p'= (pi,...,pm). For the parti-
tion A = {U(7) : i} one then has

— Z@(M(U(z)) = sz’ log pil.

If all the p; are equal to 57, then H(A) = log M.

Example 2. For the affine stretching map T on the interval [0,1) (= T') one has
Tz = dr mod 1 for degree d > 2. For the Lebesgue measure A and the partition A =
{[5,%1):i=0,1,...,d — 1} one obtains

A d
1 1
H(A) Z)\ Z ZZ ))log)\ l Z+ Z——log =logd

Definition 35. Let p be a probability measure on Q2 and A, B partitions. Then

ANB ANB

A,B
is the conditional entropy of A with respect to B.

Theorem 36. For partitions A, B,C one has:

(I) HLAV B|C) = H(A|C) + H(B|AVC)

(II) HLAV B) = H(A) + H(B|A)

(II1) If B is finer than A then H(B|C) > H(A|C) (and also H(B) > H(A))
(IV) If B is finer than C then H(A|B) < H(A|C)

(V) H(AV B|C) < H(A|C) + H(B|C)

(VI) H(A|C) < H(A|B)+ H(B|C)

Also note that H(A|B) = 0 if B is finer than A because then
pANB) p(B)
AlB) = AﬂBlog—:— AN B)log——= =
H(A|IB) = =) u(ANB) (B) > wANB) o(B)

A,B A,B

o

as either ANB=0,or ANB=DBas AV B=5.
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Proof. (I) One has

- 5 w(ANBNC)

H(AVB|IC) = AEBC AmBm(Jlg—M(C)
L 5 w(ANBNC) 5 n(ANC)
— AE’B’CM(AmBmC)(lg ANC) + log (0 >

— H(BJAVC) + H(A[C).

(IT) This is a special case of (I) with the trivial partition C = {Q}.
(IIT) As B is finer than A one has AV B = B and thus by (I)
H(B|C)=H(AVB|C)=H(A|C)+ H(B|AVC) > H(A|C)

as H(-|-) > 0.
(IV) Since B is finer than C, for every C' € C there is a subset Bo C B so that C' =
Upes,. B- Then by concavity of the function ¢

HAB) = Y (B ( A“B)
B)

AcA,BeB

= > uo)

AeA,CeC BeB )

G
2. (Z )
)

1

ﬁ

(AN
w(B
(AN

IN

AeA,CeC

- 2 ron(Sier

AcA,CeC

= H(A[C)
as the weights & ( ) ) add up to 1 on B for every C € C and Y pepe MANB) = u(ANC).
(V) By (IV) H(B|C) > H(B|C V A) and thus by (I):
H(AV B|C)=H(AIC)+ H(BJAVC) < H(A|IC) + H(BIC).
(VI) Using (III) and then (I) yields
H(A|IC) < H(AVB|C)=H(B|IC)+ H(A|BVC) < H(B|C) + H(A|B).
i

Now we come to the entropy of a map. Let T be a map on 2 and p a T-invariant
probability measures. If A is a partition of € then so is T7'A (and higher order pull-
backs). Since yu is invariant one has H(T'A) = H(A). The partition A" = \/}:& T4
is called the nth join of A and it refines the partitions A, 7' A, ..., T~ Y A. The atoms
A of A" are of the form A = A;) N A, N---NA;,_, where A;, € A={A4;,A,,...}. We

call A an n-cylinder.
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Example 1. For the full shift ¥ = {1,..., M} we take the partition A = {U () : i} of
1-cylinders. Then

:{U(lolean_l)Zke{l,,M},kZO,,n—l}

consists of the collection of n-cylinders U (igiy -+ - ip—1) = {¥ € X 1 2o+ Tp_1 =g in_1}-
Clearly, here | A" = M™.

) = [0,1) given by Tz = 2x mod 1 we take

Example 2. For the doubling map T : [0, 1
1)}. Then

the two element partition A = {[0, %), [%,

J+1 .
An = {[;—n,]Qn ) ] :0,1,..,2”—1} = {Lpysyw, 1x € {0, 11,k =1,...,n},
where the intervals I, 4,...,, consists of all points x € [0, 1) whose binary expansions begin
with the digits x1, 2o, ..., x,. That is

mn_lz Z )

7.1. The Kolmogorov entropy. In order to prove the existence of the limit we will
need the following arithmetic lemma.

Lemma 37. Let {a, : n € N} be a positive and subadditive sequence, that is anim <
Gy, + ap, for all m,n € N. Then the following limit exists:

. Qp, . Qn
lim — = inf —.
n—oo M neN n

Proof. Let m > 1 and put n = km + r, where 0 < r < m (remainder). Then

Un _ Ghmir O | KOm 0 Ko 1 am

n n n n n km k m

since ag,, < ka,, by subadditivity. Now let n — oo (k — 00) along a sequence that gives

the lim sup and we get

. Qn,
limsup — < —
n—oo N m

for every m > 1. Taking a liminf on the RHS gives the existence of the limit. That the
limit equals the inf follows from the last inequality. |

Definition 38. If the limit exists, then h,(T, A) = lim,_,o, ~H(A") is the entropy of p
with respect to T and A.

Theorem 39. Let T be a map on a space 2, p a T-invariant probability measure and A
a measurable partition. Then

B, A) = Tim ~H(A")

n—oo N,

exists.
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Proof. Note that A" = A"V T~"A™. Since by (II) and (III) of the theorem one has
H(BVC) < H(B)+ H(C) for any two partitions B,C, we obtain:

H(A™™) = H(A" VT "A™) < H(A") + H(T™"A™) = H(A") + H(A™).

Thus the sequence a, = H(A"), n = 1,2,..., is subadditive and we can apply the
arithmetic lemma to obtain the limit

hs. A) = lim %H(A") — inf LH(A").

neN N

Lemma 40. h(u, A) < h(u, B) + H(A|B) for any two partitions A, B.

Proof. Obviously H(A") < H(A" Vv B") as A"V B" is finer than A". By property (II) of
the theorem
H(A"V B")=H(B")+ H(A"|B").
The second term on the RHS is
H(A"B") = HAVT'AVT2AV.---VT 1AB")
< H(AB") + H(T'A|B") + H(T'A|B") +---+ HT ""YAB"

< H(.A]B") + H(T—1A|T—1B) + H(T_2.A|T_ZB) 4t H(T_(”_I)A|T_("_1)B)

because T/ B is coarser than B™ and therefore H(C|B™) < H(C|T~7B) for any partition
C. Because of invariance of the measure H(T 7 A|T~7B) = H(A|B) and thus

H(A|B") < nH(A|B).
Dividing by n yields
LA < LH(B") + HAIB)
and the limit n — oo proves the lemma. i
Corollary 41. h(u, A) < h(u,B) if B is finer than A.

Proof. By the previous lemma h(u, A) < h(u, B) + H(A|B) and since B is finer than A
one gets that H(A|B) = 0. i

Remark. We also have h(u, A") = h(u, A) for any n € N because
k=1 n—l ktn—1
(A =\/T7\/T7A=\/ T7A= A"
=0 i=0 j=0
which implies

h(p, A") = lim lH((A”)’“>

k—oo k
_ : 1 n+k—1
- AT
oo ntk-1 1 n+k—1
R e L

= h(p,A).
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Definition 42. The measure theoretic entropy of p is
hp) = SUp h(p, A),
where the supremum is over all finite partitions A of ).

The definition may be extended to include infinite partitions A under the additional
assumption that H(A) be finite.

Definition 43. A partition A is a generator (or u-generator) if |J, A" generates the
o-algebra on Q (up to p-nullsets).

If the map T is invertible then A is a p-generator if {\/?:_n T A :n € N} generates the
o-algebra.

Theorem 44. (Kolmogorov-Sinai) If A is a p-generator then
h(p) = h(p, A).

Proof. Let A be a u-generator and B be an arbitrary finite partition. We have to show
that h(u, B) < h(u, A). For any n we have

h(p, B) < h(u, A™) + H(B|AY) = h(u, A) + H(B|A").

We want to show that H(B|.A™) can be made arbitrarily small if n is large enough. Let
B = {By,By,...,B,} (r = |B|) and ¢ > 0. Since A is a p-generator, we can find

Ag-n) € o(A"), unions of n-cylinders so that M(BjAA§-")) < 5,u(A§”)), j=12...,r. We

can assume that A™ = {Ag»n) : j} forms a partition of Q. Clearly A" is finer than A™
and therefore

H(BIA™) < H(BIA™) =" —u(A)p (

Jk

(A N Bj))
n(4;"”)
We have two cases, (i) when j =k and (ii) j # k. If j = k then
AV ABy) < p(AM U B)) — w(AY 0 By) < ep(ALY)
which implies that

—e>1—c=.

n)

(A" N By) - (A U B)
) p(AS

If j # k then
(A 0 By) < (AL N Bf) < (AL AB)) < ep(ALY)

which implies
p(A N B))

@) < €.
M(Ak )

Hence

H(BIA™) <> u(AY) (w )+ > 90(6)> < cirple).

i
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Since € > 0 was arbitrary we get h(u,B) < h(u,.A) for all partition B. Consequently,
since p(g) — 0 ase — 0 and £ > 0 is arbitrary, we conclude that supgz h(u, B) < h(p, A). I

7.2. Examples. (I) Bernoulli shift. Let ¥ = {1,..., M}, with the shiftmap o and
the generating partition A = {U(i) : i}. Then V}_, oI A generates the o-algebra by
definition. If g is the measure generated by the probability vector p' = (p1,...,pn)
(>°;pi =1) then

H(An) - - Z Pao " Pxyy logpmo *Pry g

oLl Tn—1

= - Z Pay " Pxy 1ngark

TOT1 - Tn—1

= = prlogp,
Tk

= —an@- log p;

and therefore h(p) = —> . p;logp;.

(IT) Markov measure. Let A be an M x M-transition matrix and ¥ = {# € {1,..., M }No :
Apiws, = 1Vi} and 0 @ ¥ — ¥ the left shift. Again the partition A = {U(7) : i} of 1-
cylinder sets is generating. Let p be the invariant measure induced by a stochastic matrix
P (P =0if A;; = 0) and its probability left eigenvector p'= (p1,...,pm) O, pi = 1).
By the theorem of Kolmogorov and Sinai h(u) = h(u,.A). We have

HA") = — > p(U(w- - z51))log p(U(wg - 1))

ToT1 " Tn—1

= - Z pxopﬂﬁom e Pl‘n—2$n—1 logpxopxom e Pl‘n—2$n—1

TOTL Tn—1

n—1
= - Z pxopacom U Pxn72mn71 <logp$0 + Z 1Og Pﬂﬂk—wk)
LT Tm—1 k=1

= - Zpi logp; — (n — 1) Zpipij log P,
i ij

and therefore h(p) = lim, + H(A") = =3, . piP;; log Pyj.
(ITI) Affine stretching interval map. = [0,1), T2 = dxr mod 1 (d > 2 degree).

Then
i+ 1
=< |-, ——]:i=0,1,...,d—1
A{{k’d)z 0,1,...,d }
is generating and

An:{{%,]; ) j:O,l,,dn—l}:{[“lglnlkE{O,l,,d—l}}
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1
7,122 in [Z dn>

consists of the numbers x € [0, 1) whose base d expansion begins with the digits i1, ia, . . . , in.
With A the Lebesgue measure \(I;,;,...;,,) = d~" and

HA) = Y =Miyigein) 108 MTiyiye,)) = nlog d.

11,02;50n

where

Therefore h(\) = logd.

7.3. The theorems of Shannon-McMillan-Breiman and Ornstein-Weiss. For z €
Q2 denote by A,(x) the unique atom in A" which contains x.

Theorem 45. (Shannon-McMillan-Breiman) Let i be a T-invariant probability measure
with entropy h(p) and A a finite p-generating partition. Then

lim ~ [log ji(Au(2))| = h(s)

n—oo M

for almost every x € Q and in L*.

This theorem was first proved by Shannon [?] in 1948 for Markov measures. He showed
that the convergence was in measure. This was in 1957 improved upon by McMillan [?]
who proved the theorem for ergodic measures and showed that convergence was in £,
The final version for finite alphabets was formulated by Breiman [?, ?] in 1958. Sub-
sequent generalisations to infinite partitions are due to Carleson [?] in 1961 for Markov
measures and convergence in measure and Chung [?] for ergodic measures with almost
sure convergence.
In order to prove the theorem we need the Martingale convergence theorem.

Theorem 46. (Martingale convergence theorem) Let f € £ and By C By C B3 C - -
be a seqence of successively finer partitions so that Uj B; generates the o-algebra B. Then
the functions

converge almost surely and in L' to the limit f|g. The convergence is in £ if sup,, | fnl
15 integrable.

The mainpart of the proof of the SMB theorem is to show that the limit exists.

Lemma 47. The functions h,(z) = £ |log (A, (z))| converge almost surely and in £*
to a limit F*.

Proof. If we put Fj(x) = log % then

ogi(4,) = 3o D)

k=0

+ log ju( Ay(T"))
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where log u(Ao(7T"z)) = 0 as Ay = {2} is the trivial partition. Thus

n—1

() = ——ZFn W(TR2) + O(1/n).

k=0

Let us now look more closely at the functions Fj:

i) — MA@) p(Ai (@) N T A (T2)) 1
Ak () Pl Ak () u(Axi (T) /TlMTx» K

is the average of x4,(») over the elements in the partition T-'AF! We now can use
the Martingale convergence theorem with the function f(x) = x4, () and the successively
refining partitions B, = T~ 1 A*~1. Thus ef* converges to a limit e~ almost surely.

We shall now show that ¢ = sup,, —F;, is integrable. For A € A4 and ¢ > 0 note that
the sets

Sty ={reQ:—Fj(x) <t,j=2,3,....,n—1, —F,(x) >t}
are B,-integrable and also are disjoint, i.e. S7}(¢) N Sf( ) = @ if n # m. One has

u(A N SA®) = / ¢ dp < e u(SAD))
S (t)

and therefore
w(An{p >t}) Z,uAﬂSA Z,uSA

since the sets S4(t) are disjoint. From this we now conclude the integrability of ¢ as

follows:
/Qsodu = /OO ({e > t})dt

- 3 [T wante s ma

AeA

Z/ min{e ™", u(A)} dt

—log u(A) 00
= > / n(A) dt + / et dt
P 0 —log u(A)

= H(A)+1< o0

To finish the proof of the lemma we now write

IN

-1

ho(z) = Z wk(TFz) + O(1/n)

= Z L (TFz) —

i
L

Fo(T*z) + O(1/n),

3|>—‘
il
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where the last sum on the RHS converges by the ergodic theorem almost surely to a
constant F* as p is ergodic. To estimate the first sum

:__Z ok — Foo)(TF2)

on the RHS put ¢, = sup,,, |F; — Fi| and observe that by the Martingale Convergence
Theorem ¢, — 0 almost surely as n — oo. Since ¢,, < 2¢ conclude by the Dominated
Convergence Theorem that [¢,du — 0 as n — oco. If N is a large integer then for
n> N:

1 n—N 1 n—1 1 n N
’S"|35290N0Tk+; > ‘PIOTRSHZSONOT’“—FO(E).
k=1 k=n—N+1 k=1

By the Birkhoff Ergodic Theorem, the sum on the RHS converges almost surely to [ oy du
as n — oo while the error term goes to 0. Hence

limsup |S,[ < /sONdu

almost everywhere. Now let N — oo which implies that the RHS goes to zero. Thus we
finally get that h,(x) — F* almost surely as n — oo.
In order to get the convergence in £! notice that

n—1
1
Spldp < — E /sonkdu,

where the RHS converges to 0 as n goes to infinity. i

Proof of the SMB theorem. It remains to show that the constant F* from the previous
lemma is equal to the entropy. Indeed

[ = [ = ogu(An(@) dute) =~ 3~ p(A)logu(4) = HA
Q Q AeAn

which converges to h(u) as A is a u-generator. i
If the measure is sufficiently well mixing we have indeed the Central Limit Theorem:

Theorem 48. Let p be a [S-mizing probability measure on €0 with respect to a finite,
measurable and generating partition A. Assume that 5 decays at least polynomially with
power > 6.

If 0 > 0 then

P (]“J_ﬁh < t) _ N(t) + O(n")

for all t cmd all
(Z) R < - — gm
(ii) K < zf B decays super polynomially.

if B decays polynomially with power p,



34 NICOLAI HAYDN

As above let A be a p-generating partition and denote by A, (x) the n-cylinder that
contains z. Then
R (2) = Ta, (@) (7)

denotes the return time function. In the symbolic description, when every point x is
identified by its trajectory & = (..., x_1, Tg, Z1,...) then

R, (z) =min{j > 1:2;xj11  Tjpn-1 = ToT1- " Tp_1}

measures the time it takes until one sees the starting n-word again. According to Kac’s
theorem the value of 74, () is on average 1/4(Ay(x)). Since the SMB theorem says that
w(An(2)) ~ e one would expect that R, (z) ~ e™. This indeed is true as the following
theorem shows.

Theorem 49. (Ornstein-Weiss [24]) Let u be ergodic and A a finite u-generating parti-
tion, then almost surely

|
lim 28 (@) _ oy
n—o00 n

Proof. We notice that R,,_1(z) < R,(x) and also R,,_; < R,(x) for all z € Q. Thus, if

1 1
R*(z) = limsup — log R, (z), R~ (z) = liminf — log R, ()
n—oo TN n—oo 1
then
R*oT < R", R oT <R

from which it follows that R* are constant almost everywhere as p is ergodic'. We split
the proof into two parts: In part (I) we show RT < h and in part (II) we show that
R™ > h.

(I) Suppose R™ > h and choose b, ¢ so that Rt > b > ¢ > h. For A € A" let
Ey={x € A:R,(z)>e™}.

Then EA4NT/Ey = () for j = 1,2,...,5, where S = [¢"™] — 1. This is because if
r € EANT'Ey # 0 then R,(x) < j thus contradicting the definition of F, which
demands that R, be larger than S. Similarly T*E, NT'E,y = 0 for j # k, j k =
0,1,...,S, because (assming k < j) T*EANTIEy = TH(E,NT'"*E,) = (). Thus the sets
EA,TEs, T?E,, ..., T9E, are pairwise disjoint. Moreover as E4 C T/ (T7E,) one has

w(Er) < u(T3(TVEL)) = (T E,) for all j =1,...,5, and therefore p (U}g:o TjE’A) =

Zf:o w(T7E4) > (S + 1)u(E4) which implies pu(E,) < g7 < e Now put

L ={Ae A" p(A) > e}

ISuppose R* were not constant a.s., then the set £ = {z € Q : R*(Txz) < R*(z)} has positive
measure and there exists an a € R so that E, = {x € Q : RY(Tz) < a < R*(z)} also has positive
measure. By the Poincaré recurrence theorem almost every = € E, returns to E, after finite time. Since
RT(T7z) < R™(Tx) < a¥j > 1 this contradicts the fact that R (z) > aVz € E,.



NOTES FOR MATH 625, FALL 2018 35

which by the drawer principle implies |B,| < e"¢. By the theorem of Shannon-McMillan-
Breiman P(z € Q : & € B, i.0.) =0, where B, = J ;5 A. If

G, = U E4

AeB,

then
Gn) < |B, Ea) <ee™ = e 07
(Gn) < [Bn| max pu(Ea) < e €

decays exponentially fast as b—c¢ > 0. Thus ) u(G,) < oo and by Borel-Cantelli P(z €
Q:z € G,io.)=0. Moreover, if we put H, = Jyc 4o Ea = {2 € Q: Ry(2) > "}, then

PlxeQ:zeH,i0)<PlzreQ:zeG,i0)+PlreQ:2eB;io)=0
as G, = H, N B, and H, N B¢ C BS. Hence R™ < h almost surely.
(IT) Now suppose R~ < h and let b, ¢ be so that R~ < b < ¢ < h. For N € N put

Dy = {z € Q: Ry(z) < ™ for some n € [1,N]}.

Obviously u(Dy) — 17 as N — oo. Let € > 0, then u(Dy) > 1 — § for all N large
enough. Define

L1
1 )
Ep = {xEQ:Z EOXDN(T%) > 1—5}.
]:

By the pointwise ergodic theorem p(FEp) — 1~ as L — oc.
Now one does a parsing argument to estimate the exponential growth rate of

AP ={Ae A" ELnA#£0}.

A cylinder A € A" is given by an L-word zoz; - - 271 (i.e. A= U(zozy---27_1), where
xz; € {1,...,M} and M = |A|). The word is parsed in the following way and then we
estimate the number of ways such an L-word can be composed in order to lie in A®).
(A) The first block: If x ¢ Dy then the first block is the single-element block zg. If
x € Dy then the first block is xgz; - - - 7,,,_1 where m € [1, N] is so that R,,(z) < ™.
(B) Recursively: Assume the string xoxy -+ 21, K < L — N, has been parsed, then the
next block is xy, if T*2 & Dy and it is 2,241 - - - Tppm—1 if TF2 € Dy where m < N is so
that R,,(z) < e™.
(C) The remaining symbols of which there are at most N many will not be parsed.
Now we estimate the number of possibilities for such L-words.
(A) There are at most €L single-element blocks. Each can be filled with any of the M
symbols of A. The number Cy of configurations of these at most €L many single-element
blocks is bounded by

wsd (5) 2o () =i (i)
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for some constant c;, using Stirling’s formula j! ~ v/2mjj’e 7. The total combinatorial
contribution from the single-element blocks amounts to a factor of (e is small)

1 L
Cy<e Mt ——M—) .
e ()

(B) Denote the length of the ‘long’ (i.e. not single-element) blocks by m;, where j
1,2,...,7r, r being the total number of non-single-element blocks. By construction m;
N. Since the return time R, is bounded by e™® the jth word (which has length m;)
can be chosen in at most e™® many different ways because it is repeated after no more
than €™ time to its ‘right’. The total number of ways to fill all » words is

r
. T .
Cp < Hem]b _ er:lmJb < €bL.
Jj=1

IA I

(C) The remaining symbols between the last ‘long’ word that begins on a coordinate
< L — N and ends on coordinate L — 1, of which there are no more than N many, can be
filled in at most

Co < MY

many different ways.
The three estimates combined give

1 L
(L) N+eL bL
|.A | S CACBOC S ClM e <—<1 _ 6)1€€€>
or, taking logarithms,
log | A®)|

1
— < b+ |log(l —e)'°e®| + elog M + Z(cl + NlogM).

As L — oo the last term vanishes and since lim, o+ (1 — €)' 7¢® = 1 we get that for all
e > 0 small enough |log(1 —&)'¢e°| < ¢ and elog M < %°. The value of € determines
the choice of N. Hence for all L large enough

log | AP b—c b+c

prl-c_btc
L YT 5

It

By ={Aec A" : p(A) <e '},
then by the Shannon-McMillan-Breiman theorem P(z € Q : x ¢ By i.0.) = 0 where
BL = UAEBL A If we put gL e BL ﬂA(L) and GL - UAGQLA then

UG < AW e < (P be o

which goes to zero exponentially fast as ¢ > b. Thus ), u(Gp) < oo and by Borel-Cantelli
Pz € Q:2 € Gpio)=0. Sincealso P(z € Q:2x € G\ Bpio.) <Pz eQ:x ¢
By i.0.) = 0 we conclude that R~ > h.

This forces R = R~ = h. i

This theorem was by Ornstein and Weiss [25] later extended to infinite partitions (alpha-
bets).
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Theorem 50. (Ornstein 1969) Let (X1, 1), (22, 12) be two Bernoulli shifts. Then
h(p) = h(p2) if and only if the two Bernoulli shifts are isomorphic (i.e. there exists
a measure preserving and invertible map ¢ : ¥1 — o).

There are several proofs of this famous theorem all of which are very long (see e.g. [?, 7]).
We will skip the proof and just give an example. Let X1 = {1,2,3,4}% and y; given by the
probability vector (}1,;11, }1,%). Let ¥y = {1,2,3,4,5}% and uy be given by (%, %, é, %, %)
Then h(u) = 45|log 1| = 2log2 and h(pe) = 3|log 3| + 45 |log 5| = 2log 2 are equal. By
the isomorphism theorem the two Bernoulli shifts are isomorphic. Meschalkin gave a nice
description of how such an isomorphism can be constructed.

We give a short description of the Lempel-Ziv compression algorithm. Assume ¥ = {0, 1}
and let ¥ € X, then ¥ = xox 25 --- is parsed into words wy, ws, ... in the following way.
One puts wy = x; for the first word and then defines recursively w; = wy,;z,; as the word
which has not been seen previously and which reduces to a word wy; which has already
been seen if its last symbol x,, is removed. Clearly, ¢; = >~/ | |w;|, where |w;| denotes
the length of the ¢th word w;. In the new description, the word w; contains two pieces
of information, namely the position k; of its known portion wy, (which here requires
log, j] +1 many binary digits) and the new additional symbol z,, (which requires a single
binary digit). This algorithm is known to be optimal in the limit (see e.g. [?]) and is in
its various implementations widely used in practice.

8. PRESSURE AND TOPOLOGICAL ENTROPY

8.1. Pressure. In this section we assume that {2 is a compact metric space with a metric
d(-,-) which induces the o-algebra. We denote be C'(£2) the set of continuous functions on
Q). In section 6 we have shown that the probability measures form a compact set in the
weak™ topology. For a continuous map 7' : 2 — €, the set of invariant measures . (T')
is not empty (Theorem of Krylov and Bogolioubov).

Let A be a finite partition of 2 and A" its nth join. If f is a continuous function on €2
then for sets A C €2 we write

f(A) = sup f(x).

€A
Definition 51. For a finite partition A and f € C(Q) we call

Za(f, A) =Y el

AeA
the nth partition function of f with respect to A.
Lemma 52. The limit .
P(f,A) = lim —log Z,(f,A)
n—oo 1

exists and is called the pressure of f with respect to A.

Proof. We have to prove the existence of the limit which we do by establishing the
subadditivity of the sequence a,, = log Z,(f,A). Let us recall that A"t = A" v T "A™
which implies that for every C' € A" there are A € A", B € A™ so that C' = ANT"B.
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Since f"T™(ANT"B) < f"(A) + f™(B) we conclude that the Z, are submultiplicative:
as

T fs A) = Y "TO

CeAntm

_ Z Z o/ ANT T B)
Ae A" Be A™

< Z Z " (A)+fm(B)
A€ A" BeA™

— Z e/ (A) Z e/ (B)
AcAn BeAm

= Zy(f, A)Zn(f, A)
and by taking logarithms
Cpam = log Zyim <log Z, +log Z,, = a, + an,

which shows subadditivity. The limit is then ensured by the arithmetic lemma from
section 7:
1 1
lim —log Z,(f, A) = inlg—loan(f, A).
neN N

n—oo M,

Remark. As f > —|f|s we get Z, > e ™l which implies P(f) > —|f|o. We also have
Zn < el An| < enlfl| A|™ which yields P(f) < |f|so + log | Al.

Definition 53. P(f) = supg4,ylimsup,_,. P(f, Ax) is called the pressure of f, where
the supremum is over all sequences of partitions Ay for which diam A, — 0% as k — oo.

(diamA = max ¢ 4 diam(A))

Lemma 54. If {Ay : k} is a sequence of partitions whose diameters go to zero, then

P(f) =lim, P(f, Ag).

Proof. If {B, : n} is any sequence of partitions (so that diamB, — 0) then we have to
show that every ¢ > 0

limsup P(f,B,) < limsup P(f, Ax) + ¢,
n k

or for every P(f,B,) < P(f, Ay) + ¢ for all k large enough. Let ¢ > 0 and since f is
continuous on compact €2 there exists 6 > 0 so that |f(z) — f(y)| < § for all z,y € Q

for which d(z,y) < §. We let n be big enough so that diamB, < % and also let ' > 0
(0’ < §/2) be small enough so that every B € B, contains a ¢’-ball. Now choose k large
enough so that diam. Ay < 0’/2. Then for every B € B,, we can find an Ag € Ay so that
Ap C B and Ap # Ap if B # B'. Similarly, for every B € B]* there exists Ag € A}’ so

that Ap C B. We can now estimate the ergodic sums for B € B
€

™ (B) ~ ()] < mE
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for any point z € B. Similarly we get

m m e
F7(Ap) = f"(@)] < m3

where this time x € Ag C B. Hence

[f™(B) = [™(Ap)| < me

Zn(f,By) = Z el (B)

BeB,

Z el ™ (AB) gme

BeBy,

< Z 6fm(A)ema

BeA;
= Zn(f, Ap)e™
which implies that P(f,B,) < P(f, Ax) + € and since € > 0 was arbitrary we obtain
limsup P(f, B,) < limksup P(f, Ax).

for all B € B'. Thus

IA

Since {B, : n} was arbitrary we get P(f) = limsup, P(f, Ax). i

Definition 55. The (finite) partition A is a topological generator if diamA™ — 0 as
n — 00.

Theorem 56. If A is a topological generator then P(f) = P(f, A).
Proof. We will show that P(f, A*) = P(f, A) for every k. The theorem then follows

from the previous lemma. Since

n—1 n—1k—1 kdn—2
\/Tﬂ\/TZ,A \/\/TJIA \/TJA Anth—1
1= 7=0 =0
we get
ATCEED SEFAIED DI SENEUE SRR
AcAntk—1 A'EAN Ac Anth—1 AC A Ale An

and thus Z,(f, A¥) < |A|*Z,(f, A) where Ny = [{A € A1 A C A} < |AJ*. For
the lower bound we obtain

Zy(f, AF) > Z Z ef" (A > Z AN — 7 Zn(f, A)

A'e An Ac Anth—1 AC A’ Ale An
since for every A’ € A" there is an A C A', A € A"™*1 5o that f*(A) = f*(4’) (realises
the sup). Taking logarithms and dividing by n yields
1
E1ogzn(f,A) —logZ (f, AF) < klogM+ logZ (f, A

and taking limits yields
P(f, A") = P(f, A)
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for any k. The theorem now follows from the previous lemma since diam.A* — 0 as A is
generating. i

Remarks. (I) P(f +goT — g) = P(f). This follows from the fact that

n—1

(f+goT—g)"=> (foT?+goT ' —goT/) = f"+goT" —g
=0
which implies
Zo(f+goT —g,A Z I AF(T A=A = 7 (£ A)eOClol),

AeAr

Taking logarithms and dividing by n yields

SlouZ,(f +90T ~ 0. 4) = 12,1 A) + 0 (20

which gives the result when n — co. The function g o T' — g is a coboundary.
(IT) P(f +¢) = P(f) + c for constants c. This follows from

Za(f + ¢, A) = Y el"Wtne = 7, (f, A
AeA™

Taking logarithms, dividing by n and letting n go to infinity makes the statement follow.
(III) In the special case when f =0

1
P(0) = h_}m - log |A"] = hyop

is called the topological entropy and captures the exponential growth rate of the joins of

A.

8.2. Variational principle.

Theorem 57. (Variational principle, Walters 1973)

Pﬁ%ww( /f@)

where the supremum is over all T-invariant probability measures jn (h(u) is the measure
theoretic entropy of ).

In the special case when f = 0 then we get the topological entropy is htop = sup,, h(u)
where again the supremum is over all invariant probability measures.

Definition 58. (1) If h(u) + p(f) = P(f) then u is an equilibrium state.
(1) If h(p) = higp then p is a measure of maximal entropy.

Bernoulli shift: Before we prove the theorem, let us do the Bernoulli shift as an example.
Let X = {1,..., M}% o the left shift and A = {U(4) : i} the standard generating partition.
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Let f be a function that only depends on the zeroth coordinate, i.e. f(Z) = f(zo) = fa,-
Since the nth partition function is

Z, = Z el (@iwn) Z eforttfon — (Z efi> =70

T1Tn T1Tn 7

we see that the pressure is P(f) = logZ; = log > ,efi (Z; = 3, e/i). We now look for
an equilibrium state p which will be a Bernoulli measure induced by a probability vector
(p1,---,par). With a Lagrange multiplier A the derivatives

0 0

o (h(u)+/fdu+>\2pj> = o <—ij IOngJFijPjJFAZPj)
g J ! j j J

= —logp,— 1+ fi+ A

have to be zero for every i, which yields logp; = fi + A — 1 or p; = efie*'. The
normalisation condition is 1 = Y, p; = >, efie’™! = Z1e*!, where Z; = Y, efi = !N

Hence the probabilities p; = % define the invariant measure p. We can verify

h(p) = =Y pilogp;

1 ,
= ——Zefl(fi—long)
= =) fipi+logZ

- P(J:)—/fdu

which means that p is indeed an equilibrium state for f.
Let us now introduce a parameter ¢ > 0 and denote by s the equilibrium state for
the function ¢ f. With Z;(tf) =, e'i we obtain

d 1 d tfi 1 tfi
ElogZﬂtf) :mazef = Zl(tf);fief —,utf(f)'

One also has h(pr) = log Z1(tf) — pus(tf) which, when differentiated, yields:

i

d d d
Eh(ﬂtf) = pus(f) — Etﬂtf(f) = peg(f) — puey(f) — t%ﬂtf(f)
and thus P p
Eh(ﬂtf) = t%ﬂtf(—f)-

If we interpret t as the inverse temperature % with T being the absolute temperature,
then this last identity looks familiar to the thermodynamic relation

1
dS = 7dQ
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where S is the thermodynamic entropy and d@ is the heat energy.
For the proof of the variational principle we will need the following arithmetic lemma.

Lemma 59. Let p; be weights ()", p; = 1). Then for any a; € R* one has
Zpi(ai — logp;) < log Z e

with equality iof and only iof p; = %i, where Z =Y e%.

In the special case when a; = 0,i =1,..., M, then — ) . p;logp;, < log M with equality
if and only if p; = ﬁ for all 4.

Proof. Recall that the function ¢(t) = —tlogt for ¢t > 0 and ¢(0) = 0 is concave down
n [0,00), i.e. if g; are weights and b; > 0 arbitrary, then z gie(b) < ¢ (>, qibi) and
equality if and only if all the b, are equal. Now put ¢ = & 1, where Z = ). e%, and

b; = ’;’TZ = %. Clearly ¢; >0 and >, ¢, =), e;i = % =1, i.e. the ¢; are weights. Since

gbi=Y —q;=% pi=1
=30 w=3

one has by concavity

0=¢(1) =9 (Z Qibz‘> > Z gip(b:)

which implies

OZ;%(_

and finally gives

piZ piZ e’ p; 4
edi ) o8 et — p; 4 e% (log p; + log a;)

10gZ>sz a; — log p;).

Note that above in the concavity argument one gets equality if and only if the b; = piﬁ
are all equal. Suppose b; = aVi then p; = ae; and 1= .p, =), a%i = « implies that

pi = e;i Vi. I

Lemma 60. Let u,v € #(T), p+q = 1,p,q > 0. Then pH(u, A") + qH (v, A") <
H(pp+ qv, A") and ph(p) + qh(v) < hipp + qv).

Proof. By concavity of the function ¢(t) = —tlogt (¢(0) = 0) one has

H(pp+qu, A") = Y o(pp(A) + qu(A))
AcAn

> Y (pe(p(A) + ap(v(A)))

AcAn
= pH(u, A") +qH (v, A").

For the second statement divide by n and take the limit n — oc. i
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Similarly one gets for a larger (even countably infinite) number of measures p; € 4 (T)
and weights p; > 0 (32 p; = 1) that 37 p; H (p;, A") < H(Y_; pjng, A") and 3 pih(p;) <
h(>2;pjk)-

Proof of the variational principle. We prove the theorem in two parts, first the lower
bound on the pressure and then the upper bound on the pressure. Let A be a topological
generator.

Part (I): We show that P(f) > h(u) + [, f du for every invariant measure p. Let p1 be
an invariant measure, then [ f"du=n [ fduas [ foT?du = [ fdu and therefore

%H(A”H/fdu = %(H(A”H/f”du)
= % > <—u(A) logu(A)+/f”du>
AcAn A

< % Z u(A) (—log u(A) + f*(A)).

AeAn

The arithmetic lemma with the weights p4 = p(A) and the numbers as = f"(A), A € A"
yields

1 1 n
—H(A”)—i—/fdu < —log Z el A,
n n AeAn

and letting n — oo one gets h(u) + [ fdu < P(f).
Part (II): Here we produce an invariant measure p for which P(f) < h(u)+ [ f dp. For
every A € A" pick an arbitrary point y4 € A and put

1 n
v, = > Z ef (yA)(;yA
n AeAn

where §,, is the point mass at y4 and Z, = 3 aeqn €"W4) is the normalising term. Now

we define
n—1

1 .
— J
Ln - Z v,oT.
7=0
By the arithmetic lemma we obtain for the measure v,

()4 [ 1) = 1S ) o)+ ) = 2

n
AeAn

where we used the weights py = v,(A4) and the values ay = ef "Wa) and got equality
because py = ef "(ya) / Zn To compare Zn to the partition function Z, let us note that
for € > 0 there exists 6 > 0 so that |f(z) — f(y)| < e if d(z,y) < . As A is a generator,
we can assume that diam.A < § because otherwise we replace A by a join A* which has
small enough diameter. Since sup 4c 4 sup, 44 |f(2) — f(y)| < € we get Zy = Z,e°™) and

therefore |log Z, — log Z,| < ne.
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In order to replace v, in the estimates above by u, we use a summation trick due to
Misurewicz. Let m > 0 (m < n) and put p(j) = [%} for j =0,1,...,m. Then one can
write

p(j)—

A" = \/ T km+] \/ T- JA
kER;
where R; = {0,1,2,...,j — 1} U {p( m+ 7+ 1,p(j)m+j+2,...,n} is the remainder
set (|R;] <2m). Then

p(j)—1
H(wn, A" < Y H (v, 700 4m) 1 |\ THAY,
k=0 kER,

where the last term on the RHS is estimated above by log ‘\/keRj T*j.A‘ < log |A|IBs| <

2mlog |A|. Summation over j =0,1,...,m — 1 yields
m—1p(j)— ‘
Vn,.An Z Z Vm km+])Am) + O(m2)
7=0 k=0

By convexity of the entropy function

i
—
S
(S
=
L

H(v,, A") < H
n

2
TF iy, A™ | + O (m_)

n

L1
bl
Il

J 0

2
- " ( Tiyn,Am> +0 <ﬂ>
=0 n
m2
n
Since L(H (v, A") + [ f™duvy,) = log Zy, = log Z, + O(e) one has
1 1 2
_loan S - (H(VmAn> +/fndyn) +e€ S _H(MnaAm)+/fdMn+5+O (ﬁ>
n n m n

as * [ fmdv, = [ fdu,. Let p,, = p in the weak* topology along a convergent subse-
quence n; and one obtains

3

SRS

P(f,A) < - H(p, A™) + / Fdute.

Letting m — oo yields
PUFA < ho)+ [ £t e

as A is a generator. The result follows as € > 0 was arbitrary. The limiting measure is
an equilibrium state for f as is any other accumulation point of the sequence {su, : n}. I

Remark: Oftentimes the pressure is introduced using separated and spanning sets. We
say a set E.,, C Qis (e,n)-separated if for every x,y € E. ,,x # y one has d(T7z, T7y) > ¢
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for j =0,1,...,n— 1. Similarly, a set F;,, C Q is (e, n)-spanning if for every x € €2 there

exists a y € F., so that d(T7z,T7y) < e for j = 0,1,...,n — 1. Equivalently one can

say that F., is an (e, n)-spanning set if @ = (J,cp | Ben(®), where Bey(z) = {y € Q :

dn(z,y) < e} is an (g, n)-Bowen ball given by the metric d,,(z,y) = maxo<j<, d(T7x, T7y).
One then defines

Zé_’n(f> = sup Z 6fn(os)

Een 2E€F: n

where the supremum is over all (e, n)-separated sets E. ,,. The pressure is then

P(f) = lim lim llogZWL(f)

e—>0n—oco N

and the variational principle applies (see [?]). In a similar way one can use minimal
spanning sets. If the map T is expansive, then the limit ¢ — 0 can is achieved if ¢ is
an expansive constant. T is expansive if there exists an € > 0 so that d(T7z,t/y) < eVj
implies that x = y (and such ¢ is then an ezpansive constant.

8.3. The Parry measure. We look at the equilibrium states on a subshift of finite type
for locally constant functions. The subshift ¥ = {Z € {1,..., M}*: A, ..., = 1Vi} are
the doubly infinite sequences over an alphabet with M elements and M x M-transition
matrix A. We assume that A is irreducible and aperiodic, that is A™ > 0 for all large
enough n. The usual left shift map is o and A = {U(7) : i} is a topologically generating
partition.

Let f : ¥ — R be locally constant. We can assume that f depends only on the first
two coordinates: f(Z) = f(xo,21) = feoz,- (f is locally constant if it depends on only
finitely many coordinates. A recoding can reduce this to only two coordinates.) Put
B for the M x M-matrix with the entries B;; = Aj;;efi. Clearly B is non-negative,
irreducible and aperiodic and thus has by the theorem of Perron-Frobenius a simple
largest eigenvalue A € (0,00) and all the other eigenvalues have modulus strictly less
than . There are also strictly positive left and right eigenvectors v, @ to the dominating
eigenvalue: B = AU, BW = M. We can assume that > v;w; = 1. Now define a
probability vector p'by putting p; = v,w; and define the M x M-matrix P by P;; = %Bl]i—z
Then P is a stochastic matrix with left eigenvector p as

1 1
(P]l)i:ZP,;j = /\_wiZBijwj I YA
J J

for all 7, and also

w,
;= p;

. 1 W, W,
(PP); = Zpipij = ZviwixBijj =2 > uBj= 3

A %
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for all 7. Thus (P, p) defines a o-invariant probability measure p on ¥ which on cylinder
sets is given by

U0 Tn-1)) = PaoPrors Prizs* Prp_swns

— 1 B Wa, B Way .. B Wany
= e =1 Vzo Wao Prozy T122 Tp_2Tn_1
Wgq Wgy Wy, _o

= N 1U$OBIE011 Bmlfvz e an72xn71wzn71
= —1 v efzozl+f1112+'“+f1n—2zn—1w

)\n,1 zo Tn—1
_ 1 P (@oxr - wn—1)
Y 1 Uz Wz, _y

By section 7 its entropy is h(u) = —>_,; piF;log Py for which we can also write (P;; =
LA .efis ﬂ)
A ] w;

h(ﬂ) = - sz ij IOg Al]ef”;

w
= logA— Zpipijfij - Zpipij log Aijaj
ij ij v
— togh— [ fdu= Y nPylogu; + Y nlylogu,
= ij ij

= log)\—/fdu

since ), piPyj = pjand -, Py = 1. Orlog A = h(p)+ [ f du, where log A = lim,, o log || B |
is the spectral radius of B Notice that
Bn U Z Bworl Bmlxz e anflwn
TOX1 - Tn

where the sum is over all (n + 1)-words xox; - - -z, which begin with o = i and end on
T, = j. Thus

HBnH = Z(Bn)lj = Z BJL"OIJClBINEz e an—lxn

i TOL1 " Tn
— § efzozl+f1112+"'+f1nflzn

TOXL Ty

— Z ef"(l“oxl---xn)

TOT1 Ty

= Zn(f7 A)a
where the sum is over all (n 4+ 1)-words in ¥. We conclude that logA = P(f) or the
leading eigenvalue of B is A = e”’/). The measure y is called the Parry measure.
The special case f = 0 gives the measure of maximal entropy. Here B = A and P is
the stochastic matrix given by P;; = Aij?}u—j where 0 is the right eigenvector of A to its
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leading eigenvalue A which satisfies
1
log A = lim —log ||A"]].
n—oo 1,

The entries (A");; count the number of (n + 1)-words in ¥ that begin with the symbol i
and end with the symbol j. Thus the norm ||A"|| is the total number of (n + 1)-words
the space ¥ allows (||A™|| = |A™*1|). If ¥ denotes the left eigenvector for A to the leading
eigenvalue A then, with suitable normalisation, p; = v;w;,i = 1,..., M, defines a strictly
positive probability vector p. The measure of maximal entropy  is then defined by (P, p)

on cylinder sets by

1
(U (zow1 - Tn1)) = XZiT“xo“%n_y

Moreover log A = htop‘

Theorem 61. If the entropy function p — h(p) is upper semi continuous, then there
exists at least one equilibrium state for f € C(Q).

Proof. For § > 0 put
Ss ={n € A(T): h(p) +pu(f) = P(f) —0}.

It follows from the variational principle, Theorem 57 S5 # @. We moreover note that
Ss is convex, since for u,v € #(T) and p + q = 1,p,q > 0 one has by convexity of the
entropy function (Lemma 60)

h(pp+ qv) + (pp+ q)(f) = ph(p) + ah(v) + pu(f) + qv(f) = P(f) — 6.
Hence pu + qv € Ss. Also, Ss is compact since if p,, € Ss is a sequence which converges
to p, then by the upper semi continuity:
h(p) + p(f) = limsup (h(pn) + pn(f)) = P(f) =9,

n—o0

and hence p € Ss. Since the S5 form a nested sequence we conclude that

{ne A (T): h(u) +p(f) = P()} =)

>0

is non-empty. i

Assuming upper semi continuity of the entropy function one can prove the dual variational
principle

hp) = inf (P(f) = u(f))

fec(©@)
for every T-invariant probability measure pu.

Lemma 62. Assume the entropy function h is upper semi continuous. Then the pressure
function P(f) is continuous. That is, let f,g, € C(2) so that |gn|ec — 0 as n — oo.
Then

(i) P(f 4+ gn) — P(f) as n — oo.

(i) If u, are equilibrium states for f + g, and p, — p (weakly) for some p, then p is an
equilibrium state for f.
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Proof. To get continuity of the pressure function we use the variational principle:

P(f+gn) = GSE/I()T)(}L(V) +V(f+gn))
> sgp(h(V) +v(f)) = 9nloo
= P(f) — |gnloo-

Similarly one shows the upper bound and obtains

|P(f+ gn) — P(f)] < |gnloc = 0

as n — o0o. In order to show that u = lim, _, i, is an equilibrium state for f we need
to verify the following lower bound where we use the upper semicontinuity of the entropy
function:

hip) + p(f) 2 limsup(h(ym) + pn(£))

lim sup(h(un) + tn(f + gn) = tn(gn))
hmsup (R (ptn) + i (f + 9n)) = [gnlso)
hmsup (P(f + gn) = |gnloo)

hmsup(P( ) = 2[gnlee) = P(f).

AV AV

A%

Hence p is an equilibrium state for f. i

Corollary 63. Assume the entropy function h is USC. Let f, g, € C(2) so that |gn|e — 0
and p, the equilibrium states for f + g,.
If v is a unique equilibrium state for f, then p = lim, oo .

Proof. By the previous lemma, a limit point v of {u, : n} is an equilibrium state for f.
Hence v = p. i

Theorem 64. Assume the entropy function h is USC and p is a unique equilibrium state
for f € C(Q). For any g € C(Q2) one the derivative exits:

t—0 t

Proof. Assume ¢t > 0 and let y; be an equilibrium state for f 4+ tg. Then

ue(f +tg) +h(m) = P(f +tg)
e(f) +h(p) < P(f)
which yields
tp(g) = P(f +tg) — P(f).
Similarly one obtains from

p(f +tg) +h(p) < P(f+tg)
u(f) +h(p) = P(f)



NOTES FOR MATH 625, FALL 2018 49

the bound
tu(g) < P(f +tg) — P(f).

P(f +1tg) — P(f)
t

Hence

1(g) < < w(9)

for positive t. Similar estimates from above and below can be obtained for t < 0. If we
let ¢ — 0 then by Lemma 62 and its corollary we obtain p = lim; ¢ p; and therefore

plg) < lim PUT tgt) — P )

This proves the derivative and its limit. 1

9. THE TRANSFER OPERATOR METHOD FOR SUBSHIFTS OF FINITE TYPE

9.1. Transfer operator. Let A be an M x M-transition matrix and put
={Ze{l,.... M}": Ay, =1Vi>1}

for the one-sided shift space. The left shift map o : ¥ — X7 is defined as before
((ox); = x;41Vi) but now is only locally invertible. It is an at most M to 1 map. In
fact o'z = {nz :n € {1,..., M}} where it is understood that the point nz lies in X7,
ie. Ay, = 1. Similarly 0™ "z = {nz}, where n = mmns - - -1, ranges over all permissible
n-words in X% that satisfy A,, ., = 1. The topology is generated by cylinder sets U(n)
where 7 ranges over all finite words in ¥*. Let f € C'(X%) be a (real valued) function on
YT, then

var,f = sup  |f(z) = f(y)| = max sup |f(z) = f(y)|

Ti=y;,i=1,...,n AeA™ 3 yecA

is the n-variation of f. For ¥ € (0,1) we put
| fly = sup ¥~ "var, f

and define a norm
1 fllo = |floo + | flo-
The space
019 E+ {f eC E+) ||f||19 < OO}

is the space of ¥-Holder continuous functions on ¥+ which forms in fact a Banach space
(Exercise). Let f € Cy(E7) and define the transfer operator L on Cy(E1) by

(Lsp)(x Z dWo(y), ¢ e Cy(TH).
yeo 1z
We also get
(Lip)(x) = > (L)) = > ¢ Z = > O Ep(2),
yEo 1z yEolx zE0T™ z€0 %z

as 0z = y, and inductively (L"¢)(x) =3, n, efn(y)go(y).
Lemma 65. £ maps Cy(X7) into Cy(XT).



%0 NICOLAI HAYDN
Proof. Let ¢ € Cy(XT), then
1Lo]oo < [0]oo Z eI < Mp|oell* < oo
yEo—lx

as L1(z) < 1V € 3T for a constant ¢; < oo. To get a bound on the variation let
x,y € X1 so that x; = y;Vi < n for some n. Then for some constants ¢, ¢z, ¢4 independent
of ¢:

[Lo(x) = Lo(y)| = > (pnz)e! ™ — p(ny)e’ ™)
n
< Y dMolnz) — en)| + e(ny)] Y [fT — /]
< z": ef("”“")varnﬂgo + |¢loo Z ef (1Y) |177_ 6f(mc)—f(ny)’
< En]l (x)var, 10 + 02|<p|oo£]ln(y)varn+1f
< ol + el

where we used that f(nz) — f(ny) = O(var, 1 f) = OW"). Thus var, Ly < cs]|¢|s0"
(for some c¢5) and consequently ||Lp|ls < co. i

9.2. Ruelle’s Perron-Frobenius theorem.

Theorem 66. (Ruelle’s Perron-Frobenius theorem) Let A be irreducible and aperiodic
and f € Cy(XT). Then:

(I) There exists a simple real positive eigenvalue X and a positive h € Cy(3T) so that
Lh = \h.

(II) There exists a v € C5(XT) so that L*v = v.

(III) \™"L"x — v(x)h as n — oo for all x € Cy(XT).

(1V) (Quasicompactness) {spectrum of L} \ {A\} is contained in a disk strictly smaller
than .

Proof. (I) Let us define the map G on the o-invariant probability measures M(o) on XF
by
L1

L*p(1)
Since M () is a convex and compact set (in the weak topology), by Schauder-Tychonoff?
there exists a fixed point v € M(0o), that is G(v) = v. Consequently L*v = Av, where
A= Lv(1) € (0,00)

Now we prove the existence of h. Put

Vs - n
B, = exp (|f|,91 — Q9> = exp <|f|ﬂ;§k> = B,y elflo?

2Tt says that a continuous map from a convex compact Banach space into itself has a fixed point (a
generalisation of Brower’s fixed point theorem).

G(n)
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and

A= {g €Cy(EH):9g>0,v(9) =1,9(x) < Bug(y) if z; = y;Vi < n} .
Note that A is closed and convex. Define the operator M on A by My = %
Lemma 67. M: A — A

Proof. We check the three conditions in the definition of M. First note that My > 0 if
X > 0 as L is a positive operator. Second we note that v(Myx) = $v(Lx) = +Lv(x) =
v(x) = 1. Third we check on the regularity condition. Let 2,y € T be so that z; = y;
for ¢+ < n for some n, then

1
Mx(z) = 537 elx(az)

1
< XZef(“)BnHX(ay)
B Flaw) ,F(oz)—F(ay)
< 5D xlay)e! e
B Flaw) | {10+
< =D xlay)el @l
B,
< TEX(y)
= BnMX(y)
as |f(az) — f(ay)| < vary 1 f < |fls0™ i

Lemma 68. There exists a constant K so that | x| < K for all x € A.

Proof. Let x € A and y and arbitrary point in ¥*. Since A is irreducible and aperiodic,
there exists and integer N so that AV is strictly positive. So, if # € ¥ is chosen then
there exists a point z € 0"z so that zy = yo and therfore g(y) < Byg(z). Moreover

(@)= Y e Wglw) > M Og(z) > M B g(y)
weo "z
and since /\LN
nu(LNx) =1 we can choose z € £ so that v L"x(2) < 1 and therefore conclude that
g(y) < K where K < eNl=ANB;. Since y € ©F is arbitrary we get |x|o < K. i

Let us now observe that A is a family of equicontinuous functions since by the third
property we have

(@) = x)] < (B = Dlxloo < (Bo — 1)K < Kemal/logn

for every x € A, every z,y € ¥ so that z; = y;Vi < n and every n.
We thus conclude that by the theorem of Arzela-Ascoli, A is compact in the | - |-
norm. Since moreover A is convex, we can apply the theorem of Schauder-Tychonoff and

conclude that M has a fixed point h € A: Mh = h. This implies that Lh = \h, where
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A = |Lh|w. It remains to show that (a) h is strictly positive, i.e. has no zeroes, and (b) h
is unique up to scalar multiples, i.e. A is simple.

(a) To get positivity of h let us note that h > 0 as h € A and suppose h(z) = 0 for
some r € X1, Then for alln =1,2,...,

0= hz) = %E”h(w) _ % S ().

laj=n

Since e/"(®®) > 0 for all ax € ¥* we must have h(ax) = 0 for all a, or h vanishes on 0"z
for any n € N. Hence h is zero on | J,, 0~ "2 which is dense in X*. Hence h is identically
zero. This is a contradition.

(b) To show that A is a simple eigenvalue suppose there exists another eigenfunction

W€ A so that Lh' = AW If t = inf, 52 then &' — th > 0 and I(x) — th(x) = 0 for
some x € X, As ' —th > 0= h' —th € A (by convexity) and L(h' — th) = A(h' — th)
we see that h' — th is and eigenfunction with a zero and thus by part (a) above must be
identically zero. Thus A’ is a scalar multiple of h. This finishes the proof of part (I) of

the Ruelle Perron-Frobenius theorem.

(IT) By standard Banach space theory there exists a v € C5(X") so that L*v = Av. We
can normalise so that v(h) = 1. Then x — v(x)h is the projection onto the eigenspace
spanned by h. This concludes part (II) of the RFP.

(III) To prove convergence \~"L"x — v(x)h we normalise the transfer operator. Put

f = f—logA—loghoo+ h which lies in Cy since h € Cy is strictly positive. Then

fr=f*—nlog\+loghoo" +logh. Put £ = L for the normalised transfer operator
which acts on functions as Lo = $-L(hy) and for higher powers L"¢ ziﬁﬁn(hgo). The
leading eigenvalue of £ is 1 which has the associated eigenfunction 1 as £1 = = L(h1) =
+=Ah = 1 which means that }__ e/(*® =1 for all z € £+,

Lemma 69. (Lasota-Yorke or Doeblin-Fortet inequality) There exists a constant C' so
that

L0, < 9™l + Cleloo
for allm € N and ¢ € Cy.

Proof. To estimate var,L"p let 2,y € ©* be so that z1--- 2, = y1 - - yx. Then

‘Z”gp(m) . Engo(y” — Z (6fn(am)§0(06x) _ ef"(ay)go(ozy)>
|a|=n
< Y el p(az) — play)|+ Y lelay)le V) |1 = "= Ew)
|a|=n |a|=n
< (Val"n—i-k@) Z PRACED + |<'0|Oo Z €fn(ay)01?9"|f|19
loo|=n |a|l=n

< 9" Fply + c1]@]o?”| flo
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for a constant ¢; where we used that

—_

n—

n—1 n—1 n
P an)-F(an)| < Y |Fleay) = Floay)] < 3 vareassf < 301l < 11l
=0 §=0 J=0
(as (oc?ax); = (c?ay); for i = 1,...,n + k — j) and the normalisation > lal=n ef"(0e) = 1
for all . Thus
var Lo < 9 (9" ¢ls + Clolso)
which implies |£"p|y < 9"|¢ly + Clp]oo- !

The lemma in particular implies that for every ¢ € Cy the set {£"p : n € N} is equicon-
tinuous and has by the theorem of Arzela-Ascoli an accumulation point £, € C(X7")
(though not necessarily in Cy(X71).)

We will now show that £, is a constant. Indeed, since

inf o <inf Lo <inf L2p <infL3p < ---

we conclude inf ¢, = inf £, for all n. If ¥ € ¥F is such that {,(z) = inf/, then
by convexity lo(T) = X cona e’ Wi, (y) implies £,(y) = infl, for all y € o™z as
Zy@_nx e/ = 1. Since this applies to every n we must have ¢, = inf{, on the set
U,, " which is dense in ¥*. So /,, is constant.

In this way we obtain a positive linear functional ¢ — ¢, on Cy which by Riesz’s
representation theorem implies the existence of a measure ;1 so that £, = f2+ wdy for all
¢ € Cy. We assume p is normalised to have mass 1. Since ¢, = L{, = {7, one has

%)
up) = by = Ll = p(Lp) = (L'n)(p) Yy € Cy
ie. L= p.
It remains to verify that p = hr where v is the eigenfunctional to the eigenvalue A
(from part (II)). Indeed, since for every ¢ € Cy,

(%u) (p) = p (%) = (Z%) = pu (%Eh%) = p (%&0) = % (E*%M) ()

the functional %u € Cj is an eigenfunctional to the simple eigenvalue A of the non-
normalised transfer operator £. Since p(X7) =1 and v(h) = 1 we conclude that v = 3.
Hence L™ — {, = (hv) (¢) in the infinity norm as n — oo for all ¢ € Cy. If we write
1 = hy (as h is positive), then
1 1 _
LY = hp £ () = L g = hualp) = v()h.
This concludes part (III) of the RPF theorem.

(IV) We use the normalised transfer operator £ and put

R = {p € Cy: uly) =0}
for the orthogonal complement to the eigenspace R1 in Cy. We will show that the spectral
_ _ 1
radius of £ restricted to R* is strictly less than 1, that is p = limsup,,_, [|[L"¢|l5 < 1
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for all ¢ € Rt. Clearly, for ¢ € R* one has by part (III) L — p(e) = 0 as n — oco.
By Lasota-Yorke-Doeblin-Fortet

L2, <0 | L], + C[L7| -

Without loss of generality we can assume that |||y = 1. By compactness of the unit-
sphere {¢ € Cy : ||¢|ls = 1} in the supremum norm, one has

sup {E_”ap‘oo — 0
pERL,[pllo=1

as n — 00. Thus for € > 0 small sup,cpt |j,),=1 |£_”g0‘oo < ¢ for large enough n. Then

L], < 0" (0" |oly + Clel) + C L)

erllplly + Ce

Ve

(¢ <max(1,C)) for n large enough and € small enough. Therefore

VANVANVAN

I£2"lls < [Lplos + L7 0ly < 2/

and consequently [|[L* |y < (24/€)*||¢]l, for all ¢ € Rt and k. Finally we obtain

p < limy oo || £2%] ., [|% < (24/€)2 < 1 (e small). |

As an example we describe an ingredient which is used to determine the page rank in
Google’s search algorithm. The page rank is partly based on the number of times a page
is linked to. Assume there are M websites (M > 1) and add the ‘super site’ 0 to make it
the alphabet A = {0,1,2,..., M}. The site 0 makes the system irreducible. One defines
the (M + 1) x (M + 1)-transition matrix A by

ifi=35=0

if either i = 0 or j = 0 but not (0,0)
if 7 links to j

otherwise

Aij —

O~ =k O

and the compatible stochastic matrix B as follows

By = 0

By = % for j # 0

B, — { L if 33, Ay =1 (i.e. no links from ith site for i > 1)
i 18 iy, Ay >2

B { 0 ifA;=0
i s if Ay =1
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for a parameter 8 € (0,1). Note that this corresponds to choosing a potential function f
which depends only on two coordinates (f(Z) = fayz,):

Joo = 0
fo = —logM forj #0
fa 0 it i Ay =1
: log(1—8) it 3, Ay > 2
£ = 0 if Aij; =0
ueo log—log) , Ay ifAjj=1"
By the Perron-Frobenius theorem there exists a left eigenvector g = (po,p1,...,Pam) SO

that pB = p, B1 = 1. The value p; is the page rank of the jth site (j > 1). To compute
p one uses the fact that p; = (B*),; for any i, where B* = lim,, B" (see section 4.5).
In practice it is enough to compute some iterates of B in order to get a reasonable
approximation of p.

Let us observe that the measure y from RPF theorem is o-invariant because

(0*0)() = vlh(pon)) = £ (L) (h(p00)) = 1 (L(h(po0)) = yv(pLh) = viph) = u(h)

for all p € Cy.

9.3. Spectrum of the transfer operator. Next we determine the spectrum of £ of
which we currently only know the dominant eigenvalue .

Theorem 70. The spectrum of L has a simple dominating eigenvalue A € (0, 00), discrete
eigenvalues of finite multiplicities in the annulus {z : Y\ < |z| < A} and an essential
spectrum that fills the disk {z : |z| < 9\}.

Equivalently the spectrum of the normalised transfer operator £ has a simple dominating
eigenvalue 1 discrete eigenvalues of finite multiplicities in the annulus {z : J < |2| < 1}
and an essential spectrum that fills the disk {z : |z] < ¢¥}. To find the essential spectrum
we proceed in two stages.

Lemma 71. (Keller) The essential spectrum of L has radius < 9.

Proof. We use an essential spectrum formula due to Nussbaum according to which the
essential spectrum has radius p which is given by

1
= inf limsup ||£" — K,||»
where the infimum is over all sequences {K,, : n} of compact operators in Cy. In order
to define a sequence of compact operators K, which will give us an upper bound, we
introduce the projection S, given by

1
S = o—— x)du(x
. ;nx /U(a>“”() ()

1{(Xa)
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for ¢ € Cy, where Y, is the characteristic function of the cylinder set U(«). Clearly S, is
a locally constant function on the n-cylinders U(«), where a ranges over all permissible n-
words. The range of S, is a finite dimensional subspace of Cy of dimension | A" = ||A"7!]].
We define K,, = £L"S,, which is a compact operator on Cy for every n.

IfpeCyand v = — Sp=(1—25,)p then

|77Z)|oo S vary,p S |90|1919n

and
2|0 ifk<n
varyd ifk>n

—

Then |£9]s < [1]oe < |0|9?™ and therefore |L£9)]s < c1]plg™A". To estimate var, L™
let z,y € X7 so that zy -+ 2 =y - - - yx. Then

L) = L"(y)] < D el Dp(ax) — e Wy (ay)

|a|=n

< D S lax) —wlay)l + 3 [ulay)e! W [1 - elenINen
|a|=n |a|=n

< (var, 1 0) LM (x) + ] L1 (y)ervary f

< (NI pls + cs(IN)"[ 0|90

< (NIl

where we have used that £"1(z) < ceA™ for a constant cy. Consequently L))y <
ca(IN)"@ly and ||L™Y]ls < e5(IN)"||]lg. Since L™ = L(1 —S,,)p = (L™ — K,,)p we get
1LY — Ky ||lo < cg(UA)™ and therefore p < 9. i

Lemma 72. (Parry) The essential spectrum of L contains the disk {z : |z| < YA}, that
s p > U

Proof. We show that for the normalised transfer operator £ every value v with |y| < ¥
is an eigenvalue of L.

(I) We find a ¢ € Cy so that Ly = 0. For this we choose ¢|y(1) € Cy arbitrarily and
we assume that there are points z € X% so that Ay, = Ay, = 1 (otherwise replace the
symbols 1,2 by some other two symbols of the alphabet). Put

e(x) =0 i i if v1 #1,2
©0(2z) = —p(1x)ef12)=122)  otherwise

Then
M — — — — — — —

(Lo)(x) = 3 S D p(an) = S D p(12) 46 p(20) = o(12) (ef(lw) | o f) (_ef(1x>—f(2x>)) —0
a=1

and we define
X=Y _pod")
k=0
for |v| < 0.
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(IT) We now show that x lies in Cy. The infinity norm estimates as follows

Ploo
ke < 3l o o < < 'M < o0

and the Holder constant like this

vargy < Z 1v|*vargp o oF

< ZM var_p + Z RINE

k=0(+1
< kgt—k "Y|£+1
< ZM [plo + Ll
— — 9
A% !sola
< Pgly Z( b
< allelle?

as |y| < 9. Therefore |x|y < c1]|¢|ly which implies that x € Cy.
(IIT) Now we show that y is an eigenfunction for £ to the eigenvalue . Indeed

kaﬁgooa £<p+27 pootIL1

k=1
as L(poo*l) = ¢ oo* 1Ll for k > 1. Since Ly = 0 by construction and £1 = 1 we
obtain

Lx=) ypodt=1x

The last two lemmas prove the theorem.

9.4. Gibbs states.

Definition 73. An invariant measure u € (o) is a Gibbs state for f € C(X1) if there
exists a P € R and a constant C' > 0 so that

1 w(U(x1x9 -+ - )
5 S @fn(l’)_np S O

for all x € ¥ and for all n.

Lemma 74. If u, 1/ are Gibbs for some f € C(X") then P = P’ and p, i’ are equivalent
and equal if one of them is ergodic.

Proof. o Gibbs implies that p(U(zy---z,))el" @ € [L C] and y/ Gibbs implies

C
P (U (s an))e!" O € [, C7].
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(I) We first show P = P’. Since

Z ef"(@-nP < Z Cu(U(xy---x,)) =C

T1Tp Tl Tn

- 1 1
Zef() PZ Z alul(U(ml..-xn)>:5
one has P’ < lim,, % log Z,, < P. In a similar fashion one obtains P < lim,, % log Z,, < P'.
This implies that P = P’ = P(f) the pressure of f.
(IT) Now we show that p and u are equivalent. Indeed, for all x € X% and for all n one
has

and

ot (Ul z) S p(U (- @0)) < CCW U (- a0))

which implies ¢/ < p < p'. In particular ¢/ = gu where the Radon-Nikodym derivative
g is positive on full measure set and o-invariant. Thus, if either p or i is ergodic, g is a
constant and consequently pu = p'.

Lemma 75. Let f € Cy and p = hv € M (0), Lh = Mh, L*v = \v where \ is the
dominante eigenvalue of L given by the RPF theorem. Then p is a Gibbs state for f and
A =el.

Proof. Let x € X7, then

1
pU(xy - 20)) = Xy an) = V(AXay2,) = Vy(ﬁnhxaumxn%

where (with @ = 27 -+, and y, being the characteristic function of the cylinder set
U (a))
"(hxa)(y Z el Bv)y Vh(ay)e fHloy) < |h]ooe Fr @)+ var; f < cel"@)
|B]=n

for a constant c;, where we used that Z 0 varj f<I|flot= - Similarly one gets the lower
bound L£"(hxa)(y) > c2e" @ for a constant ¢y > 0. Thus

1 n n
Eef @A < (U (2 -+ x,)) < Cel"@)\
for some C' > 0. Consequently \ = ef’. |

Lemma 76. If p is an equilibrium state for f € Cy(XT), then it is a Gibbs state for f.

Proof. We use the fact from the proof of the variational principle that p is a weak™® limit
of the sequence u; as k — oo where

and
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where with f*(a) we mean it evaluated by an arbitrarily chosen (and fixed) point in U(«)
and similarly ¢, is the point mass at that point. Now let z € Xt and put f = x; - - - x,,.
Then

wUB) = (U Mzze 7/6af Mzzﬁ (o)

J=0 |a|=k J=0 |a|=Fk

Now we write o = wf7y where |w| = j, |5\ =nand |y| =k —j —n. Then

,uk( ka Z Z fk(uWW)

=0 |w|=j,lv|=k—j—n

and with the decomposition

fiwBy) = P+ B+ 7 () + 0 (f"f';)

one obtains

mU(B) = O “k%ZZ PO

J=0 |w|=j |v|=k—j—n

n 1

where N is a (fixed) number so that A" > 0. We now also use the fact that
Zy, = Zj-NZnZpp—jp-ne N 1)

and obtain
5l e 1
me(U(B)) = O(1) 7 - ZO NIl (1)Z—n€f @ =0(1)e el
Now take a subsequence k; — oo for which py; converges to pu. i

9.5. Correlation function. For f € Cy(X") we have as above the transfer operator
Ly : Cy — Cy. For simplicity’s sake let us assume that the discrete eigenvalues \; € {z:
UN < |z| < A}, 5 =1,2,..., are simple. Let || > |A2| > |[A3] > ..., Ao = A. Moreover
let h; € Cy be the eigenfuctions of \; and v; € Cj the eigenfunctionals where we assume
the normalisation v;j(h;) = 1Vj. Then P; is the projection onto the eigenspace spanned
by h;, i.e. Pjp =vi(p)h;. Then

L= NP+R
where the remainder term R : Cy — Cy has spectral radius A, i.e. |R"||s < c1(9'A)" for

any ¢' > o and some constant ¢; (depending on ¥'). Similarly £" =3, ATh; + R".
Let G € Oy, H € " be two functions on 2 and define the correlation function

pn)= [ G-(Hoo")dp,

>+
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where i = hv is the equilibrium state for f. We expect that p(n) — u(G)u(H) asn — oo.
Indeed we get for the powerspectrum

plw) = Y e p(n)

_ Z —iny(hG(H o o))

= Ze*w o (L) (WG(H 0 0™))

= ) een ; v(L"hG(H o ™))

n=0

- Z e=in Al V(HL WG

— Ze*m <Z” (HNhjvi(hG)) + V(HR”hG))

= e (3) Setinno6) + i),

J

where

pw) = Z e_i“’"%u(HR"hG)

n=0

is majorised by the series Y7 e~ " L||HR"hG/||y which converges for |Sw| < |log /|
as ||[R"hG||ly < ca('A)™ for some constant ¢o. Since ¥ > ¢ is arbitrary we conclude that
p(w) is analytic for |Sw| < |logd|. Therefore

(hG)

Vj
o—i

+ p(w)

hy)v

)\J
DY
is meromorphic in the strip |Sw| < |logd| with poles whenever %e""“’ = 1 that when w
equals the values w; = log )‘TJ The residue at w; is v(Hh;)v;(hG) (h = ho,v = 1;) and
in particular the principal pole at wy = 0 has residue v(Hh)v(hG) = pu(H)p(G) which
vanishes if u(H)u(G) = 0 or if the integrand in the definition of the correlation function
p(n) is replaced by G(H o 0™) — u(H)p(G). Then p is analytic in the strip [Sw| < log 5 ]
and by Paley-Wiener

G.(Hoa”)du—/ Gdu/ Hd,LL’SCg’}/n
s+ st

>+

decays exponentially fast for any v > |% ’ Thus the rate of decay is given by the ‘spectral
gap’ between the leading eigenvalue A and the rest of the spectrum.
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9.6. Dynamical Zeta function for subshifts. Let us put P, = {x € ¥7 : 0" = z}
for the set of periodic points with period n. For f € Cy we put ¢, = > p el @) and
define the dynamical zeta function by

1
Z) = €xXp — Z ECnZn

where z is a complex variable.
In the special case when f = 0 we get the Artin-Mazur zeta function which is

1
((z) = exp— Z —traceA" = exp — Z Z A" = exp —log det(id—zA) =

H,\(1 —2A)

as |P,| = traceA™, where \ are the eigenvalues of A. This is a meromorphic function in

the entire plane and is analytic for |z| < e ™op and has a simple pole at e "op (Bowen-
Lanford).

Theorem 77. [16] Let f € Cy, A™ > 0 for all n large enough. Then
(I) ¢(2) is analytic for in the disk |z| < ()
(1) ((2) has a meromorphic extension to |z| < 9~ ePY) with a simple pole at e"'F).

Proof. (I) In order to get analyticity note that

C—Zef(""<Ze @ = 7,.

zeP, |a|=n

1 1 1
" 7\ " 7\
lim sup (C—n> < lim sup <—n> = lim sup <—n) = P(f)
n n n n n n

which by Hadamard’s formula implies that ¢(n) is analytic for [z] < 2. We can also note
that since AN > 0 for a some N € N one has

n L]
Cn > Z el (@)= 1Z5 =Nl > const.Z,_n.
|o|=n—N

Thus

(II) To get meromorphicity we use the spectral decomposition of £ as
Lro= Y Nhawa(p)+ R
[A|>Yer

where |R"plly < c1|p|lo(el)™ for any ¢ > 9 and where hy, vy are the eigenfunctions
and eigenfunctionals to the eigenvalues A (for simplicity’s sake we assume the eigenvalues
are simple). Denote by

1
o) = s /  pdntz)

the average value of the function ¢ over the cylinder U(«) where « is an n-word. We have

() = e U ey
L") = = ( / S () o) = s /U(a) dpu(z)

) |8l=n



62 NICOLAI HAYDN

as Xo(Bz) = 1 if and only if § = «. In particular (as a® € P, is a periodic point of
period n if a can be concatenated with itself)

00 w0y [ Lflgo™
|wWa(LXa) — ol (@ )‘ < of@™) (6 iy 1>

as
| f]o0™
1—9

n—1
|f"(ax) — ()] < Zvar%,jf <
=0

for x € U(a). Thus

> wallxa) =T S0 Y ST = g,

|lal=n laj=n

and therefore

Z wa(ﬁnXa) - Cn S 03(19,613)”-

laj=n

The next step is to compare Y wa(L"Xa) to Y, A". Here we use the decomposition of

L:
Wa(L"Xa) = Wa <Z Ahava(Xa) + R”Xa> = Z N'wWo (ha)va(Xa) + Wa (R Xa)-

In order to replace the term w,(hy) by the function h) inside the functional vy let us look
at the error function

San(ay) = wa(ha)1(y) — ha(ay)
where ay € X7 is the variable. Clearly S, € Cy, although its norm will be too big for
us in that space. We estimate

|Sa,)\|oo S Varnh)\ S ’h)\‘ﬂﬁn
and also
V&I‘kSa’)\ S V&I‘kh)\ S |h)\|1919k

for k > n as S, defined only on the cylinder U(«). The function Sy = >, XaSan 18
defined on the entire space X and satisfies

|S)\|oo S maxlsa)\'oo S 041971
a

and
2|S) |00 < e59™ ifk<n

vary Sy < . .
kEA = { max, vargSy,y < cs0F ifk>n

For ever A we estimate now in a better function space, namely we take ¥, < % and note
that A is a discrete eigenvalue of £ : Cy, — Cy, (of the same multiplicity) and has the
eigenfunction hy € Cy, and the eigenfunctional vy € Cj . Then

’ﬁ n
|Salw, = supﬁ;kvarkSA < cs (—)
k Uy
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?el\"
< —_— .
I3, < o (57 )

Since wq (hy)va(Xa) = Va(XawWa(hr)) = va(Xa(ha + San)) we get

> " walha)va(xa) = va (Z Xa (hx + sa,A)> = va(hy) +vA(Sy) = 1+ 15 (Sh)

and therefore

where

Vel \"
lua(S2)] < |lwalloy [[Sx oy < csllvalls (|T|) )

Summarising what we have done till now:

Cn = Zwa<£nxa)+o((ﬁlep)n)

= DAY walh)nalxe) + Qu+ O((0e"))

- ; A" (1 +0 ((%)n» +Qn+O((0e")")
= z; X'+ Qp + O((9'e")")

where @, = > wa(R"Xa) has still to be estimated.

To estimate the remainder term (),, which comes from the essential spectrum let P be
the projection operator for which R" = £L"P = PL". For every « pick a point x, so that
az, € X1 depends only on the last symbol of a. Then

Wa(R™"a) = wa(PL o) = wa(Pel"@)) = e/ (aza)y, (PD,),
where @, (ax) = ef"(@@)=/"(a%e) ¢ Oy is defined on U(a). Clearly |®4]o < el = O(1).
As P is a bounded operator on Cy one has
|wWa (P®,) — PPy (axy)| < [P0
and thus

> wa(R'Xa) = D wa(PL"Xa)
= Y ") (P, (ax,) + OW"))
— Zefn(o‘ma)P@a(axa) + O((ﬁep)”).

In order to estimate ) ef" ()P (ax,) let us write ®, = Y i @i q, where we put

D, a(OéZL’) = efanil(aﬂ—fffn*l(a:va)

and then successively
®; o (az) = o1 (fo" I (az)—fo I (aza)) _ 351 (fo" T (o)~ fo" I (axa))

e
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and notice that if we write o = v with || = n — i the first n — i symbols and |y| = i
the last ¢ symbols of o then ®; , = ®; , is independent of the first n — ¢ symbols 5. Since
elo" ax)=fo" (aza) _ 1| < VATk+if 1 one has

i—1

Vark(IJi,a(ax) < e2i=1(fo" T (az)—fo" I (aza)) (evark+if _ 1)

which implies |®; -]y < 70" and also ||®;,]|s < cg?® and allows us to proceed as follows
(Ta = 2)

Zefn(o‘“)PCIDa(aa:a) = Z Z efn(o‘“)PCDiva(axa)

i laj=n

— Zzeﬂ'(vza) Z ef"’i(ﬂww)pq)m(ﬁyxv)

i =i |Bl=n—i

= ZZefi('y’”a) Z E"_ipcbm(yxa).

i y|=i |Bl=n—i

Since | L P®; | < ||LPlo]|Pisllo < co(V'el)" "9 one obtains

<ClOZZ€ V(9P < neyy (9'el)"

for all ¥ > ¢ which implies |Q,,| < 012(19,613)".
Combining all the estimates yields

_Z)\n
A

" (owa) PO, (ax,)

< const.(e")"

for all ¥ > 9 and therefore
2" Z" 1
— . ¢, = . ~ A" O 19/ P\n - -
==Y 2 6 e T (Do) = g
where ¢(z) is analytic for [z]0'e” < 1V > 9, i.e. for |z| < 525 i

10. COBOUNDARIES

In this section we show how a two-sided function can be reduced to a one-sided function
by adding a coboundary. Then we also show that two equilibrium states are equal if and
only if the potentials differ by a constant and a coboundary.

Let us note that if 4 is a o-invariant probability measure on X% then it has an extension
to the two-sided shift-space ¥ by putting for cylinder sets (k < /)

p(U (@ g a0)) = p(o U (x g - - 2p))
using that o is invertible on X. (As before we assume A™ > 0 for all large n.)

Theorem 78. Let g € Cy(X). Then there exists a u € C 5(X) so that f =g+u—uowu
depends only on positive coordinates, that is f(x) = f(y) if x; = y; fori <.
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Proof. For each symbol a € {1,..., M} we pick a left-infinite sequence y* = ---y_oy_1
in ¥ so that A, ,, = 11ie. y%a is an allowed sequence in ¥. Then we define 7 : ¥ — ¥
by 7(x) = y*™xor129 - - for x € ¥. Define

o
u = Oo'jﬂ-— OUj .
> (g g

j=0

To show convergence of the sum note that (¢/7x); = (07z); for all |i] < j. Hence
lu(z)| < Zvarjg < |g|g219j < 00
=0 =0

which in particular proves that |u|. < co. To show that u belongs to C' /(3) we have to
estimate varyu for any k. To that end let z,y € ¥ so that z; = y; for all |i| < k. Then

u(z) —uy)| = |> (go'7x — golx) =Y (go’my — goly)
j=0 Jj=0
[k/2] [k/2]
< Y lgoly —gola| + ) |golmr — golal
j=0 J=0
+ Z lgoiTx — golx| + Z lgoi Ty — goly|
[k/2]+1 [k/2]+1
[k/2] oo
< Z 2vary_;g + Z 2var;g
Jj=0 [k/2]+1
[k/2] 0o
< 2gly Y 0T +2gly Y P
Jj=0 [k/2]+1
< cilglgvs

for some c;. Hence ||u||, 5 < oo and thus u € C 5(X).
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It remains to show that f = g +u — u o u is independent of negative coordinates. One
has for every M

flz) = g(x)+ Z(ngmL’ - gJJ Z go'mox — ]Hx)
Jj=0 j=0

M M
= g(x)— Z(gaj —go?Ty) + Z goinx — golmox)
7=0 7=0

+ Z (go’mx — go’x) — Z (go'mox — go? ™)
j=M+1 J=M+1

M
= g(mz) + goMe — goM T + Z(g0j+17m — goimor)

=0
+ Z (go'mx — golx) — Z (goimor — go? ™)
j=M+1 j=M+1

and for M — oo we obtain

f:go7r—|—Z(goaj+lo7T—goajo7roa)
=0

which is independent of negative coordinates since all terms involve the projection 7. |l

Recall that 1 is a Gibbs state for f € Cy(X) is 0"y = ps and there exists C' > 0, Pr € R
so that
1w (Uzory -~ 2p1))
C - efn(x)fnpf
for all x € U(zozy -+ - xp—1) and for all n.

<C

Theorem 79. Let f,g € Cy(X) and py, py be respective Gibbs states. Then the following
are equivalent:

(1) g = pg,

(II) there exists a constant K so that f*(x) = g™(x) + nK for all periodic points x of
period n,

(III) there exists a K and u € Cy(X) so that f =g+u—uou+ K,

(IV) there exists K, S so that |f"(x) — g"(z) + nK| < S for allz € ¥ and all n € N.

Proof. “(III)=(IV)” is obvious.
“(IV)=-(I)": Assume

(U@ @n1)) {l 0}7 po(Ulo - Tn)) {l C]

ef™(@)—nPy C’ e9"(z)—nPy

and ¢" = nK + "+ O(S). Then
pg(U(zo -+ - Tp1)) c {16—57063} 7

ef™(@)—nPy+nK C
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for all z € U(xg -+ x,_1) and all n. Since ps(U(zg---2y1)) > CLe/"@=F and P, —
K = Py (cf. section 9.4) we get

pig(U(zo -+ - 2n-1)) > C?epyp(U(wo - -+ T1))

and similarly p(U(zg---2,_1)) > C?%puy(U(xg - - vn_1)). Hence py, p, are equivalent.
We now show that they are ergodic which then implies pif = p1,. We use the characterisa-
tion that i is ergodic if and only if for all V, W C X of non-zero measures there exists a j
so that ps(V No™ W) > 0 (see section 3). It is enough to assume that V, W are cylinder
sets. Hence let V = U(a), W = U(f) for some words «, 3 in ¥. Let N be so that AY >0
i.e. any two symbols can be connected by a string of length N — 1. Take j > N + |a].
Then there exists a word «y of length |y| = j — |a| > N so that ayf is an allowed word.
Since

U(eyB) C Ula) No™?U(B)
we get that

pi(U() N7 U(B)) > us(U(ayB)) > éef”ﬁ(m)(jﬂﬁ)Pf ~0

for any x € U(ayB). Since «, B were arbitrary, i, i, are ergodic and thus equal.
“(I)=(II)”: Since by assumption s = 1, one has

1 efn(x)_npf 9
2 S o, =¢
for all # € ¥ and n. Hence f"(z)—g¢"(z)+n(P,—Pf) = P(1) and if x is periodic with period
n,i.e. "z = x, then also o*"x = z for all integers k and therefore f**(z)—g¢*"(x)—knK =
O(1) where we put K = P, — P — f. Since f*(x) = kf"(z), ¢*"(z) = kg"(z) we get

P = o) -k =0 (7).

Letting k — oo yields f"(z) — ¢g"(z) — nK = 0 for all periodic z of period n.
“(I1)=(TI1)”: This is the hard part of the theorem. Assume that f*(x) = ¢"(x) + nK
for some constant K and all periodic points x of period n and for all periods n. Put
v =f—g+ K. Clearly p € Cy(2) and ¢"(x) = 0 for all periodic z of period n. We have
to find u € Cy(X) so that ¢ = wo o — u is a coboundary.

Let z € ¥ be a transitive point, i.e. its orbit I' = {72z : j € Ny} is dense in X. We have
[ = %. Define u : I' = R as follows: if y € ' and j > 0 is so that /2 = y, then we put

-1

u(y) = u(o’z) = ¢ (z) = ) _p(o*)

<.

>
I

We now claim w is continuous and has an extension to the full space ¥ which lies in
Cy(X). To that end let y,z € I so that y; = z; for |i| < k for some k& > 1 and estimate
u(z) — u(y). Let m,n > 0 be so that y = 0™z,2z = ¢"x and assume (without loss of
generality) that n > m. Put w = 67" ((2n@m11 -+ TnoTy—1)>) for the periodic point in
Y. of period n — m which agrees with x on the coordinates from m to n — 1. This point
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exists as k > 1. Evidently w ¢ T" and in fact satisfies w; = x;Vi =m —k,... ,n+ k. Since
by assumption ¢" ™ (w) = 0 we can thus estimate

u(z) —uy)] = le"(x) — ™ (2)]

A
5
q%
&
|
5
q%.
£

(VAN
S
=

s

=X
.
I
i

Z
3

+
o
Z
©

< 2 Z varyp

< 2l ——

Hence varju|. < c19% and therefore u has a continuous extension to I' = 3 such that
|uly < oo and therefore u € Cy(X).

To show that ¢ = u o o — u observe that for y = ¢™x € I one has oy = 0™z and
therefore

u(oy) —uly) = " (@) = @"(x) =Y p(d*z) = Y plotz) = p(o™x) = p(y).

3
L

i

By continuity ¢ = u oo —u on X. i
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