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Abstract To an RNA pseudoknot structure is naturally associated a topological sur-
face, which has its associated genus, and structures can thus be classified by the
genus. Based on earlier work of Harer–Zagier, we compute the generating func-
tion Dg,σ (z) = ∑

n dg,σ (n)zn for the number dg,σ (n) of those structures of fixed
genus g and minimum stack size σ with n nucleotides so that no two consecutive
nucleotides are basepaired and show that Dg,σ (z) is algebraic. In particular, we prove

that dg,2(n) ∼ kg n3(g− 1
2 )γ n

2 , where γ2 ≈ 1.9685. Thus, for stack size at least two,
the genus only enters through the sub-exponential factor, and the slow growth rate
compared to the number of RNA molecules implies the existence of neutral networks
of distinct molecules with the same structure of any genus. Certain RNA structures
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1262 J. E. Andersen et al.

called shapes are shown to be in natural one-to-one correspondence with the cells in
the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus
g with one boundary component, thus providing a link between RNA enumerative
problems and the geometry of Riemann’s moduli space.

1 Introduction

An RNA molecule is described by its primary structure, a linear string composed of
the nucleotides A, G, U and C, referred to as the backbone. The number of nucleotides
is called the length of the molecule. Nucleotides may pair according to the symmetric
Watson–Crick rules: A–U, G–C and U–G. The predominance of such pairings form
the RNA secondary structure, where by definition, if nucleotides U and V are paired
and X and Y are paired, then they cannot occur in the order X−U−Y −V in the primary
structure. The combinatorics and prediction of RNA secondary from primary structure
was pioneered three decades ago by Michael Waterman (Waterman and Schmitt 1994;
Penner and Waterman 1993; Waterman 1979, 1978; Howell et al. 1980).

In fact, RNA is structurally less constrained than its chemical cousin DNA and
folds into a variety of tertiary structures as shown by experimental findings as well
as by comparative sequence analysis (Westhof and Jaeger 1992). These structures
are called pseudoknot structures, and their topology has been studied in Vernizzi et al.
(2005, 2006), Bon et al. (2008), Orland and Zee (2002). Folded RNA facilitates various
biochemical tasks, for example, acting as a messenger linking DNA with proteins and
catalyzing diverse reactions just as proteins themselves. Though most of the pairings in
a folded RNA can typically be described by the secondary structure alone, pseudoknots
occur rather often in practice and are known to be functionally important, for instance,
in tRNAs, RNAseP (Loria and Pan 1996), telomerase RNA (Staple and Butcher 2005)
and ribosomal RNAs (Konings and Gutell 1995).

An RNA structure can be represented by drawing its backbone as a horizontal line
containing vertices corresponding to nucleotides and each Watson–Crick base pair as
a semi-circle or chord in the upper halfplane. Such a representation is called a partial
(linear) chord diagram, i.e., a collection of chords attached to a backbone possibly
containing isolated vertices.

Two distinct chords with respective endpoints i1 < j1 and i2 < j2 are “consecu-
tively parallel” if i1 = i2 −1 ≤ j2 = j1 −1, and consecutive parallelism generates the
equivalence relation of “parallelism” whose equivalence classes are called stacks. A
stack of size σ is such an equivalence class containing exactly σ consecutively parallel
chords.

A partial chord diagram is called a (linear) chord diagram1 if every vertex has an
incident chord, so the number of vertices for a linear chord diagram is necessarily even.

1 These combinatorial structures occur in a number of instances in pure mathematics including finite type
invariants of knots and links (Bar-Natan 1995; Kontsevich 1993), the representation theory of Lie algebras
(Campoamor-Stursberg and Manturov 2004), the geometry of moduli spaces of flat connections on surfaces
(Andersen et al. 1996, 1998), mapping class groups (Andersen et al. 2010) and the Four-Color Theorem
(Bar-Natan 1997), and in applied mathematics including codifying the pairings among nucleotides in RNA
molecules (Reidys 2011; Bon et al. 2008; Orland and Zee 2002), or more generally the contacts of any
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(D)(C)(B)(A)

Fig. 1 The different diagram types: partial chord diagram with eight chords (a), chord diagram (b), seed (c)
and shape (d). a contains a 1-arc (dashed) and (c) contains a rainbow (dashed). Note that (b) is σ -structure
where σ ≥ 2

A chord connecting vertices which are consecutive along the backbone is called a 1-
chord, and a chord connecting the first and last vertices is called a rainbow. A linear
chord diagram in which every stack has cardinality one is called a seed, and a seed
without 1-chords that contains the rainbow is called a shape. The class of “shapes”
is quite similar to classes of diagrams discussed in Orland and Zee (2002), Vernizzi
et al. (2005), Bon et al. (2008) called “irreducible diagrams”. Please see Fig. 1 for
examples of these notions.

Consider a graph G, for example, a (partial) linear chord diagram. Given an oriented
edge e of G, let v(e) denote the vertex to which e points. A fatgraph (Penner 1987,
1988, 1992) is a graph together with a cyclic ordering on {e : v(e) = v}, for each
vertex v of G. This additional structure gives rise to certain collection of cyclically
ordered sequences of oriented edges called the boundary cycles, where an oriented
edge e is followed by the next edge in the cyclic ordering at v(e), but with the oppo-
site orientation, so that it points away from v(e). In depicting a fatgraph, we shall
always identify the cyclic ordering at a vertex with the counterclockwise orientation
of the plane, according to which we shall represent the boundary cycle of G as a path
alongside it with G on the left, cf. Fig. 2.

Let r denote the number of distinct boundary cycles of the connected fatgraph
G with v vertices and e edges. The Euler characteristic (see Euler 1752) of G is
v − e = 2 − 2g − r , where

g = 1 − 1

2
(e − v − r)

is called the genus of the fatgraph G. As illustrated in Fig. 2, by fattening up the
vertices into disks and the edges into bands connecting these disks, there results a
topological surface F(G) with r boundary components of genus g in the standard
mathematical parlance (see Penner et al. 2010) for details. In particular for a (partial)
chord diagram, the backbone may be collapsed to a single vertex without affecting the
Euler characteristic, whence the relationship

2 − 2g − r = 1 − m, (1.1)

Footnote 1 continued
binary macromolecule (Penner et al. 2010; Penner and Waterman 1993; Waterman 1995), and in the analysis
of data structures (Flajolet 1980; Flajolet et al. 1980).
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Fig. 2 Computing the number of boundary components of partial chord diagram. The diagram contains
5 + 11 edges and 12 vertices. We follow the cycles described in the text and observe that there are exactly
two boundary cycles (bold and thin). The genus of the diagram is given by 1− 1

2 (12−16+2) = 2. Similar
figures occurred in this context in Penner (2004) and Vernizzi et al. (2005)

between the genus g, the number r of boundary cycles, and the number m of chords.
Similar formulae can also be found in this context in Bon et al. (2008).

We remark that there are no shapes of genus zero, since a non-empty genus zero
linear chord diagram must have a 1-chord.

Let Cg(n),Sg(n) and Tg(n) denote the respective collections of all linear chord
diagrams, seeds and shapes of genus g on 2n vertices, i.e., with n chords. Fur-
thermore, let cg(n), sg(n), tg(n) denote the cardinalities of these sets, respectively,
with generating functions Cg(z) = ∑

n≥0 cg(n)zn , Sg(z) = ∑
n≥0 sg(n)zn and

Tg(z) = ∑
n≥0 tg(n)zn , setting a standard use of fonts,which we will adopt through

out the paper.
Let Cg(n, m) ⊇ Sg(n, m) denote the collections of all linear chord diagrams and

seeds of genus g ≥ 0 on 2n ≥ 0 vertices containing m ≥ 0 1-chords with respective
generating functions

Cg(x, y) =
∑

m,n≥0

cg(n, m)xn ym,

Sg(x, y) =
∑

m,n≥0

sg(n, m)xn ym,

where cg(n, m) = sg(n, m) = 0 if 2g > n or if m > n.
Let P(n) denote the collection of all partial linear chord diagrams on n vertices.

There is a natural projection ϑ from partial chord diagrams to seeds defined by col-
lapsing each non-empty stack onto a single chord and removing any unpaired vertices

ϑ : �n≥1 P(n) → �g≥1 �n≥1 Sg(n),

which is surjective and preserves genus.
Furthermore, ϑ restricts to a surjection

ϑ : �n≥0Cg(n, m) → �n≥0Sg(n, m)

that collapses each stack to a chord and therefore preserves both the genus g and the
number m of 1-chords. For any shape γ ∈ �n≥0S (n, m), let

C γ (n, m) = C (n, m) ∩ ϑ−1(γ )
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Classification of RNA structures by genus 1265

denote the static subset of the fiber ϑ−1(γ ) with its generating function Cγ (x, y).
The objects of primary biological interest are RNA σ -structures, i.e., partial chord

diagrams with minimum stack size σ that do not contain any 1-chords. The parameter
σ derives from the fact that stacks of small cardinality are typically energetically
unfavorable, and 1-chords are prohibited due to the tensile rigidity of the RNA sugar–
phosphate backbone.

Our choice of excluding only 1-chord diagrams is a technical one. None of the results
change significantly when increasing the minimum arc-length to three. The derivation
of the generating functions however becomes very tedious. See for example a similar
analysis performed for the different generating function of k-noncrossing structures
with minimum arc-length 4 in Reidys et al. (2010). An analysis analogous to that of
Reidys et al. (2010) for topological RNA structures shows that only the exponential
growth rate changes marginally, and the subexponential factor is unaffected.

Let Dσ (n) be the set of RNA σ -structures on n vertices and Dg,σ (n) the subset
consisting of such structures of genus g.

The projection ϑ restricts to a surjection

ϑ : �n≥0Dg,σ (n) → �n≥0Sg(n),

which preserves the genus. For any shape γ ∈ �n≥0S (n), let

Dγ
σ (n) = Dσ (n) ∩ ϑ−1(γ )

denote the static subset with the fiber ϑ−1(γ ) with its generating function Dγ
σ (z).

Let dg,σ (n) be the number of all RNA σ -structures of genus g with generating
function Dg,σ (z) = ∑

n≥0 dg,σ (n)zn .
We shall calculate Dg,σ (z) in Theorem 2 as

Dg,σ (z) = 1

uσ (z)z2 − z + 1
Cg

(
uσ (z)z2

(
uσ (z)z2 − z + 1

)2

)

,

where uσ (z) = (z2)σ−1

z2σ −z2+1
. This expression for Dg,σ (z) is actually quite explicit owing

to the fact that a three-term recursion is given for the coefficients2 cg(n) in Harer
and Zagier (1986) as recalled in Theorem 1. In Corollary 1, we compute Cg(z) in
terms of a certain polynomial Pg(z), which can likewise be recursively calculated,
cf. Sect. 2. In particular for g = 0, the c0(n) = (2n

n

) 1
n+1 = (2n)!

(n+1)!n! are given by the

2 The numbers cg(n) had been computed in another generating function over two decades ago by Harer
and Zagier (1986) in the equivalent guise of the number of side pairings of a polygon with 2n sides that
produce a surface of genus g, namely,

1 + 2
∑

n≥0

∑

2g≤n

cg(n)

(2n − 1)!! xn+1−2gzn+1 =
(

1 + z

1 − z

)x
,

a striking and beautiful formula.
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Catalan numbers, i.e., the numbers of triangulations of a polygon with n + 2 sides,

with generating function C0(z) = 1−√
1−4z

2z .
In Theorem 2, we furthermore prove that Dg,σ (z) is algebraic over C(z), and for

arbitrary but fixed g and γ2 ≈ 1.9685, we have

dg,2(n) ∼ kg n3(g− 1
2 )γ n

2 , (1.2)

for some constant kg . The exponential growth rate of 1.9685 shows that the number of
RNA σ -structures grows much more slowly than the number of RNA sequences over
the natural alphabet. This implies the existence of neutral networks (Kimura 1983;
Reidys et al. 1997; Reidys and Stadler 2002). Neutral networks appear in the context
of analysing RNA evolution, and can be related to the quasi-species model.

The key observation is that there are many more sequences than structures, implying
the existence of exponentially large sets of sequences all of which fold into a fixed RNA
structure. Since neutral networks can be modeled as random graphs (Reidys et al. 1997)
and random subsets of generalized n-cubes form typically large connected subgraphs
(Reidys 2009; Jin and Reidys 2011), a sequence-to-structure mapping is likely to
induce “interesting” networks by its preimages if it is a many-to-one mapping. The
fact that the exponential growth rate of topological RNA structures is, independent of
genus, much smaller than four implies the existence of preimages of fixed structures
of exponential size. In fact, closer inspection shows that there exist exponentially
many of such large preimages. Neutral networks are a generic phenomenon for maps
from sequences to minimum free energy structures (Grüner et al. 1996a,b). The vast
extended networks predicted by random graph theory also exist for pseudoknotted
RNA structures explaining the success of inverse folding algorithms (Gao et al. 2010).

Evidently neutral networks play a key role for evolutionary optimization: a sequence
population can neutrally evolve on such a network since in the presence of neutral
neighbors mutants have a non-zero probability of being one of the neutral neighbors.
Neutral networks allow us to lift important concepts such as that of the molecular
quasispecies to the level of structural phenotypes (Reidys et al. 2001).

It is interesting to compare the formula (1.2) to formula (5) in Garg and Deo (2009),
where the two right hand sides become identical, if we substitute n for L and γ2 for
3 − α in (5) of Garg and Deo (2009). While the asymptotics in Garg and Deo (2009)
is purely based on numerical studies, we give a mathematically rigorous proof of our
asymptotics. It is however not clear how the right hand sides are related, although they
do involve the same kinds of diagrams, namely partial chord diagrams. In Garg and
Deo (2009), 1−α is given the interpretation as a weight factor on each unpaired base,
however the considered range is 0 ≤ α ≤ 1. Since our γ2 is just below 2, this would
produce an α just above 1 via the substitution discussed above. This would suggest
the conjecture that the matrix model studied in Garg and Deo (2009) for α = 3 − γ2
could be related to our generating function dg,2(n).

We want to stress that this paper does not purport to contribute to the mathematical
theory of one-face maps. It is intended to connect that theory to problems in mathemati-
cal and computational biology, in particular the folding of RNA pseudoknot structures.
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The application to canonical RNA pseudoknot structures and their exponential growth
rates are new and of biological importance.

In addition, we wish to emphasize that Riemann’s moduli space of a surface of
genus g with one boundary component is naturally homeomorphic to the geomet-
ric realization of all RNA shapes of genus g. This follows from a deep theorem of
Penner–Strebel about a certain mapping class group invariant cell decomposition of
Teichmüller space (Penner 1987, 1988; Strebel 1984).

Various filtrations of pseudoknot RNA structures have been suggested. Haslinger
and Stadler’s bisecondary structures (Haslinger and Stadler 1999) are diagrams that
can be written as pairs of secondary structures, one in the upper and one in the lower
halfplane. Despite their simple definition, bisecondary structures turned out to be very
difficult to analyze, and no generating function for them is known.

For the more general class of k-noncrossing RNA structures, i.e., diagrams in which
there are no k mutually crossing chords, explicit generating functions and simple
asymptotic formulas for their coefficients have been obtained (Reidys 2011). However,
though their generating functions are D-finite and their numbers satisfy recursions
with polynomial coefficients, for any odd k, logarithmic terms appear in the singular
expansion. In particular for k = 3, they “almost” coincide with bisecondary structures
in the sense that the corresponding exponential growth rates are very close. However, in
contrast to bisecondary structures, 3-noncrossing structures are not necessarily planar.
One prominent feature of k-noncrossing structures is that their exponential growth
rate is an unbounded function of k, and the complexity of the crossings is manifest
both in the exponential growth rate and in the subexponential factors.

The genus filtration discussed here was initiated in Orland and Zee (2002) (see also
Penner 2004). RNA enumeration methods based on matrix models which rely on the
genus filtration of linear chord diagrams appeared in Bon et al. (2008), Vernizzi et al.
(2005, 2006) and provide a comparison of expected with observed genera.

The enumeration problem for all partial chord diagrams was studied in Vernizzi
et al. (2005) via matrix model techniques and the asymptotics given in formula (19) in
that paper. A closed formula expression for the number of partial chord diagrams was
given in dell’Erba and Zemba (2009) in terms of Stirling numbers of the first kind.

Additivity of genus under prolongation of backbone assures that the exponential
growth rate remains constant and identical to that of RNA secondary structures. Thus,
higher genus effects only materialize in the subexponential factor, and Theorem 2
shows that this factor increases by O(n3) for each increase in genus. Furthermore, the
generating function of σ -canonical structures of genus g is not only D-finite but also
algebraic and therefore much simpler than that of k-noncrossing structures.

RNA structures of any genus g ≥ 1 are completely determined by a finite set of
shapes, obtained via collapsing all stacks into single chords and removing all unpaired
nucleotides. These operations evidently preserve genus, and any genus g structure
can be obtained by inflating shapes into stems and inserting segments of isolated
vertices. Thus, shapes are the key to folding topological structures. In Reidys (2011),
minimum free energy γ1-structures, obtained by nesting and concatenating genus
one shapes are folded, and their partition function is furthermore computed. See also
Pillsbury et al. (2005), where a genus-related algorithm is presented. The advantage of
these topological structures over a common penalty for each crossing of gap-matrices
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1268 J. E. Andersen et al.

(Rivas and Eddy 1999) is that the “topology based” grammar naturally distinguishes
different types of pseudoknots and admits different energy parameters for them. This
additional freedom of parametrization leads to a substantial increase of sensitivity
(Reidys 2011).

2 The generating function Cg(z)

A seminal result due to Harer and Zagier (1986), cf. also Goulden and Nica (2005),
Goupil and Schaeffer (1998), computes a recursion and generating function for the
number cg(n) of linear chord diagrams of genus g with n chords as follows:

Theorem 1 (Harer and Zagier 1986) The cg(n) satisfy the recursion

(n + 1) cg(n) = 2(2n − 1) cg(n − 1)+(2n − 1)(n − 1)(2n − 3) cg−1(n − 2), (2.1)

where cg(n) = 0 for 2g > n.

The recursion Eq. (2.1) translates into the ODE

z(1 − 4z)
d

dz
Cg(z) + (1 − 2z)Cg(z) = �g−1(z), (2.2)

where

�g−1(z)= z2
(

4z3 d3

dz3 Cg−1(z)+24z2 d2

dz2 Cg−1(z) + 27z
d

dz
Cg−1(z) + 3Cg−1(z)

)

with initial condition Cg(0) = 0. The general solution is given by

Cg+1(z) =
(∫ z

0

�g(y)

(1 − 4y)3/2 dy + C

) √
1 − 4z

z
, (2.3)

where

�g(z) = 4z5 d3

dz3 Cg(z) + 24z4 d2

dz2 Cg(z) + 27z3 d

dz
Cg(z) + 3z2Cg(z)

= Qg(z)

(1 − 4z)3g+5/2

with Qg(z) a polynomial of degree at most (3g+2), Qg(1/4) �= 0 and3 [zh]Qg(z) = 0
if 0 ≤ h ≤ 2g + 1. Analysis of the partial fraction expansion of Qg(z) then provides
the following expression, which is implicit in Harer and Zagier (1986), but explicitly
stated in Lando and Zvonkin (2004).

3 As a general notational point for any power series R(z) = ∑
ai zi , we shall write [zi ]R(z) = ai for the

extraction of the coefficient ai of zi .
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Corollary 1 For any g ≥ 1 the generating function Cg(z) = ∑
n≥0 cg(n)zn is given

by

Cg(z) = Pg(z)

√
1 − 4 z

(1 − 4z)3g
, (2.4)

where Pg(z) is a polynomial with integral coefficients of degree at most (3g − 1),
Pg(1/4) �= 0, [z2g]Pg(z) �= 0 and [zh]Pg(z) = 0 for 0 ≤ h ≤ 2g − 1.

The recursion Eq. (2.1) permits the calculation of the polynomials Pg(z), the first
several of which are given as follows:

P1(z) = z2,

P2(z) = 21z4 (z + 1) ,

P3(z) = 11z6
(

158 z2 + 558 z + 135
)

,

P4(z) = 143z8
(

2339 z3 + 18378 z2 + 13689 z + 1575
)

,

P5(z) = 88179z10
(

1354 z4 + 18908 z3 + 28764 z2 + 9660 z + 675
)

.

Conjecture 1 The polynomial Pg(z) has all of its coefficients positive integers in the
range 2g to 3g − 1 and is the generating polynomial for some as-yet unknown set of
classes of shapes.

We remark that [z2g]Pg(z) indeed is the number of shapes of genus g with 2g
chords. For the g’s for which we have calculated Pg , we observe that the coefficients
are positive integers. In Corollary 1 and the remark just above it, it is suggested there
that Pg(z) is the generating polynomial for some set of classes of shapes from which
all shapes can be derived by some as-yet unknown process of inflation. If so, then
this constitutes a significant enumerative compression to the g non-zero coefficients
of Pg(z) which hopefully can be utilized for the fast folding of pseudoknot structures.

A straightforward analysis (Flajolet and Sedgewick 2009) of the singularity of
Cg(z) then gives the following well known corollary, which was first obtained in
Bender et al. (1988) (where the exact value of Pg(

1
4 ) is also given):

Corollary 2 For any g ≥ 1 the generating function Cg(z) is algebraic over C(z)
and has its unique singularity at z = 1/4 independent of genus. Furthermore, the
coefficients of Cg(z) have the asymptotics

[zn]Cg(z) ∼ Pg(
1
4 )

�(3g − 1/2)
n3g− 3

2 4n . (2.5)

3 RNA σ -structures of genus g

We extend the enumerative results of the previous section to RNA σ -structures by first
specializing to seeds, which are then “inflated” by expanding chords into stacks and
adding possible unpaired vertices.
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Lemma 1 If g ≥ 1, then

Sg(z, u) = 1 + z

1 + 2z − zu
Cg

(
z(1 + z)

(1 + 2z − zu)2

)

. (3.1)

Proof We first prove

Cg(x, y) = 1

x + 1 − yx
Cg

(
x

(x + 1 − yx)2

)

, (3.2)

and to this end, choose ξ ∈ Cg(s + 1, m + 1) and label one of its 1-chords. Since we
can label any of the (m + 1) 1-chords of ξ , (m + 1)cg(s + 1, m + 1) different such
labeled linear chord diagrams arise. On the other hand, to produce ξ with this labeling,
we can add one labeled 1-chord to an element of Cg(s, m + 1) by inserting a parallel
copy of an existing 1-chord or by inserting a new labeled 1-chord in an element of
Cg(s, m), where we may only insert the 1-chord between two vertices not already
forming a 1-chord. It follows that we have the recursion

(m + 1)cg(n + 1, m + 1) = (m + 1)cg(n, m + 1) + (2n + 1 − m)cg(n, m)

or equivalently the PDE

∂Cg(x, y)

∂y
= x

∂Cg(x, y)

∂y
+ 2x2 ∂Cg(x, y)

∂x
+ xCg(x, y) − xy

∂Cg(x, y)

∂y
, (3.3)

which is thus satisfied by Cg(x, y).
On the other hand,

C∗
g(x, y) = 1

x + 1 − yx
Cg

(
x

(x + 1 − yx)2

)

is also a solution of Eq. (3.3), which specializes to Cg(x) = C∗
g(x, 1), and moreover,

we have c∗
g(n, m) = [xn ym]C∗

g(x, y) = 0, for m > n. Indeed, the first assertion is
easily verified directly, the specialization is obvious, and the fact that y only appears
in the power series C∗

g(x, y) in the form of products xy implies that c∗
g(n, m) = 0, for

m > n. Thus, the coefficients c∗
g(n, m) satisfy the same recursion and initial conditions

as cg(n, m), and hence by induction on n, we conclude c∗
g(n, m) = cg(n, m), for

n, m ≥ 0. This proves that Cg(n, m) indeed satisfies Eq. (3.2) as was claimed.
To complete the proof of Eq. (3.1), we use that the projection ϑ is surjective and

affects neither the genus nor the number of 1-chords, namely,

Cg(x, y) =
∑

m≥0

∑

γ having genus g
and m 1−chords

Cγ (x, y).
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Furthermore, if a seed γ has s chords, of which t are 1-chords, then we have

Cγ (x, y) =
(

x

1 − x

)s

yt ,

which shows that Cγ (x, y) depends only on the total number of chords and number
of 1-chords in γ . Consequently,

Cg(x, y) =
∑

m≥0

∑

γ having genus g
and m 1−chords

Cγ (x, y) =
∑

s≥0

s∑

m=0

sg(s, m)

(
x

1 − x

)s

ym

= Sg

(
x

1 − x
, y

)

. (3.4)

Setting z = x
1−x , i.e., x = z

1+z , and u = y, we arrive at

Sg(z, u) = 1 + z

1 + 2z − zu
Cg

(
z(1 + z)

(1 + 2z − zu)2

)

,

as required. ��
Lemma 2 For any seed γ with s ≥ 1 chords and m ≥ 0 1-chords, we have

Dγ
σ (z) = (1 − z)−1

(
z2σ

(1 − z2)(1 − z)2 − (2z − z2)z2σ

)s

zm .

In particular, Dγ
σ (z) depends only upon the number of chords and 1-chords in γ .

Proof We shall construct �n≥0D
γ
σ (n) with simple combinatorial building blocks. If

X = �n≥0X(n) is a collection of sets of partial matchings on n ≥ 0 vertices, then we
consider the corresponding generating function X(z) = ∑

n≥0 x(n)zn . In particular,
we have the set Z consisting of a single vertex with generating function Z(z) = z
and the set R consisting of a single chord and no additional vertices with generating
function R(z) = z2.

Let = denote set-theoretic bijection, + disjoint union, × Cartesian product with
iteration written as exponentiation, I the empty set, and Seq(X) = I + X + X2 + · · · ,
for any collection X.

Define the set L = Seq(Z) consisting of any number n ≥ 0 of isolated vertices and
no chords, with its generating function L(z) = 1/(1− z), and the set Kσ comprised of
a single stack with at least σ ≥ 1 chords and no additional vertices, with its generating
function Kσ (z) = z2σ /(1 − z2).

The collection Nσ = Kσ × (
Z × L + Z × L + (Z × L)2) of all single stacks

together with a non-empty interval of unpaired vertices on at least one side thus has
generating function

Nσ (z) = z2σ

1 − z2

(

2
z

1 − z
+

(
z

1 − z

)2
)

.
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Furthermore, the collection Mσ = Kσ × Seq(Nσ ) of all pairs consisting of a stack
Kσ and a (possibly empty) sequence of neighboring stacks likewise has generating
function

Mσ (z) = Kσ (z)

1 − Nσ (z)
=

z2σ

1−z2

1 − z2σ

1−z2

(

2 z
1−z +

(
z

1−z

)2
) ,

where only intervals of isolated vertices as are necessary to separate the neighboring
stacks have been inserted in Mσ .

To complete the construction and count, we must still insert possible unpaired
vertices at the remaining 2s + 1 possible locations, where there must be a non-trivial
such insertion between the endpoints of each 1-chord. These insertions correspond
to L2s+1−m × (Z × L)m , and we therefore conclude that �n≥0Pγ (n) = (Mσ )s ×
L2s+1−m × (Z × L)m has the asserted generating function

Dγ
σ (z) =

⎛

⎜
⎜
⎝

z2σ

1−z2

1 − z2σ

1−z2

(

2 z
1−z +

(
z

1−z

)2
)

⎞

⎟
⎟
⎠

s
(

1

1 − z

)2s+1−m (
z

1 − z

)m

= (1 − z)−1
(

z2σ

(1 − z2)(1 − z)2 − (2z − z2)z2σ

)s

zm .

��
Our main result about enumerating RNA σ -structures follows.

Theorem 2 Suppose g, σ ≥ 1 and let uσ (z) = (z2)σ−1

z2σ −z2+1
. Then the generating func-

tion Dg,σ (z) is algebraic over C(x) and given by

Dg,σ (z) = 1

uσ (z)z2 − z + 1
Cg

(
uσ (z)z2

(
uσ (z)z2 − z + 1

)2

)

. (3.5)

For arbitrary but fixed g, we have

[zn]Dg,σ (z) ∼ kg,σ n3(g− 1
2 )γ n

σ , (3.6)

for some constant kg,σ > 0 depending only on g and σ . In case of σ = 2, i.e.,
canonical RNA structures we have γ2 ≈ 1.9685.

Remark 1 The σ -dependence of our asymptotics lies exclusively in shifting the dom-
inant singularity γσ , and we have verified that for 1 ≤ σ ≤ 10, γσ is unique. In
particular, Eq. (3.6) shows that the subexponential factor is independent of σ . We
emphasize the case σ = 2 since the corresponding structures are canonical, i.e.,
they exhibit no isolated arcs. This minimum stack-size implies energetically favorable
structures that are here of particular relevance.
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Proof Since each element Dg,σ (n) projects to a unique seed γ with genus g and some
number m ≥ 0 of 1-chords, we have

Dg,σ (z) =
∑

m≥0

∑

γ having genus g
and m 1−chords

Dγ
σ (z). (3.7)

According to Lemma 2, Dγ
σ (z) only depends on the number of chords and 1-chords

of γ , and we can therefore express

Dg,σ (z) = 1

z − 1
Sg

(
z2g

(1 − z2)(1 − z)2 − (2z − z2)z2σ
, z

)

= 1

(1 − z) + uσ (z)z2 Cg

(
z2 uσ (z)

(
(1 − z) + uσ (z)z2

)2

)

using Lemma 1 in order to confirm Eq. (3.5), where the second equality follows from
direct computation. Let

θσ (z) = z2 uσ (z)
(
(1 − z) + uσ (z)z2

)2

denote the argument of Cg in this expression.
Since any algebraic function is in particular D-finite as well as �-analytic (Stanley

1997), we conclude from Theorem 1 that

Cg(z) = xg (1 − 4z)−(3g−1/2)(1 + o(1)) for z → 1/4, (3.8)

for some constant xg . Since Cg(z) is algebraic over K = C(z), there exist poly-
nomials Ri (z), for i = 1, . . . , �, such that

∑�
i=1 Ri (z) Cg(z)i = 0, whence

∑�
i=1 Ri (θσ (z)) Cg(θσ (z))i = 0 as well. Setting L = C(θσ (z)), we thus have

[L(Cg(θσ (z))) : K ] = [L(Cg(θσ (z))) : L] · [L : K ] < ∞,

i.e., Dg,σ (z) is algebraic over K . Pringsheim’s Theorem (Flajolet and Sedgewick 2009)
guarantees that for any σ ≥ 1, Dg,σ (z) has a dominant real singularity γσ > 0.

In particular, for σ = 2, we verify directly that γ2 is the unique solution of minimum
modulus of θ2(z) = 1/4, which is strictly smaller than any other singularities of
θ2(z) and satisfies θ ′(γ2) �= 0. It follows that Dg,2(z) is governed by the supercritical
paradigm (Flajolet and Sedgewick 2009), and hence Dg,2(z) has the singular expansion

Dg,2(z) = k′
g (γ2 − z)−(3g−1/2)(1 + o(1)) for z → γ2, (3.9)

for some constant k′
g .
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For arbitrary but fixed g, we thus find the asymptotics

[zn]Dg,2(z) ∼ kg n3(g−1/2) γ n
2 , (3.10)

where γ2 ≈ 1.9685 as was claimed.

4 RNA molecules and Riemann’s moduli space

Lemma 1 implies that Sg(z, 0) is the generating function for seeds of genus g with no
1-chords. Since a shape is by definition simply such a seed together with a rainbow, the
generating function Tg(z) for shapes of genus g satisfies (1 + z)Tg(z) = zSg(z, 0).

Proposition 1 The generating function for shapes of genus g is the polynomial

Tg(z)= z(1 + 2z)6g−2 Pg

(
z(1 + z)

(1 + 2z)2

)

=
3g−1∑

j=2g

p( j)
g z j+1(1 + z) j (1 + 2z)2(3g−1− j),

where

Pg(z) =
3g−1∑

j=2g

p( j)
g z j .

In particular, a shape of genus g has at least 2g + 1 and at most 6g − 1 chords, so
Tg(z) is a polynomial of degree 6g − 1 which is divisible by z2g+1.

Proof In view of Lemma 1 since 1 − 4 z(1+z)
(1+2z)2 = 1

(1+2z)2 , we obtain

Tg(z) = z

1 + 2z
Cg

(
z(1 + z)

(1 + 2z)2

)

= z(1 + 2z)6g−2 Pg

(
z(1 + z)

(1 + 2z)2

)

.

��
Remark 2 The coefficient

[z2g+1]Tg(z) = cg(2g) = (4g)!
4g(2g + 1)!

is computed directly from the recursion Eq. (2.1). Since limz→∞ Pg

(
z(1+z)
(1+2z)2

)
=

Pg(1/4), the leading coefficient is given by [z6g−1]Tg(z) = 26g−2 Pg(1/4), where

Pg(1/4) =
(

9

4

)g
� (g − 1/6) � (g + 1/2) � (g + 1/6)

6π3/2� (g + 1)

can likewise be computed as the unique solution of another recursion
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Pg+1(1/4) = 4−4(12g + 6)(12g + 2)(12g − 2)Pg(1/4)/(3g + 3)

= 9(g + 1/2)(g + 1/6)(g − 1/6)

4(g + 1)
Pg(1/4),

which follows with some work from Eq. (2.1), with initial condition P1(1/4) = 1/16.

For example, P1(z) = z2 gives

T1(z) = z3(1 + z2) = z3 + 2z4 + z5,

and P2(z) = 21z4(1 + z) gives

Tg(z) = 21z5(1 + z)4
[
(1 + 2z)2 + z(1 + z)

]

= 21z5 + 189z6 + 651z7 + 1134z8 + 1071z9 + 525z10 + 105z11.

Proposition 1 has a noteworthy implication for the folding of RNA structures of
fixed genus, as follows.

Corollary 3 Minimum free energy RNA structures of fixed genus g can be computed
in polynomial time.

Remark 3 Equation (2.1) as well as Corollary 2 provide evidence that the increase
in time complexity passing from genus g to genus g + 1 is O(n3). Clearly, since
genus zero structures are RNA secondary structures which exhibit a time complexity
of O(n3), we expect a O(n6) time complexity for folding genus one structures. Indeed
in Reidys et al. (2011), a O(n6) time complexity folding of a certain class of “nested”
genus 1-structures is presented. Vernizzi et al. (2005) reports recursion relations of
time complexity O(n6) to generate RNA structures of genus one in the context of an
RNA folding algorithm that is substantially different from the algorithm implied by
our results. Vernizzi et al. (2005) does not consider loop-based energy models and is
restricted to genus one RNA structures. Our results imply a loop-based O(n6) fold-
ing of structures that are “locally” genus restricted but have in general unbounded
topological genus (Li and Reidys 2012). This algorithm employs the concept of
γ -structures detailed in Reidys et al. (2011).

Proposition 2 For any g ≥ 1, there is a bijection between RNA shapes of genus g
and fatgraphs of genus g with a single boundary component each of whose vertices is
of valence at least three except for a single vertex of valence one.

Proof Given a shape G1, we may collapse its backbone in the natural way to produce a
fatgraph G2 with a single vertex as illustrated on the left in Fig. 3. G1 and G2 have the
same Euler characteristic, number of boundary components and hence genus. Notice
that G2 has a boundary cycle of length one arising from the rainbow of G1, and this
is its unique boundary cycle of length one since the shape G1 can have no 1-chords.
Furthermore, since a shape has no parallel chords, G2 can have no boundary cycles
of length two. It follows that other than its boundary cycle of length one coming from
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Fig. 3 Collapse the backbone of the shape G1 on the left to a vertex in order to produce the fatgraph
G2 in the middle with its labeled set of half-edges. Representing the permutation i1 �→ i2 �→ · · · �→
ik �→ i1 as a cycle (i1, i2, . . . , ik ), G2 is described by permutations σ2 = (1, 2, 3, 4, 5, 6, 7, 8) and
τ2 = (1, 2)(3, 5)(4, 7)(6, 8). The dual fatgraph G3 on the right is described by permutations σ3 = σ2◦τ2 =
(1, 3, 6)(2)(4, 8, 7, 5) and τ3 = τ2. Notice that G1 and G2 have the same Euler characteristic −3, have 2
boundary components and have genus 1 . On the other hand, though G2 and G3 have the same genus, G3 has
only one boundary component (corresponding to the single vertex of G2) and two vertices (corresponding
to the two boundary components of G2)

the rainbow, every other boundary cycle of G2 must have length at least three. Notice
that we may uniquely reconstruct the shape G1 from the fatgraph G2 by expanding
its vertex to a backbone so that its unique boundary cycle of length one becomes a
rainbow.

In general (Penner 1988; Penner et al. 2010), a fatgraph G with m edges may be
described by a pair σ, τ of permutations on 2m objects identified with the half-edges
of G, where σ is the composition of one disjoint k-cycle for each k-valent vertex
of G corresponding to the cyclic orderings, and τ is the composition of m disjoint
transpositions permuting the two half-edges contained in each edge. See Fig. 3 for two
examples. Furthermore in this representation, the boundary cycles of G correspond
precisely to the cycles of the composition σ ◦ τ as is also illustrated in Fig. 3.

Suppose that G2 is described in this manner by the pair σ2, τ2 of permutations, and
let G3 be the fatgraph corresponding to the pair σ3 = σ2 ◦ τ2, τ3 = τ2. The boundary
cycles of G3 correspond to the vertices of G2 and conversely. Letting vi , ei , ri , gi ,
respectively, denote the number of vertices, edges, boundary cycles and the genus of
Gi , for i = 2, 3, we thus have v2 = r3, v3 = r2, and moreover e2 = e3 by construction,
so we conclude g2 = g3. (In fact, G2 and G3 are related by duality in a closed surface
of genus g.) In light of the constraints on G2 already articulated since it arises from
the shape G1, the fatgraph G3 has all its vertices of valence at least three except for a
unique vertex of valence one.

This provides a mapping from shapes to fatgraphs as asserted in the proposition.
The inverse mapping is given by the same involution σ �→ σ ◦ τ , τ �→ τ followed
by expansion of the vertex to a backbone so that the cycle of length one becomes the
rainbow.

The collection of fatgraphs described in the previous proposition are precisely
those arising in the Penner–Strebel cell decomposition of Riemann’s moduli space
(Penner 1987; Strebel 1984) for a surface of genus g with one boundary component.
Furthermore, contraction of edges of fatgraphs corresponds to deletion of chords from
shapes (amalgamating adjacent backbone edges incident on resulting isolated vertices
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so as to remain a shape), from which it follows that Riemann’s moduli space of a
surface of genus g with one boundary component is naturally homeomorphic to the
geometric realization of set of all RNA shapes of genus g partially ordered by deletion
of chords.

One aspect of this insight is that the primary structure of an RNA molecule is
compatible with only a certain collection of shapes that respect the Watson–Crick
rules, and this in turn determines via the correspondence with fatgraphs a subspace of
Riemann’s moduli space that would have been otherwise inconceivably unmotivated.
This stratification of moduli space by primary structure deserves further study and
illustrates a sense in which the moduli space gives a suitable broad canvas for studying
classes of RNA molecules in one space.
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