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Abstract
With the development of next-generation sequencing (NGS) technologies, a large amount of short read data has
been generated. Assembly of these short reads can be challenging for genomes and metagenomes without template
sequences, making alignment-based genome sequence comparison difficult. In addition, sequence reads from NGS
can come from different regions of various genomes and they may not be alignable. Sequence signature-based meth-
ods for genome comparison based on the frequencies of word patterns in genomes and metagenomes can poten-
tially be useful for the analysis of short reads data from NGS. Here we review the recent development of
alignment-free genome and metagenome comparison based on the frequencies of word patterns with emphasis on
the dissimilarity measures between sequences, the statistical power of these measures when two sequences are
related and the applications of these measures to NGS data.
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INTRODUCTION
Sequence comparison continues to play crucial roles

in molecular sequence analysis. The dominant

approaches for sequence comparison are alignment-

based including the Smith–Waterman algorithm

[1] and BLAST [2]. Although alignment-based

approaches generally yield excellent results when

the molecular sequences of interest can be reliably

aligned, their applications are limited when the se-

quences are divergent or come from different regions

of various genomes and a reliable alignment cannot

be obtained. Another drawback of alignment-based

approaches is that they are generally time-consuming

and thus, are limited in dealing with large-scale

sequence data generated with the new sequencing

technologies. The next-generation sequencing

(NGS) technologies usually generate relatively short

reads that can be difficult to assemble, and alignment-

based approaches cannot be applied when the com-

plete sequences are not known. Alignment-free
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sequence comparison approaches provide attractive

alternatives when alignment-based approaches fail.

Studies of alignment-free sequence comparison

began in the mid 80s [3, 4] and have been under

continuous development. Two excellent reviews are

available on this topic [5, 6]. Here we review new

developments on alignment-free sequence compari-

son with emphasis on methods based on k-tuple

(k-word, k-gram) frequencies. For studies on align-

ment-free sequence comparison based on other ideas

such as chaos theory and common substrings, please

see [6] for details.

Alignment-free sequence comparison has been

successfully applied to many biological problems

including (i) the study of evolution of organisms

using whole-genome sequences, (ii) the evolution

of regulatory sequences such as promoters, enhancers

and inhibitors, (iii) the identification of cis-regulatory

modules (CRM) and (iv) the comparison of meta-

genomic communities based on the sequence data

using NGS technologies.

For alignment-free sequence comparison of two

sequences using k-tuples, the first step is to count the

number of occurrences of every k-tuple in both

sequences separately and record these in a vector

of k-tuple frequencies for each sequence; this count-

ing can be carried out in linear time. Second, a meas-

ure d of difference between the two sequences A and

B is defined based on the two frequency vectors. If

the measure satisfies distance constraints, i.e. (a)

dðA,BÞ � 0 and equality holds if and only if

A ¼ B, and (b) for any sequences A, B and C,

dðA,CÞ � dðA,BÞ þ dðB,CÞ, then the measure is a

distance measure. Otherwise, the measure is called a

dissimilarity measure. Third, the sequences are

then clustered based on the distance or dissimilarity

measures and the resulting clusters are finally com-

pared with current biological knowledge about

the sequences to evaluate the effectiveness of the

measures. Many measures have been developed

over the years. Here we present a general

review of such measures and their applications to

molecular sequence analysis with an emphasis on

NGS data.

The article is organized as follows. In Section 1,

we review theoretical studies of the approximate dis-

tributions of the popular D2 statistic and of its power.

As D2 may mainly measure background noise in each

sequence separately, in Section 2 we describe ad-

justed similarity measures based on word counts.

Section 3 focuses on alignment-free genome and

metagenome comparison using NGS data. Section

4 contains a discussion and conclusions.

THEORETICAL STUDIES OF THE
APPROXIMATE DISTRIBUTIONS
OF D2 AND ITS STATISTICAL
POWER
Alignment-free sequence comparison by
the number of word matches: theD2
statistic
The earliest development of alignment-free sequence

comparison can be traced back to the 1980’s.

Blaisdell [4] used the likelihood ratio statistic or the

corresponding Chi-square statistic, to determine the

order of Markov chain (MC) of sequences of interest.

More specifically, for a given sequence

A ¼ A1A2 � � �An with letters from a finite alphabet

A, let ðXw,w 2 A
k
Þ be the number of occurrences of

tuple w inA. The objective is to test if the sequence

A can be modelled as a (k-2)-th order MC as

opposed to a (k-1)-th order MC using the likelihood

ratio statistic

Lk ¼ 2
X

a1, ���, ak2A

Xa1a2���ak log
Xa1a2���ak

Ea1a2���ak

or the Chi-square statistic

Sk ¼
X

a1, ���, ak2A

ðXa1a2���ak � Ea1a2���ak Þ
2

Ea1a2���ak

where Ea1a2���ak is the expected count of the k-tuple

a1a2 � � � ak under the (k-2)-th order MC, which can

be estimated by

E^a1a2���ak ¼
Xa1a2���ak�1akXa2���ak�1ak

Xa2���ak�2ak�1

: ð1Þ

Both Lk and Sk have an approximate w2-distribu-

tion with 4k�2 � 9 degrees of freedom. Blaisdell [3]

used similar ideas to test if a set of sequences have the

same transition matrix, and thus are more likely to be

related. These statistics can be considered as the origin

of alignment-free sequence comparison statistics.

Torney et al. [7] used the number of k-tuple

matches between two sequences A and B as a stat-

istic to measure the similarity between them. Let

D2 ¼
X
i, j

IðAiAiþ1 � � �Aiþk�1 ¼ BjBjþ1 � � �Bjþk�1Þ

¼
X
w2Ak

XwYw,
ð2Þ
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where Xw and Yw are the number of occurrences of

tuple w in sequencesA and B, respectively, and Ið�Þ
denotes the logical indicator: I Eð Þ ¼ 1 if event E is

true, and 0 otherwise. The D2 statistic has been used

in many applications including sequence database

searches [8] and clustering of expressed sequence

tags [9]. Owing to its wide range of applications,

extensive studies on the distributions of D2 have

been carried out.

The distribution of theD2 statistic under
the null model of two independent
sequences
Lippert et al. [10] studied the limiting distribution of

D2 under the independent identically distributed

(i.i.d.) model for both sequences with the same nu-

cleotide frequencies pa, a 2 A, where A indicates the

set of all the possible letters. When pa, a 2 A are not

all equal, it was shown that when k � 2 logðnÞ where

n is the length of both sequences, D2 has an approxi-

mate Poisson distribution, and when k < 1=2 logðnÞ,
D2 has an approximate normal distribution. It

was further suggested in [10] and explicitly proved

in [11] that the variance of D2 is dominated by

the variance of the number of occurrences of each

k-tuple in individual sequences. However, when

pA ¼ pC ¼ pG ¼ pT ¼ 1=4, D2 is approximately

neither normal nor Poisson. Instead, D2 tends to

the sum of products of normal distributions.

The fundamental results in [10] were further ex-

tended to more general models for the sequences of

interest [12–14]. Kantorovitz et al. [12] showed that

D2 is approximately normal as both k and n tend to

infinity when the nucleotide frequencies are the

same for both sequences. Burden et al. [14] extended

the D2 statistic to allow word matches with up to a

certain number of mismatches and again showed that

this new statistic is approximately normally distribu-

ted. Foret et al. [13] compared the empirical and the-

oretical distributions of D2 and its variations and

found that the approximations are consistent with

the empirical distributions.

The power of theD2 statistic under the
alternative model of two related
sequences
The results from [10, 12–14] played key roles in

estimating the statistical significance of D2 between

two sequences under the null hypothesis that the

two sequences are unrelated. In contrast, these stu-

dies do not address what kind of relationship the

statistic D2 and its variants can detect, and what the

statistical power is when the alternative hypothesis

that the two sequences are related holds. To

answer these questions, precise definitions of related-

ness between the sequences of interest are needed.

The alternative hypothesis depends on the scientific

questions of interest. One of the key applications of

alignment-free sequence comparison is to find

CRMs that locate in the upstream regions of genes

controlled by the same sets of transcription factors.

Sequences in the same CRM tend to have the same

transcription factor binding sites and thus share simi-

lar sets of k-tuples. Therefore, Reinert et al. [11]

modelled the relatedness of sequences by the sharing

of common motifs, that is, word patterns that are

significantly enriched in the sequences. They refer

to the model as a common motif model. The

model for each sequence consists of the following

three components:

(1) The background sequences are modelled by an

i.i.d. model.

(2) The foreground motifs are modelled by position

weight matrices that give the nucleotide prob-

ability distribution at each position of the motifs.

The foreground motif model can be easily ex-

tended to the situation that the nucleotides along

the motifs depend on each other. The motifs can

also be easily generalized to CRMs consisting of

combinations of several motifs.

(3) The occurrences of the motifs are modelled as

binomial random variables along the genome se-

quence, with 1� l denoting the probability that

a motif instance starts at a nucleotide position;

1� l is referred as the motif density. Once a

motif is inserted, the nucleotide positions,

which are now covered by the motif, are

ignored, and the insertion process resumes at

the end of the motif, so that inserted motifs do

not overlap.

Intuitively, the relatedness between the two se-

quences increases with the motif density, and thus

the power of a reasonable statistic should also in-

crease with motif density. Simulation studies under

the common motif model showed that for small

values of k, the power of D2 can be smaller than

the type I error rate and can decrease with sequence

length. Thus, D2 is not an appropriate statistic to test

the relationship between sequences under the

common motif model for small values of k. When
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k is relatively large, the power does increase with

sequence length. Thus, for many practical applica-

tions with relatively large values of k, D2 can be

useful. These observations were further proved the-

oretically in [15] based on the hidden Markov model

for each sequence developed in [16].

ADJUSTEDDISSIMILARITY
MEASURES FOR ALIGNMENT-
FREE SEQUENCE COMPARISON
BASEDON K-TUPLE COUNTS
In addition to D2, many other distance and dissimi-

larity measures based on k-tuple counts have been

proposed for the comparison of molecular sequences.

Those include (a) normalization of D2 by D2z, (b)

correlation of relative differences of the tuple counts

from their expectations, (c) comparison of relative

abundance of k-tuples and (d) comparison of

k-tuple distributions based on Markov models.

Normalization ofD2 byD2z
It was realized that the D2 statistic defined in Equation

(2) depends on the underlying sequence models [12].

Normalizing the D2 statistic using its mean and stand-

ard deviation can potentially improve the power of

detecting the relationships between the sequences and

remove the biases due to the background models of

the sequences. For normalization, the background

models for the sequences of interest are needed.

Kantorovitz etal. [12] modified the D2 statistic to D2z

D2zðA,BÞ ¼
D2ðA,BÞ � EðD2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðD2Þ
p ð3Þ

where the expectation and variance of D2 are calcu-

lated based on a Markov model for the sequences.

The authors compared the effectiveness of the

D2z statistic with several other distance or dissimilar-

ity measures between the k-tuple vectors including

(i) the Euclidean distance [3], (ii) Kullback-Leibler

discrepancy (kld) [17], (iii) the linear Pearson correl-

ation coefficient (lcc) between the count vectors, (iv)

the cosine of the angle between the two k-tuple

count vectors (cos) and (v) two other measures

based on the approximate Poisson distribution of

word counts [18]. Using four fly and three human

CRMs as examples, it was shown that the D2z stat-

istic outperforms the statistics described above for the

identification of CRMs [12]. Note though, the

Euclidean, kld, lcc and cos measures need only one

parameter, the value of k, while D2z needs an

additional parameter r, the order of the MC for the

sequences. In the seven data sets studied, the com-

bination of k ¼ 5 and r ¼ 0 yielded the best per-

formance for D2z in five of the data sets, and the

combination of k ¼ 6 and r ¼ 2 has the best per-

formance in two of the seven data sets.

Correlation of relative differences of
k-tuple counts between two sequences
Instead of normalizing D2 by D2z, Hao and col-

leagues [19–21] considered the relative difference

vector of the number of occurrences of every

k-tuple w with its expected count under the (k-2)-

th order MC model given in Equation (1) for each

sequence. They then used the correlation coefficient

between the relative difference vectors correspond-

ing to two sequences to measure their similarity. We

use the corresponding author’s last name Hao as the

short form of this measure to simplify the notation.

Hao ¼
1

2
1�

P
w

Xw�EX
w

EX
w

� �
Yw�EY

w
EY
w

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w
Xw�EX

w
EX
w

� �2P
w

Yw�EY
w

EY
w

� �2
r

0
BB@

1
CCA ð4Þ

where EX
w and EY

w are defined as in Equation (1)

based on sequences A and B, respectively.

The authors applied this dissimilarity measure to

whole-genome phylogenetic analysis [21–26] and

classification of metagenomic samples [27]. However,

Jiang et al. [28] recently found that, although the Hao
statistic performs reasonably well with high-coverage

data sets, it is not stable when the data are limited.

Alignment-free sequence comparison
based on di-, tri- and tetra-nucleotide
relative abundance
Karlin and colleagues observed that the relative

dinucleotide frequencies defined by

rabðAÞ ¼
fab
fafb

ð5Þ

where fa is the frequency of nucleotide a and, more

generally, fw is the observed frequency of word pat-

tern w, are relatively stable across different parts of

the same genome and differ across different genomes

[29–33]. Therefore, they proposed to use the

l1-norm between the relative dinucleotide frequen-

cies between two genome sequences as dissimilarity

measure, that is,

dðA,BÞ ¼
X

a, b2A
jrabðAÞ � rabðBÞj: ð6Þ
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This distance measure has been used to study the

evolutionary relationships among viruses [29], bacteria

[30], plasmids, prokaryotes [34] and eukaryotes

[30, 32]. The dinucleotide frequencies have been ex-

tended to tri- and tetra-nucleotide biases [35, 36] as

gabc ¼
fabc fa fb fc
fab fbc faNc

and

tabcd ¼
fabcd fab faNc faN1N2d fbc fbNd fcd

fabc fabNd fbcd fa fb fc fd

where N,N1 and N2 indicate any letters. Under the

MC model, the corresponding biases are defined by

the ratio of the observed count of a tri- or tetra-

nucleotide in the sequence over its expected count

under the first and second order Markov models

given in Equation (1). Similarly, the difference be-

tween two genomes can be calculated by the lp norm

of the 64-dimensional vector g or the 256-dimen-

sional vector t.
It can be seen that the Hao dissimilarity measure is

closely related to the dissimilarity measure developed

from Karlin’s group when the MC model was used to

model the sequences. Hao’s group used one minus the

correlation between the relative difference vectors

while Karlin’s group used the lp-norm between the

relative difference vectors to measure the dissimilarity.

Alignment-free sequence comparison
based on direct comparison of tuple
frequencies with Markov models
Kim and colleagues [37–40] designed an approach

based on the Jensen-Shannon entropy as a distance

measure to study the evolutionary relationships of

prokaryotes, Escherichia coli/Shigella, and viruses.

In a series of articles, Wang’s group compared two

sequences using the k-tuple frequency vectors

coupled with MC models of order r ¼ 0, 1, 2
[41, 42]. The methods in [42] can be described as

follows. Assuming an r-th order MC for each se-

quence, the transition probability matrix can be esti-

mated using the sequence data. The probability of

each k-tuple to occur in the sequence A can then be

calculated based on the transition probabilities

denoted as Pðwj�r
AÞ, where �r

A is the r-th order

MC for sequence A. Similarly, the k-tuple probabil-

ity distribution can be defined based on the second

sequence B. The statistic S1:k:rðA,BÞ is defined by

the symmetric Jensen-Shannon divergence of the

two probability measures Pðwj�r
AÞ and Pðwj�r

BÞ.

They also considered a weighted version of

S1:k:rðA,BÞ denoted as S2:k:rðA,BÞ that was

defined by replacing Pðwj�r
SÞ with f Sw Pðwj�

r
SÞ,

where f Sw is the frequency of w in sequence S ¼ A
or B. It was shown in [41,42] that for the identifi-

cation of CRMs with appropriate choices of k and r,
the dissimilarity measure S2:k:r performs the best

compared with the dissimilarity measures discussed

above. We also tried S2 on the data sets used in

[43] and found that S2 outperforms other dissimilar-

ity measures by a significant margin for the identifi-

cation of CRM sequences (see Supplementary

Tables S1–S4).

The statisticsDS
2 andD�2 and their

statistical power
Two relatively new normalization methods for the

tuple counts have recently been proposed [11, 15].

The first statistic is based on the observation by

Shepp [44] that for two independent normal

random variables X and Y with mean zero,

XY=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2
p

is also normally distributed. We

normalize Xw and Yw by

eXw ¼ Xw � npXw and eYw ¼ Yw � npYw

where n ¼ n� k and m ¼ m� k, and pXw and pYw are

the probability of k-tuple w under the background

model for sequences A and B, respectively. The stat-

istic DS
2 is defined by

DS
2 ¼

X
w2Ak

eXweYwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX2
w þ

eY2
w

q ð7Þ

where Ak is the set of all k-tuples. The second stat-

istic, D�2, is based on the intuitive idea that the

number of occurrences of tuple w is approximately

Poisson and thus its mean and variance are approxi-

mately the same for relatively long tuples;

D�2 ¼
X
w2Ak

eXweYwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnpXwp

Y
w

p : ð8Þ

These statistics were used to test the null hypothesis

H0 that the two sequences are not related versus the

alternative hypothesis H1 that two sequences are

related by the common motif model. It was shown

by simulations [11] and theoretically [15] that the new

statistics DS
2 and D�2 have the following properties:

(1) The power of both DS
2 and D�2 is generally

higher than that of D2, and increases with the

sequence length.
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(2) The statistic D�2 has the highest power when the

length of the tuples, k, equals the length of the

inserted motif.

(3) When the sequence length is relatively short, the

statistic D�2 is more powerful than DS
2 , while

when the sequence length is long, the power

of DS
2 is generally higher than that of D�2.

Although DS
2 and D�2 are powerful statistics for

the comparison of genomic sequences, they have

the drawback that their magnitudes depend on a

variety of factors including sequence length and

nucleotide frequencies. To overcome these prob-

lems, the statistics DS
2 and D�2 are further normalized

to dS2 and d�2 , respectively, with range from 0 to 1,

where

dS2 ¼
1

2

� 1�
DS

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2AkeX2

w=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX2

wþ
eY2
w

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2AkeY2

w=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX2

wþ
eY2
w

qr
0
BB@

1
CCA

and

d�2 ¼
1

2
1�

D�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2Ak eX2

w= npXw
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w2Ak eY2
w= mpYw
� �q

0
B@

1
CA:

When the two sequences are the same, both dS2
and d�2 equal to 0, while if they are anti-correlated,

these statistics are close to 1. Therefore, they can be

used as dissimilarity measures for two sequences and

can be used to cluster a group of sequences of

interest.

In addition to the alternative hypothesis that the

two sequences share common motifs or CRMs,

Reinert et al. [11] and Wan et al. [15] considered

another alternative model H 01, called the pattern

transfer model, which relates two sequences by ran-

domly transferring patterns from one sequence to the

other. Under this model, however, the power of DS
2

and D�2 first increases with sequence length and then

approximates a value less than 1. Therefore, neither

is appropriate for testing the alternative hypothesis

H 01. To overcome this problem, Liu et al. [45] de-

veloped two new statistics, TS
sum and T�sum, corres-

ponding to DS
2 and D�2, respectively. To define

TS
sum, the maximum similarity measured by DS

2 be-

tween the fragment from i to iþW � 1 in sequence

A and any fragment of length W in sequence B is

calculated and it is denoted as XS
i . Similarly, let YS

j
be the maximum similarity measured by DS

2 between

the fragment from j to jþW � 1 in sequence B and

any fragments of length W in sequence A. Then

TS
sum ¼

Xn�Wþ1

i¼1

XS
i þ

Xm�Wþ1

j¼1

YS
j :

The statistic T�sum can be similarly defined by

replacing DS
2 with D�2.

It was shown in [45] that the power of both TS
sum

and T�sum under the alternative model H 01 increases

with sequence length and approximates 1 as

sequence length tends to infinity.

Consideration of mismatched tuples
In the above studies, exact matches of the tuples are

needed. During evolution, mutations can occur and

hence it is natural to consider tuple matches allowing

a giving number of mismatches. Also because gen-

omic orientations of CRMs are usually unknown,

both strands of the sequences need to be taken into

account for alignment-free genome comparison.

Thus, another line of extension of the statistics dis-

cussed above is the consideration of reverse comple-

ment and mismatched tuples [43]. For each tuple w,

its neighbourhood, &ðwÞ, is defined as the set of

tuples with up to a certain number of mismatches

with w. Each tuple w0 in the neighbourhood &ðwÞ is

associated with a weight aw0 . The weighted tuple

neighbourhood count X&ðwÞ for every tuple w in

sequence A is defined by

X&ðwÞ ¼
X

w02&ðwÞ
aw0Xw0 :

The corresponding extensions of dS2 and d�2 in a

mismatch model are given as

dS2 ¼
1

2
1�

P
w
eX&ðwÞeY&ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX2

&ðwÞþ
eY2
&ðwÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w

eX2
&ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX2

&ðwÞþ
eY2
&ðwÞ

q
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w

eY2
&ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX2

&ðwÞþ
eY2
&ðwÞ

q
vuut

0
BBBBBB@

1
CCCCCCA

ð9Þ

and

d�2 ¼
1

2
1�

P
w

eX&ðwÞeY&ðwÞffiffiffiffiffiffiffiffiffiffi
EX&ðwÞ
p ffiffiffiffiffiffiffiffiffi

EY&ðwÞ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w

eX2
&ðwÞ

EX&ðwÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w

eY2
&ðwÞ

EY&ðwÞ

r
0
BB@

1
CCA: ð10Þ
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Here eX&ðwÞ ¼ X&ðwÞ � EX&ðwÞ and eY&ðwÞ is defined

analogously. Göke et al. [43] also proposed another

similarity measure N2 defined as

N2 ¼

P
w

eX&ðwÞeY&ðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX&ðwÞÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðY&ðwÞÞ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w

eX2
&ðwÞ

varðX&ðwÞÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w

eY2
&ðwÞ

varðY&ðwÞÞ

r ð11Þ

where varðX&ðwÞÞ, the variance of X&ðwÞ, can be ob-

tained as in [43]. The dissimilarity measure corres-

ponding to N2 is defined by n2 ¼ ð1�N2Þ=2.

The idea of using mismatched tuples can be

applied to other dissimilarity measures such as the

Jensen-Shannon divergence, Hao, and the lp-distance

between relative abundance vectors of two different

sequences. The details are omitted here.

Empirical comparison of dissimilarity
measures with mismatches
Because the consideration of mismatched tuples in

alignment-free sequence comparison is relatively

new, comprehensive evaluations of various dissimi-

larity measures allowing mismatched tuples have not

been carried out yet. Here we use the comparison of

CRM sequences as an example to study the effect of

mismatch weight on Hao, n2, d�2 and dS2 . We also

consider two more statistics: the Jensen-Shannon

information (JS) and S2 in [42] discussed above.

In our implementation, we combine both the

reverse complement and one-word mismatches in

[43], and the neighbourhood of a word w can be

defined as

&ðwÞ ¼ fw0, rcðw0Þjdisthammin gðw,w0Þ � 1g,

where rcðwÞ is the reverse complement of w, and

disthammin g indicates the Hamming distance.

We used enhancers active in the forebrain, mid-

brain, limb and heart tissues of developing mouse

embryo [43, 46, 47] to study the effectiveness of

the different dissimilarity measures to cluster

CRMs. These sequences form the set of positive sam-

ples. As in [12, 42], sequences of the same length as

the positive samples are randomly chosen from the

mouse genome, ensuring a maximum of 30% of

repetitive sequence. These sequences form the set

of negative samples. As in [43], we randomly chose

500 sequences in both the positive set and the nega-

tive set. Each pair of sequences in the positive set

was compared and so was each pair in the negative

set using the dissimilarity measures described above.

We tested if sequence pairs from the positive set

were more similar than sequence pairs from the

negative set.

For a given dissimilarity measure with a fixed mis-

match weight, we calculated the area under the

receiver operating characteristic curve (AUC-ROC)

as follows. First, we randomly chose 500 positive

sequences from the CRM sequences and 500

random sequences from the mouse genome as nega-

tive sequences. Second, we calculated the dissimilarity

measures for all pairs of positive sequences and all pairs

of negative sequences. Third, all the dissimilarity

scores for the positive pairs and negative pairs were

mixed together. If the dissimilarity score of a pair was

lower than a given threshold, the pair was predicted as

from the positive samples and otherwise, the pair was

predicted as from the negative samples. Fourth, the

predictions were compared with the real data to find

the false positive rate and the true positive rate. By

changing the threshold, the ROC curve can be

plotted and thus the AUC score can be calculated.

We repeated these four steps 25 times. We let the

tuple size to be 4, 5 and 6, the order of MC to be 0,

1 and 2 and the mismatch weight to be 0, 0.001, 0.01,

0.05, 0.1, 0.25, 0.5, 0.75 and 1.00 as in [43].

Supplementary Tables S1–S4 give the average

AUC-ROC scores for all the six dissimilarity meas-

ures for the four sets of CRM sequences.

We make the following three observations. First,

the performances of n2, d�2 and dS2 are close and are

better than that of JS and Hao in general. Second, for

k ¼ 4, the performances of n2, d�2 and dS2 are the best

when the mismatch weight is around 0.05, but the

differences with respect to different mismatch

weights are negligible. For k ¼ 5 or 6, the optimal

performances are observed for the mismatch weight

close to 1. These observations are consistent with

that in [43]. Third, the statistic S2 of Dai et al. [42]

performs surprisingly well when k¼ 6 with inde-

pendent identically distributed model for the back-

ground sequences. One potential explanation for the

good performance of S2 is that it does not consider

k-tuples that are not present in the sequence. The

number of such 6-tuples is large for CRM sequences

of length around 1 kb.

ALIGNMENT-FREEGENOMEAND
METAGENOMECOMPARISON
USING NGS DATA
With the development of NGS technologies, many

short sequence reads can be easily generated resulting
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in a huge amount of available sequencing data. Yet,

the assembly of these sequence reads can be challen-

ging owing to their short length. Sequence-signa-

ture–based methods for molecular sequence data

analysis have the advantage over alignment-based

methods in that they can be directly applied to

NGS data. The sequence reads are homogeneously

or heterogeneously sampled from the original

genome. Here homogeneous means that the sequence

reads start at each position of the genome with equal

probability, while heterogeneous means that some

regions may be preferentially sequenced.

To overcome these challenges, Song et al. [48]

extended D2, DS
2 and D�2 to develop new statistics

to be applicable for NGS data and studied their cor-

responding power by both simulations and theoret-

ical studies. Jiang et al. [28] used sequence signature

methods to cluster microbial communities. The the-

oretical studies of the power of D2, DS
2 and D�2 are

based on the limiting distributions of tuple counts in

NGS data [49]. It was shown that the qualitative

relative performances of these statistics on a large

set of short reads are the same as that for long se-

quences. However, owing to the additional random-

ness involved in the sampling of the reads from the

genomes during NGS, the power of these statistics is

lower than when the complete genomic sequences

are known. When the sampling of reads is homoge-

neously distributed, it was shown that, as the sequen-

cing depth increases, the power of these statistics for

NGS data approximates that when the genome se-

quences are known. In addition, heterogeneous sam-

pling of the reads along the genome can further

decrease the power of DS
2 and D�2. On the other

hand, NGS read length does not significantly affect

their power. Further, the dissimilarity measures d2, dS2
and d�2 were then extended to NGS data and were

applied to cluster different tree species with un-

known complete genome sequences [48, 50]. It

was shown that among these three dissimilarity

measures the resulting clustering tree based on the

dissimilarity measure dS2 is the most consistent with

the characteristics of the trees [48].

The three dissimilarity measures d2, dS2 and d�2 were

also used to compare complex microbial commu-

nities consisting of hundreds to thousands of species

[28]; each microbial community was treated as a

pan-genome. These dissimilarity measures were

also compared with several other dissimilarity meas-

ures including the Hao dissimilarity measure defined

in Equation (4), measures based on relative di-,

tri- and tetra-nucleotide frequencies as in Equation

(6) [36], and the standard lp-measures between the

frequency vectors.

Simulation studies were first used to see if these

dissimilarity measures can recover the relationships

among microbial communities using metagenomic

short read data. Two types of relationships among

the microbial communities were studied. First, they

can be related through group relationships such as

when the communities are divided into several

groups where communities in each group have simi-

lar microbial species compositions. For any given

dissimilarity measure, the dissimilarity between any

pair of microbial communities can be calculated to

form a dissimilarity matrix. Hierarchical clustering

with average linkage was then used to cluster the

microbial communities based on the dissimilarity

matrix. The resulting clusters were compared with

the simulated group relationships of the microbial

communities. It was shown that among the three

dissimilarity measures tested, the clustering tree

derived based on dS2 is the most similar to the simu-

lated group relationships among the microbial com-

munities. Second, the microbial communities can be

related through a gradient relationship for the abun-

dance levels of microbial organisms. Principal coord-

inate analysis was then applied to the dissimilarity

matrix. The correlation between the principal co-

ordinate and the gradient can be calculated; high

correlation indicates better performance of a dissimi-

larity measure. It was shown that when sequencing

depth is low to moderate (1000–10 000 reads per

community), the correlation is highest when based

on d�2 and dS2 . When the sequencing depth is high,

the correlations based on Hao, d�2 and dS2 are similar

and are higher than those based on other dissimilarity

measures.

These dissimilarity measures were also used to

analyse 39 fecal samples from 33 mammalian host

species [51], 56 marine samples across the world

[52] and 13 fecal samples from human individuals

[53]. Using the dS2 dissimilarity measure, the fecal

samples from carnivores can be separated from that

of the herbivores. Even within the herbivores, the

fecal samples from the hindgut-fermenting herbi-

vores can be separated from that of the foregut-fer-

menting herbivores. In contrast, the fecal samples

from the omnivore samples are diverse and are

mixed together with the carnivore and herbivore

samples. For the marine data, metagenomic samples

from the same region tend to cluster together. For
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the human gut samples, the metagenomic samples

from the adult can be separated from that of un-

weaned infants. These studies showed the import-

ance of using alignment-free methods for the

comparison of metagenomic samples.

In [28], the dissimilarity measure S2 of Dai et al.
[42] was not evaluated with respect to the classifica-

tion of microbial communities. Here we carried out

the same analysis as in [28] with the three real data

sets described above using S2, and the parsimony

scores of the resulting trees are given in

Supplementary Table S5 for the fecal samples of

mammalian host species, Tables S6 and S7 for the

open and coastal water samples, respectively, and

Table S8 for the human fecal samples in the Supple-

mentary Material, where the parsimony score is the

minimum number of changes of the community

labels needed to explain the clusters. The lower the

parsimony score, the better the dissimilarity score is.

In all these tables, only the results related to S2 are

new and the results related to other statistics were

presented in [28]. We found that for the comparison

of microbial communities, dS2 outperforms S2, and

dS2 has the best performance among all the dissimi-

larity measures we studied so far.

The programs for calculating most of the statistics

described in this review are available online and the

corresponding websites are given in Table 1.

DISCUSSIONAND CONCLUSIONS
Alignment-based approaches for sequence compari-

son will continue to play dominant roles in genomic

studies when the sequences of interest can be reliably

aligned. On the other hand, alignment-free sequence

comparison approaches have been shown to provide

important information on the evolution of gene

regulatory regions and the comparison of genomes

and metagenomes in situations where reliable align-

ments are not available. Alignment-free approaches

based on k-tuple counts are especially powerful for

the analysis of NGS short read data from unknown

genomes and metagenomes.

In this review, we summarized recent develop-

ments of alignment-free sequence comparison con-

centrating on approaches based on k-tuple count

vectors. We emphasized the dissimilarity measures

used for genome and metagenome comparisons,

the statistical distributions of the measures and the

power of these statistics when genomes of interest

are related. Both theoretical studies and real data

analysis showed that the newly developed statistics

DS
2 and D�2 are generally more powerful than the

original statistic D2. The introduction of mismatched

tuples in these statistics can further increase their

power. For the comparison of relatively short (e.g.

1 kb) CRM sequences, the statistic S2 seems to per-

form well with appropriate choices of tuple length

and order of MC for the sequences. For the com-

parison of long genome sequences and metagenomic

communities, the dS2 dissimilarity measure seems to

yield the best results.

Many other alignment-free sequence comparison

approaches are available including those based on

chaos game representation [54], common substrings

between sequences [55], longest common words

[56], the minimal words [57], the difference between

the longest common and shortest absent words [58]

and sequence representation based on natural vectors

[59]. Also, there are recent results from the area of

machine learning applied to alignment-free sequence

comparison, see for example [60]. Because these

approaches are based on different philosophies of se-

quence comparison from the k-tuple–based methods

and it is not clear whether they can be applied to

NGS data, we did not review them here. Further

studies are needed to understand the advantages

and disadvantages of the various alignment-free

sequence comparison methods.

Table 1: The statistics reviewed in this article and the websites for the software to
calculate the corresponding statistics

Statistical measure Website

D2, D2S, D2Star http://www-rcf.usc.edu/�fsun/Programs/D2/d2-all.html
d2, d2S, d2Star http://www-rcf.usc.edu/�fsun/Programs/D2_NGS/D2NGSmain.html
D2z http://veda.cs.uiuc.edu/cgi-bin/d2z/download.pl
Hao http://tlife.fudan.edu.cn/cvtree/
S2 http://math.dlut.edu.cn/daiqi/mplusd.html
N2 http://www.seqan.de/projects/alf/
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SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

	 Alignment-free sequence comparison is essential for the com-
parison of genomes based on NGS reads even if the reads are
not from homologous regions.

	 Metagenomes can be effectively clustered based on NGS reads
using sequence signatures.

	 Normalization of pattern counts by centralizing around their
means can significantly increase the power of alignment-free
genome comparison.

	 The newly developed dissimilarity measures d�2 and dS2 outper-
form others for genome andmetagenome comparison.
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