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Sequence Alignment as Hypothesis Testing

LU MENG,1 FENGZHU SUN,2 XUEGONG ZHANG,1 and MICHAEL S. WATERMAN2

ABSTRACT

Sequence alignment depends on the scoring function that defines similarity between pairs of
letters. For local alignment, the computational algorithm searches for the most similar
segments in the sequences according to the scoring function. The choice of this scoring
function is important for correctly detecting segments of interest. We formulate sequence
alignment as a hypothesis testing problem, and conduct extensive simulation experiments to
study the relationship between the scoring function and the distribution of aligned pairs
within the aligned segment under this framework. We cut through the many ways to con-
struct scoring functions and showed that any scoring function with negative expectation
used in local alignment corresponds to a hypothesis test between the background distribu-
tion of sequence letters and a statistical distribution of letter pairs determined by the scoring
function. The results indicate that the log-likelihood ratio scoring function is statistically
most powerful and has the highest accuracy for detecting the segments of interest that are
defined by the statistical distribution of aligned letter pairs.
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1. INTRODUCTION

Sequence alignment is one of the most important problems in computational biology. Similar

segments in gene or protein sequences often indicate evolutionary homology or functional relation-

ships between the genes or proteins. Sequence alignment tasks are generally categorized into three different

types: (1) global sequence alignment, which determines the best alignment of the sequences with their entire

lengths by adjusting their relative positions and inserting gaps when necessary; (2) local sequence alignment,

which determines segments in the sequences that are most similar with each other; and (3) semi-global or fit

alignment, which searches for the occurrence of a short query sequence in a large sequence database

(Waterman, 1995). In any case, a scoring function needs to be defined to evaluate the similarity of the

sequences and a computational algorithm is employed to search for the best alignment. The classical algo-

rithms are based on dynamic programming: the Smith-Waterman algorithm (Smith and Waterman, 1981) for

local alignment and the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970) for global alignment.

Many heuristic algorithms have been proposed to speed up the search procedure, such as BLAST (Altschul

et al., 1990), FASTA (Pearson, 1990), CLUSTAL W (Thompson et al., 1994), PSI-BLAST (Altschul et al.,
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1997), BLAT (Kent, 2002), BALSA (Zhu et al., 1998; Webb et al., 2002), ProbCons (Do et al., 2005),

DIALIGN-T(X) (Subramanian et al., 2005, 2008), and Bowtie (Langmead et al., 2009). No matter what

algorithm is used, the choice of a scoring function is the key to producing good alignments. Several scoring

functions have been introduced, most of which are implicitly log-odds matrices (Altschul, 1991), i.e., log-

likelihood ratio scoring functions. Dayhoff’s PAM (Dayhoff et al., 1978) and Henikoff’s BLOSUM

(Henikoff and Henikoff, 1992) matrices are generally considered the standard in many applications. The

PAM matrices were initially derived based on an explicit evolutionary model of closely related sequences and

the observed mutations in these sequences. Dayhoff et al. (1978) separated proteins into families, constructed

phylogenetic trees for each family, and examined every branch of the resulting trees for substitutions. The

score for two letters is defined by the ratio of probability of substitution between the two letters over the

expected probability. Some scoring functions—such as the JTT (Jones et al., 1992) and the GCB (Gonnet

et al., 1992) matrices—were derived by extrapolation from closely related sequences based on PAM evo-

lutionary model to increase accuracy of homology searches. The VTML matrix (Müler et al., 2002) was

obtained by maximum likelihood estimation of Dayhoff’s parameters. The BLOSUM matrices were derived

based on known multiple aligned blocks of sequences with blocks being the aligned regions without gaps.

The score between two amino acids was defined as 2 times log-ratio of the probability that the two amino

acids are aligned in the blocks over the corresponding expected probability assuming the sequences are

independent. The PMB matrix (Veerassamy et al., 2003) is based on the blocks which BLOSUM used, but

added evolutionary distances to form an evolutionary model. Based on the fact that proteins have complicated

three-dimensional (3-D) structures, some scoring functions make use of the structure information, such as the

STR (Overington et al., 1992) and the STROMA (Qian and Goldstein, 2002) matrices. Some scoring

functions like SDM (Prlić et al., 2000) were derived from protein pairs of similar structure instead of

sequence similarity. The scoring functions used in Fugue (Shi et al., 2001) and Wurst (Torda et al., 2004) are

based on sequence-structure homology. Bayesian methods have also been employed for constructing scoring

functions for multiple sequence alignment, such as BILD (Altschul et al., 2010). Many scoring functions are

designed for specific applications. Adachi and Hasegawa (1996) established a model of amino acid substi-

tution matrix for mitochondrial DNA encoded protein sequences, estimating the score matrix by the maxi-

mum likelihood method from mtDNA data. Cao et al. (2009) developed scoring functions for DNA sequences

based on information theory in the expectation maximization framework.

Among these scoring functions, determining which is most powerful to detect the truly related segments

for a given sequence study is an important problem. Usually, the scoring function is empirically selected

based on some assumptions about the sequences to be compared. Altschul (1991) argued that PAM120,

among the PAM matrices, is probably most appropriate if only one matrix is used, based on information

content of the score matrix measured in relative entropy. Henikoff and Henikoff (1993) evaluated the

performance of some commonly used substitution matrices, and found that log-likelihood ratio based

scoring functions derived directly from multiple alignment data are better for detecting distant relationships

than matrices based on PAM evolutionary model and the STR matrix achieved similar performance to

BLOSUM62. The performance was evaluated through the efficiency for detecting true amino acid se-

quences belonging to particular protein families.

Several investigators evaluated different scoring functions by comparing the alignments derived from the

computer algorithm with the alignments generated by simulations through fidelity, confidence, and overall

correctness (Polyanovsky et al., 2008; Holmes and Durbin, 1998). In our study, we also compare different

scoring functions using these quantities, however with terms that are more commonly used in the field of

classification studies (see Section 2.1 for details). These investigators studied global alignments. In our

study, we consider local alignment and general scoring functions without gaps.

In this article, we consider sequence alignment as a statistical hypothesis testing problem and define scores

using the log-likelihood ratio statistic based on the segments we intend to find. We focus on the relationship

between the scoring function and the best aligned segment in the scenario of local sequence alignment.

According to the Neyman-Pearson lemma (Neyman and Pearson, 1933), the likelihood-ratio statistic is most

powerful to distinguish a given distribution of optimal alignment from the background distribution for fixed

global alignments. The test statistic provides a form of a scoring function which can be used in the sequence

alignment. We conjecture that this log-likelihood ratio scoring function is statistically the most powerful one

to detect the best aligned segment. Under the assumption that the compared sequences are independent

and identically distributed (i.i.d.) letters sampled from some background distributions, we can treat the

sequence alignment problem as a hypothesis testing problem. The null hypothesis is that the sequences are
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independent, and the alternative hypothesis is that they are related due to some shared segments which have a

given distribution of letter pairs. We choose the score of the best aligned segment, i.e., the highest score

during local alignment, as the test statistic. We use the power of the statistic for the hypothesis test as a

measurement of the performance of scoring functions. The higher the power, the better the scoring function

is. We also take a classification perspective for detecting the aligned segments and use true positive rate

(TPR), false discovery rate (FDR), and the f-statistic (a weighted average of TPR and FDR) as alternative

criteria for evaluating the scoring functions. We show that the log-likelihood ratio scoring function is most

powerful to detect aligned segments following the distribution derived from the scoring function. It applies to

both DNA sequences and amino acid sequences.

The aim of this article is to cut through the many ways to construct scoring functions and show that any

scoring function used in local alignment corresponds to a hypothesis test between the background distri-

bution of sequence letters and a statistical distribution of letter pairs determined by the scoring function.

2. METHODS

2.1. Theoretical motivation

In this section, we present the basis for the analysis we perform. The first result that motivated our work

was the Neyman-Pearson Lemma (Neyman and Pearson, 1933). This remarkable result, which has an

elegant proof, is central to statistical theory and practice. The setting is hypothesis testing and we present

the most elementary form of the Neyman-Pearson Lemma. The data are X1, X2, . . . , X� i.i.d. (independent

and identically distributed) from model 0 with distribution P (the null hypothesis H0) or from model 1 with

distribution Q (the alternate hypothesis H1). Do the data X¼X1, X2, . . . , X� come from model 0 or 1? A

test function f satisfies f(x) in {0, 1} where we say H0 is rejected if f(x)¼ 1. The size of the test or level

of significance is P(f(X)¼ 1). Our ideal test function is one which has small size P(f(X)¼ 1)¼ a and the

largest possible power b¼Q(f(X)¼ 1). That is, we want a test statistic that has a small probability of

rejecting a true null hypothesis, but the largest possible power or probability of rejecting H0 when H1 is

true. The Neyman-Pearson Lemma states that the most powerful test statistic is

/(X)¼ I
Q(X)

P(X)
�t

� �
,

when

P(/(X)¼ 1)¼ a,

where I( � )¼ 1 when the argument is true and 0 otherwise. This is one reason for the widespread use of

likelihood ratio statistics.

In sequence alignment, we are interested in pairs of aligned letters from finite alphabet L such as a
b

� �
. An

alignment A with length of n of letters from sequences of random letters A¼A1A2 . . . A� and

B¼B1B2 . . . B� is represented as

A1 A2 � � � A�
B1 B2 � � � B�

The null hypothesis is that all the 2n letters are i.i.d. P with P(A¼ a)¼ pa, and we call such an alignment

P-distributed. The alternate hypothesis Q is a distribution over aligned pairs a
b

� �
with Q A

B

� �
¼ a

b

� �� �
¼ qab. In

contrast P A
B

� �
¼ a

b

� �� �
¼ papb. Thus, we are testing the statistical distribution of letter pairs in the alignment:

P-distributed alignments versus Q-distributed alignments.

Following the Neyman-Pearson Lemma, to test the hypothesis that the alignment distribution is

H0 : P vs H1 : Q

we should use the likelihood ratio

Y�
i¼1

qAiBi

pAi
pBi

:

For convenience, we will use the logarithm of this statistic to form an equivalent test.
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/¼ I
X�
i¼ 1

log
qAiBi

pAi
pBi

� �
�t

 !
:

Thus, we have derived the log-likelihood scoring of alignments using alphabet scoring function

s(a, b)¼ sP, Q(a, b)¼ log
qab

papb

� �
, (1)

which for sequence alignment goes back at least to Dayhoff et al. (1978) and was more recently employed

by Henikoff and Henikoff (1992) and others. This article will explore the implications of this approach to

scoring and its connection to hypothesis testing.

If we consider P as the background distribution and Q as the alternate distribution for the alignment, we

should use the log-likelihood ratio scoring function s¼ sP,Q as the scoring function to best distinguish Q

from P. However it is less evident what should be done for local alignment. We conjecture this scoring

function is most powerful to detect Q distributed local alignments—aligned fragments with distribution Q.

Now if there were one given, fixed-length alignment, our previous discussion would be the conclusion of

the matter. Instead there are, for two random sequences of length n, O(n3) possible local alignments (we

exclude indels where this number is much larger), and they are dependent in a subtle way. Is there any

reason to be optimistic that log-likelihood scoring function is best for detecting local alignments of

distribution Q from the background P? The mathematical result described next gives some hope for this.

The following result first appeared in Arratia et al. (1988) and was stated more generally in Karlin and

Altschul (1990) with a form that was proven in Dembo et al. (1994). We give a version fitting our setup and

do not completely repeat the notation we have defined above.

Let A¼A1A2 � � �An and B¼B1B2 � � �Bn be i.i.d. random sequences with background distribution P.

Assume s(a,b) is a scoring function that satisfies the conditions (i) maxa, b2L s(a, b)4 0 and (ii)

EPs(A, B)5 0, where

EPs(A, B)¼
X

a, b2L
papbs(a, b):

Let r> 0 be the largest real root of

f (k)¼ 1� E(k� s(A, B))¼ 0: (2)

Then the proportion of letter a from sequence A aligned with letter b from sequence B in the optimal

alignment segment converges to qab¼ papbr� s(a, b) as sequence length n tends to infinity.

We now take the asymptotic distribution of the theorem and solve for s(a, b).

s(a, b)¼ log1=r

qab

papb

:

As positive multiples (cs(a,b) versus s(a,b) for any c> 0, for example) do not affect the results of local

alignment, the numerical value of r> 0 is irrelevant. Therefore for any scoring function satisfying the

hypotheses of the theorem, there is an asymptotic log-likelihood scoring function. It is easy to show (see

Appendix A) that for any log-likelihood scoring function, the conditions of the theorem are satisfied so long

as P and Q are not identical, that is for some (a,b), qab = papb. Thus, we have a duality between scoring and

likelihood ratio statistics.

The theorem assures us that in the i.i.d. case even with the complexity of O(n3) competing local

alignments, with a given scoring function, a local alignment algorithm searches for Q distributed align-

ments. From this point of view, sequence alignment is hypothesis testing where

H0: The sequences A1A2 � � �An and B1B2 � � �Bm are from P i.i.d. letters.

H1: The sequences A1A2 � � �An and B1B2 � � �Bm are mixture of P i.i.d. letters and a Q distributed local

alignment at an unknown location.
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Because under either hypothesis the alignment algorithm is rewarding Q distributed local alignments,

how do we determine signal from background? The answer is that this is not possible until the signal is

significantly larger than the background. Fortunately, there is a well-studied basis for statistical significance

in local alignments; the most famous is used in BLAST (Altschul et al., 1990) and is closely related to

the theorem presented above, in addition to there being rigorous Poisson approximation methods which are

equivalent (Waterman and Vingron, 1994). For our purposes, it will suffice to note that the growth of the

alignment length of an optimal alignment, via an Erdös-Renyi law (Arratia et al., 1988), for two sequences

of length n is

k¼ log (nm)

H(Q, P)
;

where

H(Q, P)¼
X

a, b2L
papb log (papb=qab):

Let SP,Q(A, B), the maximum local alignment score under the scoring function sP,Q defined by P and Q,

be the test statistic. For a given size a, we choose a threshold ta, so that

P(SP, Q(A;B) � ta)¼ a: (3)

We define the power of the alignment test statistic as

power¼Q(SP, Q(A, B) � ta): (4)

A scoring function sP,Q yielding the highest power is preferred in local sequence alignment.

A natural way to evaluate the scoring function sP,Q is to see if the local aligned segment identified by the

algorithm can find the signal of interest. A signal can be locally aligned segments. In our simulations, the

signal is inserted at random positions of the two sequences. We treat the aligned position pairs of the signal

as actual positives. However, the actual negatives are less easy to define because the other bases are not

aligned. We denote the inserted signal by p* and let k* be the length of the signal p*. Similarly, the

predicted positives are the aligned position pairs in the identified local aligned segment, which we refer to

as p0. Let the length of identified alignment be k0. Table 1 shows the relationship among the terms. The

predicted negatives are difficult to define though.

We use similar notation as in standard classification problems, and use TP, FP, and FN to represent true

positive, false positive, and false negative, respectively. TPR (also referred to as sensitivity) is the fraction

of true positives among the actual positives, i.e.,

TPR¼ TP

k�
¼ jp

0 \ p�j
k�

:

The positive predictive value (PPV) or precision is defined by

PPV ¼ TP

k0
¼ jp

0 \ p�j
k0

,

and FDR is defined as

FDR¼ 1�PPV :

Table 1. TP, FP, and FN by Comparing Algorithmic Alignment p0 with the Signal p*

Signal p*

Positive Negative

Predicted alignment p0

Positive True positive¼ jp0 \ p*j False positive¼ k1� jp0 \ p*j
Negative False negative¼ k*� jp0 \ p*j True negative
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Scoring functions yielding high TPR and high PPV (and low FDR) are preferred. Another commonly used

measure to evaluate the performance of a classification problem is the f-statistic defined as

f ¼ 2TP

k� þ k0
¼ 2
jp0 \ p�j
k� þ k0

:

Note that the f-statistic is a weighted sum of TPR and PPV. In this study, we use TPR, FDR, and the

f-statistic to evaluate the scoring function from the classification point of view.

2.2. Simulation studies

We carry out extensive simulations to show that when the scoring function used for sequence comparison

is the log-likelihood ratio score defined in equation 1, the test statistic has the highest power, TPR, PPV,

and the f-statistic. To achieve this objective, we carry out simulations as follows. First, we choose a set of P

distributions as the background distribution of letters. Second, we define a set of Q-distributions which

define how letter pairs align with each other in the simulated signal region.

For DNA sequences, we choose three ‘‘P’’s and five ‘‘Q’’s. The three ‘‘P’’ distributions are: uniform,

‘‘A’’ rich, and ‘‘GC’’ rich. The five ‘‘Q’’ distributions are: all matches have equal probability which is

higher than the probability for mismatches, ‘‘AA’’ pair rich, ‘‘AA’’ pair poor, ‘‘GG’’&‘‘CC’’ rich, and

‘‘GG’’&‘‘CC’’ poor. For amino acid sequences, we choose two ‘‘P’’s and three commonly used score

matrices: BLOSUM45, BLOSUM62, and BLOSUM80. The ‘‘Q’’s (Q1, Q2, Q3) corresponding to the three

score matrices are derived by solving equation 2, and the corresponding Q-distribution is given by

qab¼ papbr� s(a, b). The two ‘‘P’’s are: equal probability for the 20 amino acids and the observed amino acid

frequencies in vertebrates. For details about these choices, see Appendix B.

Third, for a given size a, we calculate a threshold ta(P, Q), as in equation 3, when a scoring function,

sP,Q, defined by P and Q in equation 1, is used to align the two sequences as follows:

1. Generate i.i.d. random sequences A and B of length n with background distribution P.

2. Do local alignment of sequence A and sequence B with scoring function sP,Q using the Smith-

Waterman algorithm (Smith and Waterman, 1981).

3. Repeat steps 1-2 for R1¼ 10, 000 times and rank the resulting local sequence alignment scores in

ascending order. Approximate the value of ta(P, Q) by the upper a percentile of the local alignment

scores.

Fourth, we approximate the power of testing the hypotheses H0 versus H1 when a Q*-distributed

alignment is inserted in the two random sequences as follows. The Q* distribution is referred to as the

target distribution. We simultaneously calculate the approximate values of TPR, FDR, and the f-statitics

with the procedure. The objective of this study is to identify an optimal scoring function to detect the

relationship between sequences related through Q*-local alignment. The simulation steps are as follows:

1. Generate i.i.d. random sequences A and B of length n with background distribution P.

2. For a specific target distribution Q* from the group of ‘‘Q’’s, generate a length k* aligned pairs with

Q* distribution with

k� ¼ (1þ e)
log (n2)

H(Q�, P2)
, (5)

where e is a factor making the length of Q* segment somewhat larger than the expected length under

the null model. To generate a Q* segment, we create a potential local alignment by independently

drawing k* letter pairs from the Q* distribution. We refer to the generated aligned segment as a Q*-local

alignment.

3. Let the generated Q*-local alignment be p� ¼ p�
1

p�
2

� �
, where p�1 and p�2 are sequences of length k*.

Replace part of sequences A and B at random positions with p�1 and p�2, respectively as shown in

Figure 1. Define the resulting sequences as A* and B*.

4. Do local sequence alignment between sequence A* and sequence B* with scoring function sP,Q using

the Smith-Waterman algorithm.
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We repeat the above four steps for R2¼ 1,000 times, and the power of detecting the relationship between

the two sequences with the Q*-local alignment inserted using score sP,Q is approximated by the fraction of

times that the resulting local alignment score is at least ta(P, Q).

From the classification point of view, we are interested in the expectation of TPR, FDR and the f-statistic.

Let TPr, k�r and k0r be the estimated corresponding values of TP, k* and k0 in the r-th experiments,

r¼ 1, 2, � � � , R2. Then TPRr, FDRr and fr, r¼ 1, 2, � � � , R2 are estimated by

TPRr ¼
TPr

k�r
, FDRr ¼ 1� TPr

k0r
, fr ¼

2TPr

k�r þ k0r
:

The expectation of TPR, FDR and f-statistic can be approximated by

ÊE(TPR)¼ 1

R2

XR2

r¼1

TPr

k�r
,

ÊE(FDR)¼ 1� 1

R2

XR2

r¼1

TPr

k0r
,

ÊE(f )¼ 1

R2

XR2

r¼1

2TPr

k�r þ k0r
:

3. RESULTS

In the simulations, we let the size a be 0.01 and 0.05 and e in equation 5 be 0.03. The length n of sequences

is 10,000. The simulation results are shown in Tables 2–7. In each table, the column direction represents a

condition when one target Q*-local alignment is inserted, and the row direction represents the results using

the log-likelihood scoring function derived from one P and one Q. From Table 2, by comparing the power

among different Qs under the same P and Q*, it can be seen that the test has the largest power when Q equals

to Q*. In other words, the highest power appears diagonally. For example, the power of the tests using log-

likelihood ratio scoring functions corresponding to Q1 to Q5 when P¼P2 and Q*¼Q3 are 0.61, 0.51, 0.71,

0.68, and 0.55, respectively, for test size a¼ 0.01. The largest power among the five tests is 0.71 when

Q¼Q3. The other tables can be viewed similarly. Tables 2–4 are for DNA sequences. When Q¼Q*, we

obtain the highest power, TPR, the f-statistic, and the lowest FDR. That is, the scoring function derived from

Q* is the most powerful scoring function to detect Q*-local alignment.

Tables 5–7 are for amino acid sequences. Similar conclusions as for DNA sequences are obtained. The

power of the test based on scoring function derived from Q reach the highest when Q¼Q*, no matter

whether a¼ 0.01 or a¼ 0.05. It can also be seen from Table 5 that the power of the test based on sP,Q

decreases as the distance between Q and Q* increases. For example, when Q*¼Q1 corresponding to

BLOSSOM45 and P¼P2, the power of the tests based on BLOSUM45, BLOSSOM62, and BLOSSOM80

is 0.83, 0.75, and 0.56, respectively. Table 6 gives the TPR and FDR for the tests using different scoring

functions. When the target distribution is Q3 corresponding to BLOSUM80, the TPR of the test using

scoring functions sP, Q1
, sP, Q2

, and sP, Q3
is close to 80%. On the other hand, Tables 6 and 7 show that the

FDR is lowest and the f-statistic is the highest when the scoring function sP, Q� is used.

FIG. 1. Insert Q*-local alignment into the sequences A and B.
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4. DISCUSSION

Sequence alignments have been widely used to compare nucleotide and amino acid sequences. For a given

scoring function, the local alignment score between two sequences is first obtained through a dynamic

programming algorithm or a method such as BLAST (Altschul et al., 1990), and a p-value or E-value can be

calculated. Log-likelihood ratio scoring functions based on known aligned sequences were derived for

sequence comparisons by (Dayhoff et al., 1978) and (Henikoff and Henikoff, 1992). Previous studies showed

the superiority of the log-likelihood ratio scoring function by evaluating whether it can successfully identify

genes within the same family (Henikoff and Henikoff, 1993). It has also been argued that all reasonable

substitution scoring functions are implicitly log-odds scoring functions (Karlin and Altschul, 1990; Karlin

Table 2. Power of the Tests Based on Different Scoring Functions when Different

Target Q*-Local Alignments Are Inserted

Target Q*, a¼ 0.01 Target Q*, a¼ 0.05

Scoring function Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

sP1Q1
0.83 0.58 0.56 0.66 0.68 0.88 0.73 0.70 0.80 0.81

sP1Q2
0.49 0.75 0.41 0.49 0.70 0.60 0.85 0.54 0.61 0.79

sP1Q3
0.48 0.43 0.75 0.69 0.52 0.62 0.56 0.85 0.79 0.64

sP1Q4
0.58 0.52 0.68 0.76 0.59 0.68 0.64 0.78 0.85 0.71

sP1Q5
0.59 0.72 0.50 0.58 0.78 0.67 0.80 0.62 0.69 0.84

sP2Q1
0.81 0.52 0.61 0.69 0.67 0.88 0.65 0.72 0.81 0.77

sP2Q2
0.55 0.76 0.51 0.60 0.72 0.65 0.84 0.65 0.72 0.81

sP2Q3
0.57 0.45 0.71 0.70 0.56 0.67 0.56 0.80 0.79 0.67

sP2Q4
0.63 0.50 0.68 0.75 0.61 0.72 0.61 0.77 0.83 0.72

sP2Q5
0.61 0.67 0.55 0.63 0.77 0.69 0.77 0.66 0.74 0.84

sP3Q1
0.79 0.63 0.54 0.64 0.68 0.84 0.74 0.67 0.74 0.79

sP3Q2
0.57 0.72 0.49 0.57 0.68 0.65 0.80 0.58 0.67 0.77

sP3Q3
0.52 0.55 0.74 0.70 0.60 0.64 0.66 0.83 0.78 0.73

sP3Q4
0.59 0.60 0.71 0.77 0.66 0.69 0.70 0.78 0.84 0.74

sP3Q5
0.64 0.68 0.53 0.60 0.74 0.72 0.78 0.64 0.70 0.81

Test size a¼ 0.01 or 0.05 (DNA sequences).

Table 3. True Positive Rate (TPR) and False Discovery Rate (FDR) Using Different Scoring

Functions when Different Target Q*-Local Alignments Are Inserted (DNA Sequences)

Target Q*, TPR Target Q*, FDR

Scoring function Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

sP1Q1
0.87 0.82 0.82 0.87 0.88 0.12 0.25 0.26 0.21 0.20

sP1Q2
0.57 0.86 0.64 0.67 0.82 0.32 0.15 0.36 0.32 0.19

sP1Q3
0.57 0.64 0.85 0.81 0.70 0.32 0.35 0.15 0.19 0.30

sP1Q4
0.63 0.71 0.82 0.86 0.76 0.26 0.28 0.17 0.14 0.24

sP1Q5
0.63 0.83 0.70 0.74 0.86 0.25 0.17 0.30 0.25 0.14

sP2Q1
0.86 0.71 0.80 0.86 0.82 0.14 0.30 0.26 0.19 0.22

sP2Q2
0.67 0.87 0.73 0.79 0.83 0.29 0.13 0.30 0.24 0.18

sP2Q3
0.64 0.59 0.82 0.80 0.69 0.28 0.35 0.17 0.18 0.27

sP2Q4
0.68 0.63 0.79 0.84 0.73 0.24 0.31 0.20 0.15 0.24

sP2Q5
0.70 0.78 0.74 0.80 0.83 0.24 0.19 0.27 0.21 0.17

sP3Q1
0.82 0.79 0.75 0.80 0.83 0.16 0.27 0.26 0.22 0.23

sP3Q2
0.61 0.79 0.63 0.67 0.79 0.31 0.18 0.33 0.28 0.19

sP3Q3
0.64 0.72 0.85 0.79 0.78 0.30 0.29 0.15 0.19 0.23

sP3Q4
0.68 0.75 0.81 0.85 0.81 0.26 0.26 0.19 0.15 0.21

sP3Q5
0.65 0.77 0.67 0.70 0.81 0.26 0.21 0.29 0.25 0.17
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Table 4. f-Statistic Using Different Scoring Functions when Different Target

Q*-Local Alignments Are Inserted (DNA Sequences)

Target distribution Q*

Scoring function Q1 Q2 Q3 Q4 Q5

sP1Q1
0.87 0.78 0.77 0.82 0.83

sP1Q2
0.62 0.85 0.64 0.67 0.81

sP1Q3
0.61 0.64 0.84 0.81 0.70

sP1Q4
0.67 0.71 0.82 0.86 0.75

sP1Q5
0.68 0.83 0.70 0.74 0.86

sP2Q1
0.86 0.70 0.76 0.83 0.79

sP2Q2
0.68 0.86 0.71 0.77 0.82

sP2Q3
0.67 0.61 0.82 0.80 0.71

sP2Q4
0.71 0.66 0.80 0.84 0.74

sP2Q5
0.72 0.79 0.73 0.80 0.83

sP3Q1
0.82 0.75 0.74 0.78 0.79

sP3Q2
0.64 0.80 0.65 0.69 0.80

sP3Q3
0.66 0.71 0.84 0.79 0.77

sP3Q4
0.71 0.74 0.81 0.85 0.79

sP3Q5
0.68 0.78 0.68 0.72 0.82

Table 5. Power of Tests Based on Different Scoring Functions when Different

Target Q*-Local Alignments Are Inserted

Target Q*, a¼ 0.01 Target Q*, a¼ 0.05

Scoring function Q1 Q2 Q3 Q1 Q2 Q3

sP1Q1
0.77 0.69 0.56 0.84 0.78 0.69

sP1Q2
0.68 0.72 0.66 0.77 0.81 0.79

sP1Q3
0.53 0.66 0.73 0.61 0.72 0.81

sP2Q1
0.74 0.71 0.61 0.83 0.81 0.73

sP2Q2
0.67 0.76 0.70 0.75 0.84 0.79

sP2Q3
0.47 0.64 0.72 0.56 0.74 0.81

Test size a¼ 0.01 or 0.05 (amino acid sequences). The target distributions Q1, Q2, and Q3 correspond to BLOSUM45, BLOSUM62,

and BLOSUM80, respectively.

Table 6. True Positive Rate (TPR) and False Discovery Rate (FDR) of the Tests Based on Different

Scoring Functions when Different Target Q*-Local Alignments Are Inserted (Amino Acid Sequences)

Target Q*, TPR Target Q*, FDR

Scoring function Q1 Q2 Q3 Q1 Q2 Q3

sP1Q1
0.80 0.81 0.79 0.15 0.21 0.27

sP1Q2
0.71 0.81 0.81 0.19 0.16 0.20

sP1Q3
0.52 0.70 0.81 0.32 0.22 0.16

sP2Q1
0.83 0.84 0.80 0.15 0.18 0.26

sP2Q2
0.72 0.82 0.83 0.21 0.15 0.19

sP2Q3
0.52 0.71 0.81 0.35 0.21 0.17

The target distributions Q1, Q2, and Q3 correspond to BLOSUM45, BLOSUM62, and BLOSUM80, respectively.

SEQUENCE ALIGNMENT AS HYPOTHESIS TESTING 685



et al., 1990; Altschul, 1991), i.e., log-likelihood ratio scoring function. For a given scoring function s(�, �), it

has been shown that the probability that a is aligned to b in the best aligned segment is papbr� s(a, b) with r

being the largest root of the equation 2. For a given distribution Q for the aligned segment, it is possible to

define a scoring function by the log-likelihood ratio between the Q distribution and the P distribution. Thus,

scoring functions and target Q-distributions are coupled. Suppose that two sequences are related through a

target distribution Q* in an aligned segment. Intuitively, the scoring function defined by the log-likelihood

ratio between Q* and P distributions should be used. However, to the best of our knowledge, no studies have

been carried out to prove or dispute this claim.

In this article, we regard sequence alignment as a hypothesis testing problem, and study the power of tests

based on different scoring functions for detecting the relationship between two sequences. For our studies,

aligned segments were randomly inserted into the two sequences. The results from our simulations indicate

that the log-likelihood ratio scoring function is the most powerful scoring function to detect segments of Q

distribution using the scoring function sP,Q, as it has the highest power, TPR, and f-statistic, and the lowest

FDR. However, we cannot mathematically rigorously prove that the log-likelihood ratio scoring function is

optimal. In our simulation studies, we tried to choose a set of Q distributions as representative as possible. As

the Q can be sampled in a continuous space with 15 degrees of freedom for DNA sequences and 399 degrees

of freedom for amino acid sequences, we cannot search over all possibilities for Q. We chose representative

Qs from the sampling space, compared the scoring functions derived from these Qs, and used those values to

provide evidence to show that the log-likelihood ratio scoring function is most powerful.

The field of sequence alignment lacks a proof of the claim we have conjectured. While for fixed length

alignment the Neyman-Pearson Lemma holds, the distribution related to equation 2 is only true asymp-

totically. Thus we believe our result will only be proven as an asymptotic result. None the less it would be a

significant advance for the general theory and practice of sequence alignment.

Our study has several limitations. First, we assume that the two sequences are i.i.d in the null model. In

many situations, Markovian models fit the sequences much better than the i.i.d model. Under the Mar-

kovian model, the log-likelihood scoring function will become more complex and can depend on adjacent

pairs. We are confident that our results hold in the more general setting, as for example the asymptotic

distribution for local alignment holds here.

Second and more important, gaps should be considered in many alignment problems. Currently theo-

retical results are not available for local alignment on the length of gaps nor for aligned letter pairs for two

random sequences. We conjecture that there is an asymptotic distribution for local alignment in this case as

well, so long as

1

n
EPS(A, B)5 0,

where S(A, B) is the global alignment of the sequences A and B of length n. The condition states that the per

letter score accumulation is negative. The asymptotic distribution even in the i.i.d. case for gaps will depend

on the letter composition aligned to the gaps. However summing over the composition will give a gap

length distribution. The lack of theoretical results makes the design of simulation studies difficult. We

hypothesize that the optimal scoring function is still the log-likelihood scoring function. Further studies are

Table 7. f-Statistic of the Tests Based Different Scoring Functions when

Different Target Q*-Local Alignments Are Inserted (Amino Acid Sequences)

Target Q*

Scoring function Q1 Q2 Q3

sP1Q1
0.82 0.79 0.75

sP1Q2
0.75 0.82 0.80

sP1Q3
0.57 0.73 0.82

sP2Q1
0.83 0.83 0.76

sP2Q2
0.75 0.83 0.82

sP2Q3
0.57 0.74 0.82

The target distributions Q1, Q2, and Q3 correspond to BLOSUM45, BLOSUM62, and BLOSUM80,

respectively.
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needed to prove or dispute this hypothesis. Such a result would be a significant extension of the results of

Arratia et al. (1988) and Dembo et al. (1994). Similar results will hold for multiple local alignment.

5. APPENDIX

A: Duality between scoring functions and log-likelihood ratio scores

Claim. For any given P and Q distributions, the log-likelihood scoring function sP,Q defined in equation

1 by sP, Q(a, b)¼ log qab

papb

� �
satisfies the conditions: (1) maxa, b2L sP, Q(a, b)4 0 and (2) EPsP, Q(a, b)5 0,

unless qab¼ papb for all a, b 2 L.

Proof. If qab¼ papb for all a, b 2 L, then sP,Q(a, b)¼ 0 for all a, b 2 L. Next assume that qab 6¼ papb

for some a, b. Then there must exist a�, b� 2 L, such that qa�b� 4 pa�pb� . Thus, sP,Q(a*, b*)> 0. By

Jensen’s inequality, if X is a random variable and X is not a constant with probability 1, and g(x) is a strictly

concave function, then E(g(X))5 g(EX). Applying this inequality with g(x)¼ log(x), we have

EP(s(a, b))¼
X

a, b2L
papbsP, Q(a, b)

¼
X

a, b2L
papb log

qab

papb

5 log
X

a, b2L
papb

qab

papb

¼ log
X

a, b2L
qab¼ 0:

&

B: The choices of ‘‘P’’ and ‘‘Q’’ distributions

In our study, we choose several ‘‘P’’ and ‘‘Q’’ distributions to provide evidence that the log-likelihood

scoring function yields the highest power, TPR, the f-statistic, and the lowest FDR. It is important to choose

such distributions so that they cover as many possibilities as possible. In this study, we choose ‘‘P’’ and

‘‘Q’’ distributions for DNA sequences.

First, we consider equally likely distribution, i.e., pA¼ pC ¼ pG¼ pT ¼ 1
4
.

Second, we consider one-letter rich situation, e.g., ‘‘A’’-rich. The background distribution pattern is set

as pA¼ 1
4
þ 3d1, pC ¼ pG¼ pT ¼ 1

4
� d1. If we let d1 be 1

20
, then pA¼ 2

5
, pC ¼ pG¼ pT ¼ 1

5
.

Third, we consider two-letter rich situation, e.g., ‘‘G’’ and ‘‘C.’’ pC ¼ pG¼ 1
4
þ d2, pA¼ pT ¼ 1

4
� d2.

When d2¼ 1
12

, pC ¼ pG¼ 1
3
, pA¼ pT ¼ 1

6
.

In summary, we set three types of ‘‘P’’s: equally likely, ‘‘A’’ rich, and ‘‘G-C’’ rich, and denote them as

P1, P2, and P3, respectively, as shown in Table 8.

We choose the group of ‘‘Q’’ distributions for DNA sequences as follows.

First, we let the probability of matches be larger than that for the mismatches. We choose Q as

qab¼
1

16
þ e1¼ qmatch, a¼ b,

1
16
� 1

3
e1¼ qmismatch, a 6¼ b,

�

where a, b 2 fA, C, G, Tg. When e1¼ 1
16

, qmatch¼ 1
8
, qmismatch¼ 1

24
.

Table 8. Background Distribution P for DNA Sequences Used in the Simulations

PA PC PG PT

P1

1

4

1

4

1

4

1

4

P2

2

5

1

5

1

5

1

5

P3

1

6

1

3

1

3

1

6
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Second, we consider the situation that the match of one specific letter, e.g., ‘‘A’’, is preferred than the

match for other letters. We consider ‘‘AA’’ pair rich Q-local alignment. So we choose Q as follows.

Qab¼
1

16
þ 3e2, a = b = A,

1
16
þ e2, a = b 6=A,

1
16
� 1

2
e2¼Qmismatch, a 6=b,

8<
:

where a, b 2 fA, C, G, Tg. When e2¼ 1
16

, qAA¼ 1
4
, qCC ¼ qGG¼ qTT ¼ 1

8
, qmismatch¼ 1

32
.

Third, instead of letting ‘‘AA’’ pair to be enriched in the aligned region, we let another match, e.g.,

‘‘GG’’, be enriched. We set Q as follows. The reason for choosing Q this way is to see what happens if the

enriched matches in the aligned part is different from the most abundant nucleotide in the background

sequences.

qab¼
1

16
þ 3e3, a¼ b¼G,

1
16
þ e3, a¼ b 6¼ G,

1
16
� 1

2
e3¼ qmismatch, a 6¼ b,

8<
:

where a, b 2 fA, C, G, Tg. When e3¼ 1
16

, qGG¼ 1
4
, qAA¼ qCC ¼ qTT ¼ 1

8
, qmismatch¼ 1

32
.

Fourth, we set Q so that matches for two letters are enriched, e.g., ‘‘CC’’ and ‘‘GG.’’ Note that ‘‘C’’ and

‘‘G’’ are the enriched nucleotides for P3 given above.

qab¼
1

16
þ 2e4, a¼ b¼C or G,

1
16
þ e4, a¼ b¼A or T ,

1
16
� 1

2
e4¼ qmismatch, a 6¼ b,

8<
:

where a, b 2 fA, C, G, Tg. When e4¼ 1
16

, qCC ¼ qGG¼ 3
16

, qAA¼ qTT ¼ 1
8
, qmismatch¼ 1

32
.

Fifth, we let ‘‘AA’’ and ‘‘TT’’ be enriched in Q. Note that the enriched matches in the Q-local align-

ments are different from the enriched nucleotides in P3.

qab¼
1

16
þ 2e5, a¼ b¼A or T ,

1
16
þ e5, a¼ b¼C or G,

1
16
� 1

2
e5¼ qmismatch, a 6¼ b,

8<
:

where a, b 2 fA, C, G, Tg. When e5¼ 1
16

, qAA¼ qTT ¼ 3
16

, qCC ¼ qGG¼ 1
8
, Qmismatch¼ 1

32
.

In summary, we have five ‘‘Q’’s—Q1, Q2, � � � , Q5—as described above.

For P as the uniform distribution PA¼PC ¼PG¼PT ¼ 1
4
, Table 9 shows the ‘‘Q’’s we choose and the

corresponding scores as well as the expectations of the scores.

Choices of ‘‘P’’s and ‘‘Q’’s for amino acid sequences. We choose the commonly used BLOSUM45,

BLOSUM62 and BLOSUM80 as the group of scoring functions, and the corresponding ‘‘Q’’s(Q1, Q2, Q3)

are derived from the three scoring functions through solving equation 2 of l, respectively.

We choose two P-distributions. The first gives equal probability to all the amino acids (P1) and the other

one is the observed amino acid frequencies in vertebrates (P2) as shown in Table 10.

Table 9. ‘‘Q’’ Distributions Used in the Simulations and the Corresponding Scores

under the Equally Likely Background Distribution P1, as well as the Expectation of the Scores

Q1(e1¼ 1
16

) Q2(e2¼ 1
16

) Q3(e3¼ 1
16

) Q4(e4¼ 1
16

) Q5(e5¼ 1
16

)

M: 1
8

M(AA): 1
4

M(GG): 1
4

M(GG, CC): 3
16

M(AA, TT): 3
16

Q M(CC, GG, TT): 1
8

M(AA, CC, TT): 1
8

M(AA, TT): 1
8

M(GG, CC): 1
8

N: 1
24

N: 1
32

N: 1
32

N: 1
32

N: 1
32

M: 0.69 M(AA): 1.39 M(GG): 1.39 M(GG, CC): 1.10 M(AA, TT): 1.10

sP1Q M(CC, GG, TT): 0.69 M(AA, CC, TT): 0.69 M(AA, TT): 0.69 M(GG, CC): 0.69

N:� 0.41 N:� 0.69 N:� 0.69 N:� 0.69 N:� 0.69

EP1
(sQ) �0.135 �0.30125 �0.30125 �0.29375 �0.29375

M, match; N, mismatch.
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C: The algorithm for simulation studies

Algorithm 1 Procedure flow

Input: P1, � � � , PK , Q1, � � � , QL, n and e
Output: powera¼ 0.01, powera¼ 0.05, TPR, FDR, f

for k¼ 1; k�K; kþþ do

for j¼ 1; j� L; jþþ do
for r¼ 1; r�R1; rþþ do

generate sequence A and sequence B with background Pk;

local alignment between A and B using Qj;

record SPk , Qj
(A, B);

end

Rank SPk , Qj
(A, B);

Ta, j¼ (aR1)th SPk , Qj
(A, B);

end
for i¼ 1; i� L; iþþ do

Q*¼Qi;

for r¼ 1; r�R2; rþþ do

generate sequence A and sequence B with background Pk;

plug in Q*-segment to generate new sequences A* and B*;

for j¼ 1; j� L; jþþ do

local alignment between A* and B* using Qj;

record SPk , Qj
(A�, B�);

if SPk , Qj
(A�, B�) � Ta, j then

Flagr(Pk, Q*, Qj)¼ 1;

else

Flagr(Pk, Q*, Qj)¼ 0;

end

calculate TPRr(Pk, Q*, Qj), FDRr(Pk, Q*, Qj), fr(Pk, Q*, Qj)

end

end
for j¼ 1; j� L; jþþ do

Table 10. Observed Amino Acid Frequencies in Vertebrates (P2)

A Alanine 7.4%

R Arginine 4.2%

N Asparagine 4.4%

D Aspartic acid 5.9%

C Cysteine 3.3%

Q Glutamine 3.7%

E Glutamic acid 5.8%

G Glycine 7.4%

H Histidine 2.9%

I Isoleucine 3.8%

L Leucine 7.6%

K Lysine 7.2%

M Methionine 1.8%

F Phenylalanine 4.0%

P Proline 5.0%

S Serine 8.1%

T Threonine 6.2%

W Tryptophan 1.3%

Y Tyrosine 3.3%

V Valine 6.8%
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powerPk , Q�, Qj
¼
PR

r¼ 1
Flagr(Pk , Q�, Qj)

R2
;

TPRPk , Q�, Qj
¼
PR

r¼ 1
TPRr(Pk , Q�, Qj)

R2
;

FDRPk , Q�, Qj
¼
PR

r¼ 1
FDRr(Pk , Q�, Qj)

R2
;

fPk , Q�, Qj
¼
PR

r¼ 1
fr(Pk , Q�, Qj)

R2
;

end

end

end

ACKNOWLEDGMENTS

This work was supported by the NSFC (grant 30675012 to L.M., X.Z.; grant 60721003 to L.M.; grant

60928007 to F.S., X.Z.; grant 60805010 to F.S.) and the NIH (grant P50HG002790 to F.S., M.S.W.; grant

R21AG032743 to F.S., M.S.W.).

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Adachi, J., and Hasegawa, M. 1996. Model of amino acid substitution in proteins encoded by mitochondrial DNA.

J. Mol. Evol. 42, 459–468.

Altschul, S., Wootton, J., Zaslavsky, E., et al. 2010. The construction and use of log-odds substitution scores for

multiple sequence alignment. PLoS Comput. Biol. 6, e1000852.

Altschul, S.F. 1991. Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 219, 555–

565.

Altschul, S.F., Gish, W., Miller, W., et al. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

Altschul, S.F., Madden, T.L., Schaffer, A.A., et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 25, 3389–3402.

Arratia, R., Morris, P., and Waterman, M. 1988. Stochastic scrabble: large deviations for sequences with scores. J. Appl.

Probab. 25, 106–119.

Cao, M.D., Dix, T.I., and Allison, L. 2009. Computing substitution matrices for genomic comparative analysis. Proc.

13th Pacific-Asia Conf. Adv. Knowledge Discov. Data Mining 647–655.

Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C. 1978. A model of evolutionary change in proteins. Atlas Protein

Sequence Struct. 5, 345–351.

Dembo, A., Karlin, S., and Zeitouni, O. 1994. Limit distribution of maximal non-aligned two-sequence segmental

score. Ann. Appl. Probab. 22, 2022–2039.

Do, C.B., Mahabhashyam, M.S., Brudno, M., et al. 2005. Probcons: probabilistic consistency-based multiple sequence

alignment. Genome Res. 15, 330–340.

Gonnet, G.H., Cohen, M.A., and Benner, S.A. 1992. Exhaustive matching of the entire protein sequence database.

Science 256, 1443–1445.

Henikoff, S., and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci.

U.S.A. 89, 10915–10919.

Henikoff, S., and Henikoff, J.G. 1993. Performance evaluation of amino acid substitution matrices. Proteins 17, 49–61.

Holmes, I., and Durbin, R. 1998. Dynamic programming alignment accuracy. J. Comput. Biol. 5, 493–504.

Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein

sequences. Comput. Appl. Biosci. 8, 275–282.

Karlin, S., and Altschul, S. 1990. Methods for assessing the statistical significance of molecular sequence features by

using general scoring schemes. Proc. Natl. Acad. Sci. U.S.A. 87, 2264–2268.

Karlin, S., Dembo, A., and Kawabata, T. 1990. Statistical composition of high-scoring segments from molecular

sequences. Ann. Stat. 18, 571–581.

690 MENG ET AL.



Kent, W.J. 2002. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664.

Langmead, B., Trapnell, C., Pop, M., et al. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to

the human genome. Genome Biol. 10, R25.
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