Exam 2 is cumulative, but will emphasize material covered since Exam 1: §8.0, §8.2-8.7, but only the parts of $\S 8.5-7$ covered in class (equivalently Homework \#5a-10a).

Exercise 1. Evaluate the following series, or show that they are divergent.
(a) $\sum_{n=0}^{\infty} \frac{2^{3 n+1}+4}{\pi^{2 n-1}}$.
(b) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\tan \left(\frac{1}{n}\right)}$.

Exercise 2. Determine if the following series are convergent or divergent. Be sure to clearly state any test(s) you use.
(a) $\sum_{n=0}^{\infty} \frac{\sqrt{n}+1}{\sqrt{n^{3}}-\sqrt[3]{n^{2}}-1}$.
(b) $\sum_{n=0}^{\infty} \frac{n^{2}+n-1}{n^{4}-n^{2}+1}$.
(c) $\sum_{n=0}^{\infty} \frac{n!}{\sqrt{(2 n)!}}$.
(d) $\sum_{n=1}^{\infty} \frac{2^{n}-n^{2}+\log _{2}(n)}{\log _{3}(n)+n^{3}-3^{n}}$.
(e) $\sum_{k=3}^{\infty} \frac{1}{(\ln k)^{3}}$.

Exercise 3. Determine if the following series are absolutely convergent, conditionally convergent, or divergent. Be sure to clearly state any test(s) you use.
(a) $\sum_{n=3}^{\infty}(-1)^{n} \frac{3 n^{2 e}}{n^{2 \pi}-4}$.
(b) $\sum_{n=1}^{\infty}(-1)^{n}\left(1+\frac{1}{n}\right)$.
(c) $\sum_{m=2}^{\infty} \frac{(-1)^{m+1}}{m(\ln m)^{1.1}}$.
(d) $\sum_{k=129}^{\infty} \sin \left(\frac{1}{k}\right)$.

Exercise 4. For which values of p does $\sum_{k=3}^{\infty} \frac{1}{k(\ln k)^{p}}$ converge. Prove your answer.
Exercise 5. Find the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{\ln (n)}{\sqrt{n}} x^{n}$.
Exercise 6. Find the interval of convergence of the power series $\sum_{k=0}^{\infty} \frac{x^{2 k}}{7^{3 k}}$.
Exercise 7. Consider the function given by the power series $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2 n+1}$ with radius of convergence 1 .
(a) Find the power series of $f^{\prime}(x)$ and state its radius of convergence.
(b) Find a series for $f^{\prime}\left(\frac{1}{3}\right)$.
(c) Find the minimal number of terms that we need to use to approximate the above series so that the error is less than $\frac{1}{100}$.

Exercise 8. Harry is lost in the Forbidden Forrest. Hermione is trying to find him.
(a) Hermione determines that the amount of magical energy required for a finding spell is $f(x)=\frac{M}{1+x^{2}}$ where $M>0$ is Merlin's constant. Find the Taylor series for $f(x)$ and state its radius of convergence.
(b) Because Harry is wearing his cloak of invisibility, she needs a more powerful spell. The amount of energy for the powerful spell is $p(x)=\frac{M x^{13}}{1+x^{2}}$. Find the Taylor series for $p(x)$ and state its radius of convergence.
(c) The amount of energy required to search the entire forest is $\int_{0}^{1 / 2} p(x) d x$. Find a series for this integral. Write the general term in any valid form. Explicitly write out the first 3 non-zero terms as fractions.
(d) Estimate the error if Hermione approximates the series in (c) by its first 3 non-zero terms.

