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Abstract
The study of native motifs of RNA secondary structures helps us better understand
the formation and eventually the functions of these molecules. Commonly known
structural motifs include helices, hairpin loops, bulges, interior loops, exterior loops
and multiloops. However, enumerative results and generating algorithms taking into
account the joint distribution of these motifs are sparse. In this paper, we present
progress on deriving such distributions employing a tree-bijection of RNA secondary
structures obtained by Schmitt andWaterman and a novel rake decomposition of plane
trees. The key feature of the latter is that the derived components encode motifs of the
RNA secondary structures without pseudoknots associated with the plane trees very
well. As an application, we present an algorithm (RakeSamp) generating uniformly
random secondary structures without pseudoknots that satisfy finemotif specifications
on the length and degree of various types of loops as well as helices.

Keywords RNA secondary structure · Plane tree · Rake decomposition · Helix ·
Loop · Uniform sampling

1 Introduction

Ribonucleic acid (RNA) plays an important role in various biological processes within
cells, ranging from catalytic activity to gene expression. RNA can be described at
different resolutions. The coarsest way of referring to an RNA molecule employs its
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primary structure that is its sequence of bases:A (adenine), U (uracil), G (guanine), and
C (cytosine). A finer description specifies the chemical bonds between non-adjacent
bases. In particular, the structure consisting of the bases and the bonds if consistent
with a certain planar graph is known as a secondary structure. The finest 3D structure
of an RNA molecule is called its tertiary structure. It is well-known that the functions
of RNAs are deeply related to their structures rather than their primary sequences.
However, there aremajor difficulties in determiningRNAtertiary structures due to their
high complexity and experimental costs. Instead,we frequently performcomputational
prediction of RNA secondary structures which requires a good understanding of the
space of secondary structures.

In this work, we only focus on secondary structures without pseudoknots, although
pseudoknots playing important roles have been found (e.g., Staple and Butcher 2005;
Tuerk et al. 1992).More than four decades ago,Waterman and his coworkers pioneered
the combinatorics of these RNA secondary structures (Smith and Waterman 1978;
Stein and Waterman 1979; Waterman 1978, 1979). Since then, the combinatorics of
RNAsecondary structures taking into account various features has been one of themost
important topics in computational biology, see Chen (2019), Clote (2006), Clote et al.
(2012), Došlić et al. (2004), Han and Reidys (2012), Heitsch and Poznanović (2014),
Fontana et al. (2004), Hofacker et al. (1998), Lorenz et al. (2008), Nebel (2003) and
references therein. In particular, based on a bijection, Schmitt and Waterman (1994)
obtained the exact formula for the number of RNA secondary structures with b base
pairs and k isolated bases which is given by the Narayana number

1

b + k

(
b + k

k

)(
b + k

k − 1

)
.

Among native motifs, loops and helices are the most studied, as they are closely
related to prediction of RNA secondary structures based on thermodynamic models
(Hofacker 2003; Mathews et al. 1999; Sloma and Mathews 2016; Zuker 1989; Zuker
and Sankoff 1984; Zuker 2003). Loops are further distinguished into hairpin loops,
bulges, interior loops, multiloops and exterior loops. Asymptotic enumerative results
on a single type of motif such as helices and loops have been obtained (e.g., Fontana
et al. 2004; Hofacker et al. 1998; Poznanović and Heitsch 2014) by exploring the
recursions and analytical analyses on the associated generating functions. However,
this approach cannot handle joint distributions ofmultiplemotifs easily because simple
recursionmay not exist and analytical analyses ofmulti-variable functions are difficult.

In addition to enumerative studies, algorithms for generating or sampling random
structures are also desired, as sometimes the obtained structures can be accepted as
the predicted structures. See some samplers in Ding and Lawrence (2013), Nebel et al.
(2011) and Ponty (2008) as well as a general framework on Boltzmann sampler in
Duchon et al. (2004). To the best of our knowledge, however, there exists no algorithm
generating a randomRNAsecondary structurewith a given joint distribution of distinct
loops and helices. The contribution that is most closely related to this paper is the work
of Nebel et al. (2011), where a stochastic context-free grammar taking account of the
probabilities of emergence of distinct loops was developed.
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The paper is organized as follows. In Sect. 2, we propose a new decomposition
algorithm for labelled plane trees that is called rake decomposition. We then review
all native motifs interested in detail and apply the rake decomposition as well as the
Schmitt–Waterman bijection in order for obtaining the most detailed and exact results
in the literature on enumerating RNA secondary structures in Sect. 3. To be specific,
we obtain formulas for the number of RNA secondary structures having prescribed
numbers of helices, hairpin loops, bulges, interior loops, exterior loops andmultiloops.
In Sect. 4, we present an algorithm (RakeSamp) that produces an RNA secondary
structure without pseudoknots satisfying a given joint distribution of all concerned
motifs uniformly at random. The underlying idea and pseudocode of the algorithm
are discussed in detail. We also illustrate RakeSamp using the motif parameters of the
secondary structure of human mitochondrial tRNA-Ser1 (Jühling et al. 2009). Finally,
we conclude the paper with some discussion and future directions in Sect. 5.

2 Rake Decompositions

A plane tree is an unlabelled tree with a distinguished vertex which is referred to as
the root, and the subtrees incident to the root is also plane trees and linearly ordered.
In a plane tree T , the number of edges in the unique path from a vertex v to the root
of T is called the level of v. The vertices adjacent to v but further away from the root
are called the children of v. A vertex other than the root having no children is called
a leaf, and otherwise called an internal vertex. The root is always treated as internal.
The outdegree of a vertex is the number of children of the vertex, i.e., one less than
the degree of the vertex for any non-root vertex. We will draw a plane tree with its
root on the top level, i.e., level 0, and with the children of a level i vertex arranged on
level i + 1, left-to-right, following their linear order.

Definition 2.1 A rake is a plane tree where all leaves are children of the same vertex.

See Fig. 1 (left) for an example of a rake. A plane tree composed of a single vertex
is also treated as a rake. In a rake T , the induced graph by the set of vertices that are
not leaves is called the stem of T and the number of vertices contained in the stem is
called the length of the stem.

Definition 2.2 An internal vertex of a plane tree that is not the only child of its parent
is called a companion.

The root of a plane tree is always considered to be a companion. A companion in a
plane tree is said to determine a rake if the vertex and its descendants form a rake. It is
worth noting that a companion may not determine a rake and a non-companion vertex
may determine a rake.

Lemma 2.1 In any plane tree T , there exists at least one companionvwhichdetermines
a rake. Suppose T has m companions. Then, deleting all descendants of v and their
incident edges from T produces a plane tree T ′ having m − 1 companions.

Lemma 2.1 is illustrated in Fig. 1 (right). It is beneficial to view deleting all descen-
dants ofv as removing the rakedeterminedbyv fromT ,wherev splits into twovertices,
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Fig. 1 A rake and an illustration of Lemma 2.1

one goes to be the root of the removed rake and the other stays in T . Lemma 2.1 sug-
gests an iterative procedure to decompose a plane tree into rakes. However, in order to
better control the process, we need to consider labelled plane trees. A labelled plane
tree is a plane tree where each vertex has a unique label from some set of labels. In a
labelled tree or forest, we may identify a vertex and its label. Now, we are in position
to present the rake decompositions of labelled plane trees.
Rake decomposition procedure. Let T be a plane tree of n + 1 vertices with the
vertex set [n + 1] = {1, 2, . . . , n + 1} and k > 0 companion vertices. We decompose
T into a set F(T ) of k labelled rakes using the following procedure:

(i) Let l be an integer initializing l = 1.
(ii) Find theminimum companion vertex i in T that together with its descendants form

a rake, and delete the rake rooted on i from T , and then put a vertex with label
(n+1+ l)∗ at the original position of i , and finally update T to the resulting plane
tree and increase l by one.

(iii) Iterate (ii) until T is a labelled rake.

In view of Lemma 2.1, it is clear that the above procedure works. In fact, we have

Theorem 2.2 The vertex labels ofF(T ) constitute the set [n+1]⋃{(n+2)∗, . . . , (n+
k)∗}. Furthermore, let v be the root of T . Then,

• the marked labels (with ∗) only appear as leaves in the rakes in F(T ),
• the largest marked label, if any, is contained in the rake having v as its root.

In addition, the sets of labelled rakes subject to these conditions are in one-to-one
correspondence with the labelled plane trees.

Reverse of the rake decomposition. Let F be a set of labelled rakes with the vertex
set [n+1]⋃{(n+2)∗, . . . , (n+k)∗}, and with the marked labels (with ∗) only appear
as leaves in the rakes. Then, a labelled plane tree on [n+1] results from the procedure:

(a) In F , among the trees having no marked labels, find the one with the minimum
root.

(b) Replace the remaining minimum marked vertex with the found tree such that the
root of the found tree is adjacent to the parent of the marked vertex, and update F
as the resulting set of trees.

(c) Iterate (a)–(b) until F contains a single tree.
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Fig. 2 A labelled plane tree and its rake decomposition

Wevisualize the rake decomposition and its reverse step by step in Fig. 2.We remark
that the mark (∗) is not essential and is used only for convenience and the bijection in
Theorem 2.2 is an analog of the bijection presented in Chen (1990). But, the key here
is to realize in the first place that rakes are the right pieces in order for studying RNA
native motifs which will be explained later.

3 Enumeration of RNA Secondary Structures

3.1 Preliminaries

We first recall the definition of RNA secondary structures (without pseudoknots) fol-
lowing Waterman (1978).

Definition 3.1 (RNA secondary structure) An RNA secondary structure of length n is
a simple graph with vertices in [n] and edges in E that satisfies:

• if (i, j) ∈ E , then |i − j | ≥ 2;
• if (i, j) ∈ E and (k, l) ∈ E , where i < j and k < l, and [i, j]⋂[k, l] �= ∅,
then either [i, j] ⊂ [k, l] or [k, l] ⊂ [i, j] (where [i, j] denotes the interval
{r : i ≤ r ≤ j}).

The vertices represent the bases, while the edges represent the base pairs. One way
for representing an RNA secondary structure is to draw a diagram placing all vertices
in a horizontal line and drawing its edges as arcs in the upper half-plane. See the
upper picture in Fig. 3 as an example. By construction, any two arcs do not cross. (The
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Fig. 3 An RNA secondary structure represented in two ways

structures with crossing arcs are those with pseudoknots.) A vertex not incident to
any edge is called an isolated base. We say an arc (i1, j1) (resp. an isolated base k)
is covered by an arc (i, j) if [i1, j1] ⊂ [i, j] (resp. k ∈ [i, j]). In this case, we also
say that the arcs (i, j) and (i1, j1) nest with each other. Moreover, once the diagram
is ready, the vertex (base) labels in [n] are implicitly determined and can sometimes
be omitted.

RNAsecondary structures of lengthn canbeviewedas a special class of noncrossing
partitions on [n], for which we refer to Klazar (1998), Simion (2000) and references
therein. Although some statistics, e.g., number of blocks, block sizes, are studied in
the context of noncrossing partitions, we are interested in another family of motifs for
RNA secondary structures.

Definition 3.2 (Helix) A helix in an RNA secondary structure is a maximal set of arcs
that mutually nest with each other andwhose left-ends and right-ends are, respectively,
consecutive. The size of this arc set is called the length of the helix.

For the RNA in Fig. 3, the arcs (5, 13) and (6, 12) give a helix. A helix may consist
of only one arc. For example, in Fig. 3, (3, 19) gives a helix. Loops in RNA secondary
structures have been extensively studied, as it is important for certain energy models
predicting the folded secondary structure of a given RNA (primary) base sequence.
We follow the definition in Hofacker et al. (1998).

Definition 3.3 (Loop) A loop consists of a set of isolated bases that are either directly
covered by the same arc (i, j) or not covered by any arc. The length of the loop is
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the size of the set of isolated bases, and we refer to (i, j) as the arc of the loop. The
degree of a loop is one larger than the number of arcs directly covered by the arc of
the loop.

By that an isolated base or arc is directly covered by an arc (i, j), we mean no other
arc that covers the isolated base or arc is covered by (i, j). For the RNA in Fig. 3,
{4, 14} gives a loop since the isolated bases 4 and 14 are both directly covered by the
arc (3, 19). It is a degree three loop, since the arc of the loop, (3, 19), directly covers
two arcs (5, 13) and (15, 18). Loops are classified into different types: hairpin loops,
interior loops, exterior loop, bulges, and multiloops.

Definition 3.4 (Hairpin loop) A hairpin loop (or simply hairpin) is a loop whose arc
does not cover any arcs.

Definition 3.5 (Interior loop) An interior loop is a loop where there exists exactly one
arc directly covered by the arc of the loop and separating at least two isolated bases
(i.e., one is to the left and one is to the right).

An interior loop has a length at least two and degree exactly two. In Fig. 3, {25, 26}
and {22, 29, 30}, respectively, provide a hairpin and an interior loop.

Definition 3.6 (Bulge) A bulge is a degree two loop such that either the left-ends or
the right-ends (but not both) of the arc of the loop and the arc directly covered by it
are consecutive.

Definition 3.7 (Multiloop) Loops of degree larger than two are called multiloops.

In Fig. 3, {10, 11} gives a bulge, while {4, 14} yields a multiloop. Generally, a loop
cannot be empty. However, we allow for an empty multiloop that is determined by an
arc directly covering more than two arcs but no isolated bases.

Definition 3.8 (Exterior loop) The isolated bases that are not covered by any arcs form
the unique exterior loop of an RNA secondary structure.

The exterior loop need not have isolated bases, i.e., it could be empty. The degree
of the exterior loop is one larger than the number of arcs that are not covered by any
arcs, and this number is also referred to as the number of components. Sometimes
an RNA secondary structure is depicted as the lower picture in Fig. 3 from which the
terms like hairpin may be more intuitive.

Note that the arc of a loop other than the exterior loop is contained in a unique
helix. Thus, each helix is associated with a unique non-exterior loop.

Enumeration of secondary structures is usually facilitated by translating them into
plane trees via certain bijections. Such bijections can be found in Schmitt and Water-
man (1994) as well as Chen (2019). Here, we make use of the former which works
as follows. For a given RNA secondary structure R of length n represented as a dia-
gram that has b base pairs and k isolated bases (so n = 2b + k), add an auxiliary arc
(0, n + 1) at first. Next, generate a vertex for each arc and each isolated base in the
resulting diagram. Equivalently, this may be understood as replacing each arc and each
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310 32

Fig. 4 The Schmitt–Waterman bijection: the RNA secondary structure (see Fig. 3) in gray and its corre-
sponding plane tree in dark. Note that the plane tree has no vertex or edge labels (Color figure online)

isolated base, respectively, with a vertex. Thus, we have n + 1 vertices now. Next, we
connect these vertices such that the resulting structure is a plane tree with the vertex
(corresponding to the arc) (0, n + 1) as its root, which can be done recursively: We
start with the vertex (0, n+1) and connect it by an edge with any vertex corresponding
to either an arc or an isolated base that is directly covered by (0, n + 1) in R. In this
manner, the children of the vertex (0, n+1) are completely determined. Next, we deal
with these children one by one. If the current child v corresponds to an isolated base
in R, then as a vertex in the desired plane tree, v is a leaf having no children; If v

corresponds to an arc, then its children will be found and connected to it in a similar
way as we dealt with (0, n + 1). We iterate this procedure until the children of all
n + 1 vertices (including those with 0 children) have been found and connected, and
we obtain a plane tree with b + 1 internal vertices and k leaves.

Conversely, given a plane tree T with b + 1 internal vertices and k leaves, we
iteratively construct the diagram of an RNA secondary structure as follows. Draw an
arc e and leave the two ends of the arc unlabelled for the moment. Inspect the children
of the root of T from left to right: If an inspected child v is a leaf in T , then put a
vertex under the arc e; If v is an internal vertex, then put an arc (with ends unlabelled)
under e. These vertices and arcs will be the only elements that are directly covered by
e in the desired diagram, and their left-to-right order under e follows the left-to-right
order of the corresponding children. Next, for each newly generated arc, we check the
children of its corresponding internal vertex in T and generate the elements directly
covered by it analogously. Iterate the above procedure so that each internal vertex in
T uniquely corresponds to an arc and each leaf uniquely corresponds to an isolated
vertex in the constructed diagram. Finally, we delete the arc e and label the vertices
in the remaining diagram from left to right with labels 1, 2, . . . , 2b+ k. See Fig. 4 for
an illustration.

3.2 Exact Formulas

In the following, we shall provide a novel enumeration of RNA secondary structures,
employing the Schmitt–Waterman bijection and the rake decompositions of labelled
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plane trees. Although in the Schmitt–Waterman bijection RNA secondary structures
are in one-to-one correspondence with (unlabelled) plane trees instead of labelled
plane trees, this can be easily “remedied" as follows. From each plane tree of b + k
edges, we can obtain (b + k)! different labelled plane trees on [b + k + 1] that have
b + k + 1 as the root. Equivalently, an RNA secondary structure of b base pairs and
k isolated bases is associated with (b + k)! different labelled plane trees. Then, we
can translate the enumeration problem of RNA secondary structures into enumerating
labelled plane trees which is eventually tantamount to enumerating the corresponding
sets of rakes. What matters is whether the rakes encode any meaningful structural
information of the RNA secondary structures.

To that end, we first provide several lemmas by which we analyze the aforemen-
tioned two bijections. By abuse of notation, we shall use the same notation for a
vertex in a plane tree and its corresponding arc or isolated base in the corresponding
secondary structure.

Lemma 3.1 Given an RNA secondary structure R with b base pairs and k isolated
bases, suppose u is the outermost arc of a helix. Then, by the Schmitt–Waterman
bijection,

• if u is not (1, 2b+ k), then u is mapped to a companion vertex that is not the root,
and the helix as well as the elements directly covered by the innermost arc of the
helix induces a rake (i.e., as the induced graph) rooted at u;

• if u is (1, 2b + k), then the helix together with the auxiliary arc (0, 2b + k + 1)
and the elements directly covered by the innermost arc of the helix induces a rake
rooted at the root of the plane tree.

Suppose R has h helices. Then, the corresponding plane tree has h companion vertices
if (1, 2b + k) is a base pair, and h + 1 companion vertices otherwise.

Lemma 3.2 Let T be a labelled plane tree with a distinguished companion v, and
let uv be the closest v-descendant having more than one child. Processing T via the
rake-decomposition, v induces a labelled rake with root v, whose stem equals the
induced subgraph of the vertices on the path from v to uv . The leaves of this rake are
obtained from the left-to-right children of uv , replacing any companion vertices by
certain marked vertices.

Proof In the course of the rake decomposition, the children of uv that are companions
will determine some rakes that will be removed at some point. After their removal, v
determines by construction the rake described in the lemma, completing the proof. 	


Combining Lemma 3.1 and 3.2, it can be seen that a helix and the associated
loop give rise to a unique labelled rake (through a labelled plane tree). Moreover,
the attribute of the loop determined by a labelled rake depends on the number and
distribution of unmarked andmarked leaves in the rake as summarized in the following
lemma.

Lemma 3.3 An RNA secondary structure with b base pairs and k isolated bases is
associated with (b + k)! sets of labelled rakes with the vertex set [b + k + 1]⋃{(b +
k + 2)∗, . . . , (b + k + l)∗} for some appropriate l where
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• a helix of length q that does not contain the arc (1, 2b + k) uniquely corresponds
to the stem of length q of a rake, and a helix of length q that contains the arc
(1, 2b + k) uniquely corresponds to the stem of length q + 1 of a rake,

• a hairpin loop of length q uniquely corresponds to a rake whose leaves consist of
q unmarked labels (without ∗),

• a bulge loop of length q uniquely corresponds to a rake whose leaves consist of a
marked label (with ∗) and q unmarked labels all either to the left or to the right of
the marked label,

• an interior loop of length q uniquely corresponds to a rake whose leaves consist
of a marked label and q unmarked labels surrounding the marked label,

• a multiloop of length q and degree d uniquely corresponds to a rake whose leaves
consist of q unmarked labels and d − 1 marked labels,

• if (1, 2b + k) is not a pair, then the exterior loop of length el and degree ed
corresponds to a rake with root b+ k + 1 where the stem has length one and there
are ed − 1 marked including the maximum marked label and el unmarked labels;
otherwise, no rake is associated with the exterior loop.

The number ofmarked labels (i.e., l) is determined by the number of helices accord-
ing to Lemma 3.1 and the rake decomposition procedure. Note that there may be no
marked label at all. It is worth noting that the base labels of an RNA secondary struc-
ture are not related to the vertex labels of the associated labelled rakes. In Fig. 5, we
depict the relation between helices as well as loops of secondary structures and rakes.

Theorem 3.4 The number of RNA secondary structures with b base pairs, k isolated
bases, an exterior loop of length el and degree ed , and

hi helices of length i > 0
pi hairpin loops of length i > 0
gi bulges of length i > 0
ti interior loops of length i > 1
mi j multiloops of length i ≥ 0 and degree j ≥ 3

is given by

(h − 1)!h!(el + ed − 1)2g
∏

i>1(i − 1)ti∏
i>0 pi !gi !ti !hi !

∏
i≥0, j≥3 mi j !

(
el + ed − 2

el

) ∏
i≥0, j≥3

(
i + j − 1

j − 1

)mi j

,

where h = ∑
i>0 hi and g = ∑

i>0 gi .

We remark that the parameters in Theorem 3.4 are not independent and satisfy

∑
i

ihi = b, k = el +
∑
i

i(pi + gi + ti ) +
∑
i, j

imi j ,

∑
i

hi =
∑
i

pi + gi + ti +
∑
i, j

mi j =
∑
i

gi + ti +
∑
i, j

( j − 1)mi j + ed − 1.
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Fig. 5 Frommotifs of secondary structure to rakes. Note: only one labelling of the plane tree corresponding
to the secondary structure under the Schmitt–Waterman bijection is illustrated and in particular the labelling
has no relation to the base labels

Biological secondary structures exhibit specific constraints on the minimum length
σ (typically σ ≥ 2) of a helix and the minimum distance θ (typically θ ≥ 3) of the
two bases of a base pair, i.e., | j − i | > θ if bases i and j form a base pair. Note that the
latter is equivalent to requiring the minimum length of a hairpin loop to be θ as every
base pair is either an arc of a hairpin loop or covering a hairpin loop. The following
takes these constraints into account.

Theorem 3.5 Let σ and θ be any positive integers. Then, the number of RNA secondary
structures with b base pairs, k isolated bases, h helices with each having a length at
least σ , p hairpin loops with each having a length at least θ , g bulges, t interior loops,
m j multiloops of degree j ≥ 3, and an exterior loop of length el and degree ed , is
given by
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(el + ed − 1)(h − 1)!2g
p!g!t !∏ j m j !

(
h + (b − hσ) − 1

h − 1

)(
el + ed − 2

el

)

(∑
j jm j + (k − el) − 1 + p − pθ

k − el − pθ − g − 2t

)
.

The proofs of Theorem 3.4 and 3.5 are similar, and both can be found in Appendix.

4 Uniform Sampling

4.1 Strategy

We next derive an algorithm for uniformly sampling a subset of RNA secondary
structures (without pseudoknots) satisfying given motif parameters. Our idea is to first
uniformly generate a random set of labelled rakes, then transform them into a plane
tree using our rake decomposition correspondence and finally, transform the plane tree
into an RNA secondary structure via the Schmitt–Waterman bijection.

Let us consider the subset of secondary structures enumerated in Theorem 3.4 in the
case of ed > 2, or el > 0 and ed = 2. All other scenarios can be treated analogously.
Indeed, once the structural parameters are given, the sizes of the leaves and stems of
the corresponding rakes are determined, respectively. It remains to assign labels to the
vertices of the rakes employing Lemma 3.3. We note that for the case here there are in
total h+1 rakes and the vertex labels for the rakes are from the set X

⋃{(b+k+1+h)∗}
of marked labels (with ∗) as well as the set Y

⋃{b+ k + 1} of unmarked labels, where

X = {(b + k + 2)∗, . . . , (b + k + h)∗},
Y = {1, . . . , b + k}.

As long aswe assign the labels uniformly at random,we can produce a uniform random
secondary structure exhibiting a specified set of features. In fact, this is easier than
deriving the exact formula as in Theorem 3.4, as we can neglect certain multiplicity
issues that we needed to address in our computations due to the following.

Lemma 4.1 Suppose A is a set of objects and B (a multiset) is a disjoint set-union
of several copies of A. Then, uniformly sampling the objects in A is equivalent to
uniformly sampling the objects in B.

There are two places where we introduce multiplicity: one is from unlabelled plane
trees (which are in one-to-one correspondence with RNA secondary structures) to
labelled plane trees, the other is from sets of rakes to sequences of rakes as we shall
see shortly.

Note that each labelled rake can be represented by a pair of sequences (S, L)

where S encodes the top-down vertices (labels) of its stem while L encodes its left-
to-right leaves. Accordingly, our objective becomes uniformly sampling the space
A of sets of h + 1 pairs (S, L) with the unmarked and marked vertex labels from
Y

⋃
X

⋃{(b+ k + 1+ h)∗, b+ k + 1} subject to Lemma 3.3. Thanks to Lemma 4.1,
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this is achieved inRakeSamp by uniformly sampling the space B of sequences (i.e., the
second-place-multiplicity) of h + 1 pairs (S[1], L[1]), . . . , (S[h + 1], L[h + 1]) with
the unmarked and marked vertex labels subject to Lemma 3.3, and additionally with

• the first p pairs corresponding to hairpins,
• the next g pairs corresponding to bulges,
• the next t pairs corresponding to interior loops,
• the following

∑
i, j mi j pairs corresponding to multiloops,

• the last pair corresponding to the exterior loopwith S[h+1] = b+k+1 (i.e., length
one) and (b + k + 1 + h)∗ being an entry in L[h + 1], and

• pairs corresponding to the same type of loops are arranged according to the number
of unmarked labels (and degrees for multiloops) in L increasingly.

For such a random sequence of pairs (i.e., a random sample), in the concatenation
L[1]L[2] · · · L[h + 1], the unmarked labels form a random sequence of length k with
the entries from the set [b + k], and the marked labels form a random sequence of
length h from the set X

⋃{(b + k + 1 + h)∗} with (b + k + 1 + h)∗ being an entry
in L[h + 1]. On the other hand, the concatenation S[1]S[2] · · · S[h] gives a random
permutation of the remaining unmarked labels other than b+k+1 (which is contained
in S[h + 1]).

Once the motif parameters are given, the loop type and its length (the number of
unmarked labels) as well as degree (one greater than the number of marked labels)
associated with L[i] are completely determined. The only thing that is free is the
locational relation among unmarked and marked labels, and the only restriction in this
regard is clearly specified in Lemma 3.3 (e.g., the unique marked label is either to the
left or right of all unmarked labels for bulges.) As for the length distribution of S[i]
(1 ≤ i ≤ h), the only requirement is that it agrees with the multiset {1h1 , 2h2 , . . .}
(i.e., h1 helices of length one, h2 helices of length two, etc.) We denote the number
of unmarked labels contained in L[i] by y(L[i]) and the number of marked labels by
x(L[i]). As such, for the implementation, we work backwards in two steps:

Step 1 Generate a random list of desired sequences L[1], L[2], . . . , L[h + 1]. This
is done by first generating (via Rdm function) a random sequence Lev of
length k using unmarked labels from Y and generating (via Rdm) a random
sequence Mlv of the marked labels (where the largest one, (b+ k + 1+ h)∗,
will be separately handled as can be seen in the algorithm code later in detail).
Then, for 1 ≤ i ≤ h + 1, get the first y(L[i])-element subsequence of the
remaining sequence from Lev and get the first x(L[i])-element subsequence
of the remaining sequence from Mlv. Finally, we interlace the two subse-
quences randomly respecting the loop type of L[i] (that is, for instance, if it
is an interior loop, the resulting sequence cannot have a marked label to be
the leftmost or the rightmost entry) but keep the relative order of the labels
from the same subsequence unchanged. The last task is done by various Mix
functions. This produces L[1], . . . , L[h + 1].

Step 2 Generate a random list of sequences S[1], S[2], . . . , S[h] using the unused
unmarked labels other than b + k + 1 from Step 1. This is accomplished
by first generating a random permutation Z ′ of the unused unmarked labels
other than b + k + 1 from Step 1, and generating a random “permutation"
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Hsz = Hsz[1]Hsz[2] · · · Hsz[h] of the multiset {1h1 , 2h2 , . . .}. Finally, for
i = 1 to h, assign the first Hsz[i]-element subsequence of the remain-
ing sequence from Z ′ to S[i]. This gives us a uniform random sequence
S[1], S[2], . . . , S[h].

4.2 Algorithm: RakeSamp

Here, we provide the pseudocode of RakeSamp. The functions are defined below:

• Rdm(S, k): returns a uniform random permutation of a uniform random k-element
subset of the set or multiset S. This can be done by generating a uniform random
permutation of S and picking the subsequence consisting of the first k entries.
The time complexity of doing this is at most O(|S|), e.g., using the well-known
Fisher–Yates shuffle algorithm (see Algorithm 3.4.2P in Knuth 1997). If k = |S|,
we simply write Rdm(S, ◦).

• f irst K (U , k): returns the subsequence consisting of the first k entries of U and
updates U to the remaining sequence after deleting the first k entries of U .

• Mix(U , V ): returns the sequence resulting from interlacing the sequences U and
V uniformly at random but keeping the relative order of the entries from U and,
respectively, V unchanged. This is essentially generating a random |U |-element
subset from the set [ |U | + |V | ]. For example, for U = 142 and V = 536, one
possible outcome would be 154362. If V is empty, then the returned sequence is
just U ; The case U being empty is similar.

• Mixe(U , v): inserts the single element v before the first entry or after the last entry
of U , each with probability 1/2, and returns the resulting sequence.

• Mixm(U , v): inserts the single element v between two consecutive entries of U ,
each possible space with probability 1

|U |−1 , and outputs the outcome.

As for the complexity, all involved functions are elementary and have roughly
linear-time implementation. Accordingly, RakeSamp has approximately O(n) time
complexity where n is the length of the RNA sequences in study. As for the space
complexity, we merely need to store a finite number of arrays of labels, each of length
at most O(n).

Example 4.1 We evaluate RakeSamp using the following parameters:

exterior loops degree ed = 2, length el = 4
helices hi h2 = 2, h5 = 1, h7 = 1
hairpins pi p8 = 1, p9 = 1
bulges gi no bulges, i.e., gi = 0
interior loops ti t2 = 1
multiloops mi j m7,3 = 1 length seven multiloop of degree three

These parameters are specified in the file “trnaser1.txt" on Github. Three secondary
structures satisfying these motif parameters are shown in Fig. 6.
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Algorithm 1 RakeSamp
Input: parameters specified in Theorem 3.4 where ed > 2, or el > 0 and ed = 2
// ed and el are resp. the degree and length of the exterior loop

2: Output: a sequence of h + 1 S-L pairs // h is the number of helices
X ← {(b + k + 2)∗, (b + k + 3)∗, . . . , (b + k + h)∗} // marked labels other than
// (b + k + 1 + h)∗, b and k are resp. the number of base pairs and isolated bases

4: Y ← {1, 2, . . . , b + k} // unmarked labels excluding b + k + 1
Lev ← Rdm(Y , k) // the subsequence of the unmarked labels in L[1] · · · L[h + 1]

6: Mlv ← Rdm(X , ◦) // the subsequence of the marked labels
// in L[1] · · · L[h + 1] excluding (b + k + 1 + h)∗
Z ← labels in Y that not used in Lev

8: for i = 1 to h do
U ← f irst K (Lev, y(L[i])) // y(L[i]) is the number of unmarked labels in L[i]

10: V ← f irst K (Mlv, x(L[i])) // x(L[i]) is the number of marked labels in L[i]
// a preprocess of the input parameters can determine the loop type associated
// to L[i] as well as y(L[i]) and x(L[i])
if L[i] corresponds to a bulge then

12: L[i] ← Mixe(U , V ) // V is a sequence of length one in this case
else if L[i] corresponds to an interior loop then

14: L[i] ← Mixm (U , V ) // V is a sequence of length one in this case
else

16: L[i] ← Mix(U , V ) // V and U maybe empty for hairpins and multiloops resp.
end if

18: end for// now the remaining labels in Lev and Mlv are all for L[h + 1]
V ← Mix(Mlv, (b + k + h + 1)∗) // the largest marked label is always in L[h + 1]

20: L[h + 1] ← Mix(Lev, V ) // end of Step 1
Hsz ← Rdm({1h1 , 2h2 , . . .}, ◦) // a random permutation of the lengths of helices

22: Z ′ ← Rdm(Z , ◦) // a random permutation of the unused unmarked labels from Y
for i = 1 to h do

24: S[i] ← f irst K (Z ′; Hsz[i])
end for

26: S[h + 1] ← b + k + 1 // S[h + 1] only contains the largest unmarked label
return (S[1], L[1]), . . . , (S[h + 1], L[h + 1])

In fact, the leftmost one is the secondary structure of human mitochondrial tRNA-
Ser1 (Jühling et al. 2009).

According to Theorem 3.4, there exist 12960 secondary structures with the param-
eters. We ran RakeSamp for 7980000 iterations which took 152672 seconds (with
CPU: Intel Xeon Silver 4210R @2.4GHz; RAM: 64GB; Compiler: DEV C++ 6.3).
The observed frequencies for all structures are depicted in Fig. 7 (a) and (b).

To provide further evidence for uniformity, we used el = 2 as well as m2,3 = 1
(and discarded m7,3 = 1) and kept others unchanged (just for reducing the size of the
sample space to saving time) and ran 72 simulations where the expected occurrence of
each structure was 100. The empirical distribution of the corresponding p-values for
the chi-square goodness of fit statistic is plotted in Fig. 7 (c). Under uniform sampling,
the p values will be uniformly distributed as the empirical distribution function in
Fig. 7 (c) illustrates. All of these clearly suggest the uniformity of our algorithm. We
refer to the instruction on Github for using RakeSamp.

Often when sampling for specific properties within a large space of objects, impor-
tance sampling such as Markov Chain Monte Carlo is employed. This is expensive
computationally and convergence properties are seldom well understood. Our algo-
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5'
3'

tRNA-Ser1 sample 1 sample 2

Fig. 6 Secondary structure for tRNA-Ser1 (left) and two structures from simulation

Fig. 7 Test RakeSamp: (a) plot of frequencies of all structures; (b) cumulated frequencies of all structures;
(c) empirical distribution function of p-values

rithm which depends on a careful analysis of the combinatorial space is fast and exact
and illustrates the value of such an understanding.

4.3 Software

The sampling algorithm for all cases (of ed and el ) is implemented in RakeSamp. In
addition, the obtained sequence of S-L pairs has been transformed into RNA secondary
structure in the form of bracket-dot representation as well. The program is written in
C and available on Github https://github.com/RickyXFChen/RakeSamp.
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5 Conclusion

In this paper, we presented a new bijection between plane trees and certain forests of
rakes. The key was the notion of a companion, a vertex which is not the only child of
its parent, which during the recursive rake decomposition was shown to become the
root of the rakes.

We then employed the Schmitt–Waterman bijection between RNA secondary struc-
tures and plane trees in order to interpret the rakes which in turn produces exact
enumerative results of RNA secondary structures satisfying specific, biologically rel-
evant structural motifs. These results allow one to uniformly sample RNA secondary
structures which have specific, structural motifs including helices, hairpins, bulges,
interior loops, exterior loops and multiloops. We then implemented such a uniform
sampling algorithm, via RakeSamp.

As a direction regarding application, we can first learn the distribution (or ratio) of
structural features in knownRNA secondary structures, e.g., throughmachine learning
as in Sato et al. (2021) and references therein and then, generate a random structure
respecting the distribution using our algorithms as a prediction. This could provide an
alternative approach to energy-based prediction of secondary structures. This sort of
thing has been done in bioinformatics, from generating synthetic RNA structures both
using energy models and stochastic grammars, to reconstructing phylogenetic trees,
to detecting CpG islands in genomes, only to name a few applications. Our work
opens the door to doing this with RNA structures in a different manner. Moreover,
structures with the same motif parameters have approximately the same free energy
in the common energy models. Thus, we can carry out comparative study of a natural
secondary structure and a random structure satisfying the same set of motif parameters
as the natural one (via RakeSamp) in order for better understanding why nature selects
one over others even though they all have similar free energy. As another potential
application, RakeSampmay facilitate calibrating or extracting finer energy parameters
for distinct motifs in the context of RNA folding as the current energy parameters do
not distinguishmultiloops of different lengths and degrees. All of these deserve further
investigations and some of them are in progress.
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Appendix Proofs

Proof of Lemma 2.1 Note that in a finite plane tree, there always exists an internal
vertex u whose children are all leaves. Starting with u and traveling along the unique
path from u to the root (which could be u itself), the first encountered vertex that has
siblings, v, is a companion that determines a rake. In case no such v exists, the root
represents the companion that determines a rake.

It is clear that deleting all descendants of v and their incident edges will not affect
any other remaining vertex’s attribute of being a companion or not. It may affect
whether or not such a companion determines a rake after the deletion. Furthermore, v
itself is a leaf in T ′, and by definition, none of the v-descendants are companions in
T , whence we have m − 1 companions in T ′.

Proof of Lemma 3.1 Taking the auxiliary arc (0, 2b+k+1) into consideration, there is
at least one arc covering u. Then, by construction of the Schmitt–Waterman bijection,
u is a child of the innermost arc v covering u. Since u is the outermost arc of a helix
and is not (1, 2b+k), v must directly cover some other isolated bases or arcs whence u
is not the only child of v. Moreover, only isolated bases are mapped to leaves, thus u is
mapped to an internal vertex. Therefore, u corresponds to a companion. If (1, 2b+ k)
is a base pair, it will be clearly mapped to the unique child of the vertex (0, 2b+k+1).
The remaining statements follow directly from the Schmitt–Waterman bijection.

If (1, 2b+ k) is a base pair, then it is the outermost arc of a helix. As a consequence
of the above discussion, the other h − 1 helices determine h − 1 companions that are
not the root. Taking account of the root, there are h companion in total. Analogously,
if (1, 2b + k) is not a pair, there are h + 1 companions, and the proof follows.

Proof of Lemma 3.3 For a bulge loop of length q, by definition, the arc v of the bulge
directly covers q isolated bases and an arc which is either to the left or right of all
q isolated bases. Note that the corresponding vertices covered by v are leaves in the
corresponding rake and their left-to-right order stays the same as in the secondary
structure.

We next consider the exterior loop. By definition, the number of arcs directly cov-
ered by (0, 2b + k + 1) is ed − 1 and the number of directly covered isolated bases is
exactly el . If (1, 2b + k) is not a pair, then, according to Lemma 3.1, the arcs directly
covered by (0, 2b + k + 1) are mapped to companions that will give rise to marked
leaves in the corresponding rake rooted on b + k + 1 in view of Lemma 3.2. The
isolated bases in the exterior loop are mapped to the unmarked leaves of the rake.
If (1, 2b + k) is a base pair, then ed = 2 and el = 0. In this case, the helix having
(1, 2b+ k) as the outermost arc and the associated loop together with (0, 2b+ k + 1)
give rise to the rake rooted on b + k + 1, and no rake is associated with the exterior
loop. The remaining statements follow analogously.

123

https://github.com/RickyXFChen/RakeSamp


RNA Secondary Structures with given Motif... Page 19 of 24 21

Proof of Theorem 3.4 Note that the length of the RNA secondary structures under con-
sideration is 2b + k. Let

p =
∑
i

pi , P =
∑
i

i pi ,

g =
∑
i

gi , G =
∑
i

igi ,

t =
∑
i

ti , T =
∑
i

i ti ,

m =
∑
i, j

( j − 1)mi j , M =
∑
i, j

imi j .

We first consider the case that (1, 2b+k) is not a base pair, i.e., ed > 2, or, ed = 2 and
el > 0. As discussed above, we turn to enumerating the corresponding labelled plane
trees on [b+k+1]with b+k+1 as the root. In view of Theorem 2.2 and Lemma 3.1,
the corresponding labelled plane trees for the RNA secondary structures in this case
can be decomposed into h + 1 rakes, where the rake rooted on b+ k + 1 corresponds
to the exterior loop and the label (b+ k+1+h)∗ is a leaf there. Based on Lemma 3.3,
we enumerate the corresponding forests of rakes according to the following sequential
construction.

(I)Determine the number ofways for constructing leaves of the rakes corresponding
to hairpin loops.We assume those labelled rakes are arranged linearly according to the
length of the corresponding hairpin loops increasingly, and those of the same length
are arranged according to the minimum unmarked leaves increasingly. This is done as
follows: choose P unmarked labels out of [b+ k] in (b+k

P

)
different ways, and arrange

them linearly in P! ways, then cut the obtained sequence into segments such that the
first p1 segments have length one, the next p2 segments have length two, etc. Here, a
segment gives leaves of a hairpin-rake. However, the respective minimum unmarked
leaves in the pi segments of the same length i could yield any relative order. Thus, we
next need to divide

∏
i>0 pi ! so that only the ones in increasing order are counted.

(II) Determine the number of ways for constructing leaves of the rakes correspond-
ing to bulges. This can be first done in

(
b + k − P

G

)
G! 1∏

i>0 gi !

different ways to place the unmarked leaves. Next, we need to place a marked leaf
other than (b+k+1+h)∗ either to the left or to the right of each segment of unmarked
leaves. This can be achieved in

(h−1
g

)
2gg! different ways.

(III) Determine the leaves of the rakes corresponding to interior loops. This is
obtained analogously to the case of bulges, with the exception that for an interior loop
of length i , there are i −1 possible spaces between unmarked leaves to place a marked
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leaf. Hence, we arrive at

(
b + k − P − G

T

)
T ! 1∏

i>0 ti !
(
h − 1 − g

t

)
t !

∏
i>1

(i − 1)ti .

(IV) Determine the number of ways for constructing leaves of the rakes corre-
sponding to multiloops. Suppose those rakes are arranged linearly according to the
degree and then, the length of the corresponding multiloops increasingly, and those
of the same length and degree are arranged according to the minimum marked label
in increasing order. The enumeration is analogous, specific differences being the fol-
lowing: the length of a multiloop may be zero, and the marked leaves could be at any
positions relative to the unmarked ones. Accordingly, we have

(
b + k − P − G − T

M

)
M !∏

i≥0, j≥3 mi j !
∏

i≥0, j≥3

(
i + j − 1

j − 1

)mi j
(
h − 1 − g − t

m

)
m!.

(V)Determine the number ofways for constructing leaves of the rake corresponding
to the exterior loop. Recall that there is exactly one rake corresponding to the exterior
loop. This can be done as follows: pick el unused unmarked labels from [b + k] and
arrange them together with the remaining unused marked labels linearly. This results
in the multiplicity

(
b + k − P − G − T − M

el

)
(el + ed − 1)!.

(VI) Determine the number of ways for constructing stems for all rakes. Note that
the stem of the rake corresponding to any loop except the exterior loop could have any
size respecting the length distribution of the helices. This is equivalent to the number
of ways of first arranging the remaining unused (unmarked) labels linearly and then
dividing the resulting sequence into segments with the lengths respecting the length
distribution of the helices, given by

b! h!∏
i>0 hi !

.

Accordingly, the total number of distinct forests of rakes is given by

(
b + k

P

)
P!∏

i>0 pi !
(
b + k − P

G

)
G!∏
i>0 gi !

2g
(
h − 1

g

)
g!

(
b + k − P − G

T

)
T !∏
i>0 ti !

∏
i>1

(i − 1)ti
(
h − 1 − g

t

)
t !

(
b + k − P − G − T

M

)
M !∏

i≥0, j≥3 mi j !
∏

i≥0, j≥3

(
i + j − 1

j − 1

)mi j
(
h − 1 − g − t

m

)
m!

(
b + k − P − G − T − M

el

)
(el + ed − 1)!b! h!∏

i>0 hi !
.
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Dividing the last number by (b+k)! and expanding the involved binomial coefficients,
i.e., using

(m
n

) = m!
n!(m−n)! , we observe lots of cancellation. For example, the first line

of the above four-line expression (after dividing (b + k)!) becomes

1

(b + k)!
(b + k)!

P!(b + k − P)!
P!∏

i>0 pi !
(b + k − P)!

G!(b + k − P − G)!
G!∏
i>0 gi !

2g
(h − 1)!

g!(h − 1 − g)!g!

= (h − 1)!2g
(b + k − P − G)!(h − 1 − g)!∏i>0 pi !

∏
i>0 gi !

.

With this, we eventually obtain the desired formula.
It remains to consider the case of (1, 2b + k) being a pair, i.e., el = 0 and ed = 2.

Then, the corresponding forests consist of h rakes where no rake is associated with
the exterior loop. If there is only one helix (hence one loop being of a hairpin), i.e.,
h = 1 and p = 1, then there is only one rake in the corresponding forest and no
marked label, and the desired number is one. Otherwise, we analogously enumerate
the corresponding forests of rakes according to the following construction.

(a)Determine the number ofways for constructing leaves of the rakes corresponding
to hairpin loops. This is analogous to the computation of hairpin loops in the previous
case.

(b)Determine the number ofways for constructing leaves of the rakes corresponding
to bulges. Note that we have only h − 1 marked leaves in total. But in difference to
the situation analyzed in the previous case, it is possible for the largest marked label
(b+k+1+h−1)∗ to be contained in a rake that is associatedwith a bulge.Accordingly,
the number of ways to construct bulge-rakes is given by

(
b + k − P

G

)
G! 1∏

i>0 gi !
(
h − 1

g

)
2gg!.

(c)Determine the number ofways for constructing leaves of the rakes corresponding
to interior loops and multi-loops. This is analogous to the previous case.

(d) Determine the number of ways for constructing stems for all rakes. The stem
of the rake corresponding to any loop could have any length respecting the length
distribution of the helices, with the exception that the length of one helix increases by
one due to the auxiliary arc (0, 2b + k + 1). This is equivalent to the number of ways
of first arranging the remaining unused unmarked labels (other than b+k+1) linearly
and then cutting the resulting sequence into segments with the lengths respecting the
original length distribution of the helices, and finally associating b + k + 1 (as the
root) to the rake that contains (b + k + 1 + h − 1)∗, which is given by

b! h!∏
i>0 hi !

.
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As a result, the total number of distinct forests of rakes for this case is given by

(
b + k

P

)
P!∏

i>0 pi !
(
b + k − P

G

)
G!∏
i>0 gi !

2g
(
h − 1

g

)
g!b! h!∏

i>0 hi !(
b + k − P − G

T

)
T !∏
i>0 ti !

∏
i>1

(i − 1)ti
(
h − 1 − g

t

)
t !

(
b + k − P − G − T

M

)
M !∏

i≥0, j≥3 mi j !
∏

i≥0, j≥3

(
i + j − 1

j − 1

)mi j
(
h − 1 − g − t

m

)
m!.

Dividing the last number by (b + k)! and subsequent simplification (involving lots
of cancellation) yields the formula which agrees with the formula obtained for the
previous case.

Proof of Theorem 3.5 The proof is similar to that of Theorem 3.4. We first consider the
case ed > 2, or, el > 0 and ed = 2.

(I) Determine the number of ways for constructing stems of the rakes. There is one
rake rooted in b + k + 1 whose stem has length one. For the remaining h rakes, we
arrange them according to the minimum elements contained in the stems in increasing
order. This can be done by first picking b elements out of [b+k] in (b+k

b

)
possible ways

and arranging them linearly in b! ways. Next, we dissect the resulting sequence into
h segments such that each segment has a length at least σ in

(h+(b−hσ)−1
b−hσ

)
different

ways, and finally, we normalize by the factor 1
h! .

(II) Determine the number of ways for constructing loop types associated with the
rakes. Evidently, by construction the exterior loop is associated with the rake rooted
on b + k + 1. Among the remaining h rakes, we choose p of them for hairpin loops,
g of them for bulges, t of them for interior loops, and m j of them for multiloops of
degree j . The number of ways of doing this is given by

(
h

p

)(
h − p

g

)(
h − p − g

t

)
(
∑

j m j )!∏
j m j ! .

(III) Place the marked leaves. The marked label (b + k + 1 + h)∗ is contained in
the exterior loop. There are

(
h − 1

ed − 2

)
(h − ed + 1)!

ways to next place one marked leaf to each bulge and each interior loop, and place
j − 1 marked leaves to each multiloop of degree j .
(IV) Place the unmarked leaves. In each hairpin loop, there are at least θ unmarked

leaves, and in each bulge, there is at least one unmarked leaf either to the left or to the
right of the marked leaf. In each interior loop, there exists at least one unmarked leaf
on both sides of the marked leaf. Subject to these constraints, the number of distinct
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placements is given by

(
k

el

)(
p + g + 2t + ∑

j jm j + (k − el − pθ − g − 2t) − 1

k − el − pθ − g − 2t

)
(k − el)!2g.

As for the exterior loop, the remaining labels are contained in the rake corresponding
to the exterior loop, and there are (el + ed − 1)! different ways to arrange them.

In conclusion, the number of ways for constructing such forests is given by

(
h + b − hσ − 1

b − hσ

)(
b + k

b

)
b! 1
h!(

h

p

)(
h − p

g

)(
h − p − g

t

)
(
∑

j m j )!∏
j m j !(

h − 1

ed − 2

)
(h − ed + 1)!(el + ed − 1)!

(
k

el

)(
p + g + 2t + ∑

j jm j + (k − el − pθ − g − 2t) − 1

k − el − pθ − g − 2t

)
(k − el)!2g

and dividing by (b + k)! produces the formula.
Next, we consider the case ed = 2 and el = 0.
If there is only one helix (hence one loop), then the desired number is obviously

one. Otherwise, there are in total h > 1 rakes, and b+ k + 1 and (b+ k + 1+ h − 1)∗
are contained in the same rake. Analogously, the desired number in this case reads

1

(b + k)!
(
h + b − hσ − 1

b − hσ

)(
b + k

b

)
b! 1
h!(

h

p

)(
h − p

g

)(
h − p − g

t

)
(
∑

j m j )!∏
j m j ! (h − 1)!

(
p + g + 2t + ∑

j jm j + (k − pθ − g − 2t) − 1

k − pθ − g − 2t

)
k!2g.

Simplifying the last expression produces the formula in the theorem, completing the
proof.
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