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a b s t r a c t

Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for

identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free

comparison statistic D2 and its variants Dn

2 and Ds
2 showed that their power approximates a limit

smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new

alignment-free statistics based on D2, Dn

2 and Ds
2 by comparing local sequence pairs and then summing

over all the local sequence pairs of certain length. We show that the new statistics are much more

powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to

infinity under the pattern transfer model.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Alignment-free sequence comparison is frequently used to
compare genomic sequences and, in particular, gene regulatory
regions. Gene regulatory regions are generally not highly conserved
making alignment-based methods for the identification of gene
regulatory regions less efficient (Ivan et al., 2008; Leung and Eisen,
2009). Several alignment-free sequence comparison statistics have
been developed for the identification of gene regulatory regions
(Kantorovitz et al., 2007b; Koohy et al., 2010; Leung and Eisen, 2009).
Alignment-free sequence comparison has a relatively long history
starting in the mid-1980s (Blaisdell, 1986); see for example the
review in Vinga and Almeida (2003). The earliest and most widely
studied alignment-free statistic is D2, an uncentered correlation
between the number of occurrences of k-tuples (or k-grams) between
two sequences (Blaisdell, 1886). Several investigators studied the
approximate distribution of D2 for two unrelated independent
identically distributed (i.i.d) or Markovian sequences (Burden et al.,
2008; Forêt et al., 2009a,b; Forêt et al., 2006; Kantorovitz et al.,
2007a; Lippert et al., 2002). These studies are important for defining
threshold values for detecting relationships between two sequences
when D2 is used as a statistic. However, it was pointed out in Lippert
et al. (2002) that the D2 statistic is dominated by the stochastic noise
ll rights reserved.
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in each sequence and is not appropriate for detecting relationships
between two sequences. By normalizing D2 through its mean and
variance under the null model, a new statistic D2z (Kantorovitz et al.,
2007b) was developed to compare gene regulatory sequences and
the D2z statistic was used to identify cis-regulatory modules in
Drosophila (Ivan et al., 2008). Although the D2z (Kantorovitz et al.,
2007b) statistic improves the performance over D2, it is still mainly
dominated by the variation of each pattern from the background
(Reinert et al., 2009; Wan et al., 2010). Several investigators used
the frequency of word patterns to study evolutionary relationships
among different organisms (Gao and Qi, 2007; Sims et al., 2009; Jun
et al., 2010; Wu et al., 2009; Wang et al., 2009; Qi et al., 2004),
compared the advantages and disadvantages of alignment-free
sequence comparison methods (Dai and Wang, 2008; Wu et al.,
2005), and studied the optimal size of the pattern for comparing
genomic sequences (Sims et al., 2009; Wu et al., 2005). Recent
simulation studies have shown that alignment-free distance mea-
sures based on k-tuple frequencies can give even more accurate trees
than phylogenetic tree construction methods based on multiple
sequence alignment (Dai and Wang, 2008; Yang and Zhang, 2008),
in particular, when the species diverged long ago. Dai and Wang
(2008) proposed more complex dissimilarity measures between two
sequences and showed that alignment-free measures can be a
powerful tool for sequence comparison of highly diverged sequences.

Another application of alignment-free sequence comparison
involves the identification of horizontally transferred genes between
different organisms (Dalevi et al., 2006; Dufraigne et al., 2005;
Sandberg et al., 2001; Suzuki et al., 2008). If highly homologous
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genes are detected in distantly related species, these genes may have
been horizontally transferred from one organism to another. Hor-
izontally transferred genes can be detected by comparing gene trees
and species trees (Dalevi et al., 2006; Sandberg et al., 2001). Sandberg
et al. (2001) calculated the distribution of k-tuples in fragments of one
genome, compared with those of the other genomes, and assigned the
chosen fragment to the species with k-tuple frequency most similar
to that of the chosen fragment. Using a similar idea, Dalevi et al.
(2006) proposed a Bayesian approach to study horizontal gene
transfer among different species. Similar approaches have also been
used to study horizontal gene transfer among different environments
(Hooper et al., 2008, 2009). It was shown that viruses and their hosts
tend to have similar k-tuple distributions (Suzuki et al., 2008). Suzuki
et al. (2008) used Mahalanobis distance to study potential horizontal
gene transfer between plasmids and their hosts and showed that
Mahalanobis distance outperforms the d-distance, i.e. the average
absolute dinucleotide relative abundance difference, in identifying the
hosts of the plasmids. Wu et al. (1997) showed that the Mahalanobis
distance outperforms Euclidean and standardized Euclidean distance
in identifying homologous proteins. However, the computation of
Mahalanobis distance can be computationally challenging for k45.
Using k-tuple distributions, investigators have also shown that
microbial organisms transfer genetic material from one location to
the other (Hooper et al., 2008). Furthermore, it has recently been
observed that genomic DNA can transfer from donor cells to host cells
(Ehnfors et al., 2009; Waterhouse et al., 2011).

Despite the large amount of applications for alignment-free
sequence comparison, it is not clear, given an evolutionary
scenario, which of the various statistics is most powerful for
detecting relationships between the two sequences. We recently
carried out a statistical power study of D2 and its two variations
Dn

2 and Ds
2. These three statistics are defined as follows. Let Xw and

Yw be the numbers of occurrences of word w of length k in the
first and the second sequences of letters from an alphabet A,
respectively. Here both sequences are assumed to have the same
length n for simplicity. The D2 statistic is defined as

D2 �
X

wAAk

XwYw:

To define Dn

2 and Ds
2 as in Reinert et al. (2009) and Wan et al.

(2010), we first introduce the centralized count variables by

~X w ¼ Xw�ðn�kþ1Þpw and ~Y w ¼ Yw�ðn�kþ1Þpw,

where pw is the probability of word w under the null model. Then
Dn

2 and Ds
2 are defined by

Dn

2 ¼
X

wAAk

~X w
~Y w

ðn�kþ1Þpw
and Ds

2 ¼
X

wAAk

~X w
~Y wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~X
2

wþ
~Y

2

w

q
:

Here we set 0
0 ¼ 0.

We studied the power of D2, Dn

2, and Ds
2 under two different

models (Reinert et al., 2009; Wan et al., 2010): a common motif
model, where the two sequences are related by sharing random
instances of a common motif, and a pattern transfer model, where
random fragments in the first sequence are transferred to the
second sequence, rendering the two sequences related. The pattern
transfer model tries to simulate a simple horizontal gene transfer
between different species, and it may model sequences with a
distant common ancestor which have preserved limited sequence
patterns. In particular, we would expect to see that some regions
have high mutation rate and some regions are highly conserved.
Although the statistical power of both Dn

2 and Ds
2 increases with the

sequence length and tends to 1 as the sequence length tends to
infinity under a common motif model, their power approaches
a limit which is generally smaller than 1 as the sequence length
tends to infinity (Reinert et al., 2009; Wan et al., 2010) under the
pattern transfer model. Thus, Dn

2 and Ds
2 are not ideal for detecting

relationships between two sequences under the pattern transfer
model.

The objective of this study is to provide new powerful alignment-
free statistics for comparing two sequences related through the
pattern transfer model. We show through simulations that the new
statistics are generally much more powerful than both Dn

2 and Ds
2 in

this setting and their power can approach 1 as the sequence length
tends to infinity.

The organization of the paper is as follows. In the ‘‘Methods’’
section, the pattern transfer model that was originally proposed in
Reinert et al. (2009) is introduced. Second, the basic ideas behind the
new statistics are presented and clear definitions of the new
statistics are given. Third, computational issues involved in the
calculation of the new statistics are discussed. Fourth, simulation
methods to evaluate the power of the new statistics are described
and the statistics are used to analyze HIV-1 sequence data. In the
‘‘Results’’ section, we compare the power of the new statistics with
the global statistics Dn

2 and Ds
2 and study the effect of tuple length,

window size, shift size (which are defined in the ‘‘Methods’’ section),
and evolutionary time after pattern transfer on the power of the new
statistics. We also used the new statistics together with Dn

2 and Ds
2 to

analyze HIV-1 sequences. We show that the association between the
new statistics and sequence alignment similarity is much higher than
the association of Dn

2 or Ds
2 with sequence alignment similarity when

the sequence alignment similarity is around 80%. On the other hand,
data show a trend that the converse holds when the alignment
similarity is above 83%; however, the difference is not statistically
significant. The paper concludes with some discussion and directions
for future studies.
2. Methods: the pattern transfer model, new statistics, and
simulations

2.1. Introduction of the pattern transfer model

The pattern transfer model was first introduced in Reinert et al.
(2009) and a hidden Markov model for it was later developed (Wan
et al., 2010). For completeness, we briefly describe the model here.
In the pattern transfer model, we randomly choose subsequences of
length k0 from the first sequence and use them to replace corre-
sponding word patterns in the second sequence. More precisely, two
independent sequences A¼ A1A2 � � �An and Bð0Þ ¼ Bð0Þ1 Bð0Þ2 � � �B

ð0Þ
n are

initially generated according to the i.i.d model with given nucleotide
frequencies ðpA,pC ,pG,pT Þ. Then Bernoulli random variables Z1,Z2, . . .,
with PðZi ¼ 1Þ ¼ 1�l are generated for i¼ 1,2, . . . ,n�k0þ1. When
Zi¼1, the k0-word pattern AiAiþ1 . . .Aiþk0�1 in sequence A is chosen
and it then replaces BiBiþ1 . . .Biþk0�1 in sequence Bð0Þ. The values
Ziþ1, . . . ,Ziþk0�1 are then ignored and for j4 iþk0�1, if Zj¼1, the
k0-word pattern occurring at position j in sequence A again replaces
the k0-word pattern occurring at position j in sequence Bð0Þ, and so on.
The resulting second sequence is denoted as B¼ B1B2 � � �Bn. We refer
the two sequences A and B as related through the pattern transfer
model. In the case l¼ 1 no pattern transfer takes place; this case is
our null model.

Throughout this paper, we consider the pattern transfer model
and refer to this model as the alternative model when lo1.

2.2. New statistics for comparing two sequences related by the

pattern transfer model

In Reinert et al. (2009) and Wan et al. (2010), we first showed
by simulations and then theoretically proved that the power of all
the three statistics D2, Dn

2, and Ds
2 is low and approaches a limit

less than 1 when the sequence length tends to infinity. The
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primary reason for the relatively low power of Dn

2 and Ds
2 for

detecting the relationships between two sequences under the
pattern transfer model is that the means of Xw and Yw are equal,
namely pw, even under the alternative model, where pw is the
probability of word pattern w under the null model. It was shown
in Wan et al. (2010) that Dn

2 and Ds
2=

ffiffiffi
n
p

converge under both the
null and the alternative models. Denote

lim
n-1

Dn

2 ¼
~Z
n

l, lim
n-1

Ds
2=

ffiffiffi
n
p
¼ ~Z

s

l:

Note that although Dn

2 and Ds
2 depend only on the sequences to be

compared, their distributions and in turn their limit distributions
depend on the models for the sequences to be compared. In our

case, their limit distributions depend on l and we index their

limit distributions by l. In Theorem 3.3 of Wan et al. (2010), it
was shown that the asymptotic power of Dn

2 and Ds
2 under the

alternative model when lo1 is Pf ~Z
n

lZ ~zn

ag and Pf ~Z
s

lZ ~zs
ag, where

~zn

a and ~zs
a are the upper a quantile of ~Z

n

1 and ~Z
s

1,respectively.

As the limiting random variables ~Z
n

1 and ~Z
s

1 are non-trivial, these

results showed that the power of Dn

2 and Ds
2 approaches a limit

that is generally less than 1 when sequence length tends to
infinity.

In order to derive new statistics to compare sequences related
through the pattern transfer model, we note that both Eð ~Z

n

lÞ40
and Eð ~Z

s

lÞ40 for lo1 while Eð ~Z
n

1Þ ¼ Eð ~Z
s

1Þ ¼ 0 (Wan et al., 2010).
So for lo1,

Eð ~Z
n

l�
~Z
n

1Þ40, Eð ~Z
s

l�
~Z

s

1Þ40:

Thus, when the sequence length is relatively large, we should
have EðDn

2Þ40 and EðDs
2Þ40 under the alternative model lo1.

On the other hand, under the null model l¼ 1, EðDn

2Þ ¼ EðDs
2Þ ¼ 0.

Thus, to test the null hypothesis H0 : l¼ 1 versus the alternative
hypothesis H1 : lo1, we can test if EðDn

2Þ40 or EðDs
2Þ40. Based

on approximating the mean by a sample mean, the idea of the
new statistic is to partition the long sequence of length n into
consecutive d¼ bn=Wc non-overlapping (discrete) subintervals of
length W, calculate Dn

2 or Ds
2 in each subinterval, and denote the

corresponding values in the i-th subinterval by Dn
2ðiÞ or Ds

2ðiÞ,
respectively. We introduce new statistics Tn and Ts as

Tn ¼
Xd

i ¼ 1

Dn

2ðiÞ,

and

Ts ¼
Xd

i ¼ 1

Ds
2ðiÞ:

We reject the null hypothesis in favor of the alternative when Tn

(or Ts) is large. If we fix the window length W, the power of the
statistic will tend to 1 as the sequence length n tends to infinity.

The following two considerations prompt us to further
improve the test statistics Tn and Ts defined above. First, in the
pattern transfer model, it is assumed that the patterns transferred
from one sequence to the other have the same location along the
two sequences. This assumption may not be realistic in real data.
We refer to the sequence A from which the patterns originally
come as the donor sequence and to the sequence B to which the
patterns are transferred as the acceptor sequence. The transferred
patterns may lie anywhere in the acceptor sequence. Thus, rather
than comparing at the same location in both sequences, for each
subinterval in either sequence, we should compare with all the
subintervals along the other sequence. The second consideration
is that we should find segments in the other sequence that
are most similar to the segment of interest. Thus, we take the
maximum of the test statistics across all the subintervals in the
other sequence. Based on these two considerations, we describe
the final test statistics as follows.

Consider two sequences of length n, A¼ A1A2 . . .An and
B¼ B1B2 . . .Bn. We compare the subintervals of length W from
one sequence to that in the other sequence. For each pair of
positions i,jA ½1,n�Wþ1�, we compare the subinterval of length
W starting at i in sequence A and the subinterval starting at j in
sequence B, A½i,iþW�1� ¼ AiAiþ1 � � �AiþW�1 and B½j,jþW�1� ¼
BjBjþ1 � � �BjþW�1, using Dn

2. Let

Mn½i,j,W � ¼Dn

2ðA½i,iþW�1�,B½j,jþW�1�Þ, ð1Þ

and

Xn

i ¼ max
1r jrn�Wþ1

Mn½i,j,W �, Yn

j ¼ max
1r irn�Wþ1

Mn½i,j,W �:

The final statistic we will use to detect the relatedness of the two
sequences is

Tn

sum ¼
Xn�Wþ1

i ¼ 1

Xn

i þ
Xn�Wþ1

j ¼ 1

Yn

j :

The statistic Ts
sum can be similarly defined as Tn

sum by replacing all
the n’s in the superscript with s.

Due to the definition of Xn

i and Yn

j (Xs
i and Ys

j), they all depend
on each other. Theoretical studies of the power of Tn

sum and Ts
sum

are difficult. Thus, we resort to simulations to study their power.

2.3. Computational issues related to the calculation of Tn
sum and Ts

sum

It is computationally expensive to calculate Tn
sum and Ts

sum. There
are ðn�Wþ1Þ2 choices of pairs of subintervals of length W. In each
pair of subintervals, the number of occurrences of each word w in
each subinterval needs to be counted, and 4k multiplications and
4k
�1 summations are needed to calculate Mn½i,j,W � and Ms½i,j,W �.

Then the values of Mn½i,j,W � and Ms½i,j,W � need to be sorted with
respect to i and j, respectively. Thus, the number of operations can
be huge even for moderate values of sequence length n.

To overcome the computational problems, two procedures were
implemented to reduce the computational time. First, we do not
compare all pairs of subintervals. Instead, for interval ½i,iþW�1�
in the donor sequence, we only compare with subintervals
½k� Sþ1,k� SþW �,k¼ 0,1,2, . . . ,bðn�Wþ1Þ=Sc in the acceptor
sequence. Similarly, we only compare subinterval ½j,jþW�1� in
the acceptor sequence with subintervals ½k� Sþ1,k� SþW �,
k¼ 0,1,2, . . . ,bðn�Wþ1Þ=Sc in the donor sequence. We refer to S

as the shift size because we shift the comparison window by size S.
For simplicity, we still use Xn

i (Xi
s) and Yn

i (Yi
s) to denote the

maximum over these subsets of intervals. Second, we calculate the
vector consisting of the number of occurrences for each pattern
across all the intervals using the following recursive formula,

Nw½iþ1,iþW � ¼Nw½i,iþW�1��IðAi � � �Aiþk�1¼wÞ

þ IðAiþW�kþ1 � � �AiþW ¼wÞ,

where Ið�Þ is the indicator function with I(E)¼1 if event E happens
and I(E)¼0, otherwise. Using this recursive formula, we are able to
calculate the pattern occurrence vector for any interval of length W

linearly in terms of sequence length.
We note that the values of the statistics Tn

sum and its counter-
part Ts

sum depend on the lengths and the nucleotide frequencies of
the sequences to be compared. The range of the statistics can be
very large when the sequences are long. Thus, their values cannot
be used to indicate how closely two sequences are related. We
suggest using the corresponding Monte-Carlo p-values to indicate
the strength of relatedness between two sequences. However,
computing the Monte-Carlo p-values can be time consuming
because many random sequence pairs need to be generated.
Another difficulty when calculating the Monte-Carlo p-values is
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the choice of appropriate random sequence models. An alterna-
tive strategy is to re-normalize the Dn

2 and Ds
2 to Cn

2 and Cs
2 in the

definition of Tn
sum and its counterpart Ts

sum, respectively, where

Cn

2 ¼
ðn�kþ1ÞDn

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
wAAk

~X
2

w=pw

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
wAAk

~Y
2

w=pw

q
,

and

Cs
2 ¼

Ds
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

wAAk
~X

2

w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~X

2

wþ
~Y

2

w

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
wAAk

~Y
2

w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~X

2

wþ
~Y

2

w

qr
:

Note that the ranges of both Cn

2 and Cs
2 are from �1 to 1. When the

values of Cn

2 and Cs
2 are close to 1, the sequences are closely related.

Similar to the procedures for defining Tn
sum, we can define a new

corresponding statistic bRn

sum by changing D’s to C’s in the definition.
Since bRn

sum has a range ½�2bðn�Wþ1Þ=Sc,2bðn�Wþ1Þ=Sc�, where
W is the window size and S is the shift size, we can normalize bRn

sum

by 2bðn�Wþ1Þ=Sc so that

Rn

sum ¼
bRn

sum

2bðn�Wþ1Þ=Sc
,

which has a range between �1 and 1. Thus, Rn
sum can be used to

measure the strengths of relatedness through the pattern transfer
model. We can similarly define Rs

sum. These new statistics can
potentially be used to study the relationships among groups of
sequences without calculating the p-values resulting in significant
saving of computational time. For simplicity, for the power studies
we focus on the T-statistics. When analyzing real data, we shall
study the R-statistics instead, to assess their relationship with
sequence alignment similarity.

2.4. Simulation studies

To compare the power of the new statistics Tn
sum and Ts

sum with
the corresponding global statistics Dn

2 and Ds
2, we resort to

simulations.

2.4.1. The effect of tuple length, window size, and shift size on the

power of the statistics

We first use simulations to study the effects of tuple length k,
window size W, and shift size S on the power of Tn

sum and Ts
sum. The

simulation is similar to that in Reinert et al. (2009) and only a
brief description of the simulation approaches is given below.
Two nucleotide frequencies are considered: the uniform
model with pa ¼ 1=4,a¼ A,C,G,T , and the GC-rich model with
pC ¼ pG ¼ 1=3, pA ¼ pT ¼ 1=6. The following three steps are used
to find the threshold values for the corresponding statistics Tn

sum

and Ts
sum for a given type I error a. First, ten thousand pairs of

independent identically distributed (i.i.d) sequences of length
n¼ 2j

� 102, j¼ 1,2, . . . ,7 for each fixed j, are generated. Second,
for each combination of tuple length k¼2, 3, 4, 5, 6, window
length W¼400, 800, 1600, and shift size S¼400, 800, 1600
(WZS), the statistics Tn

sum and Ts
sum are calculated for each pair

of sequences and their values are sorted in descending order.
Third, for a given type I error a, the top 100a quantile is identified
and denoted as tnsumða,n,k,W ,SÞ and ts

sumða,n,k,W ,SÞ, respectively.
We next approximate the power of Tn

sum and Ts
sum using

simulations. In our simulation study, we set the length of pattern
to be transferred as k0¼5 and the probability that a transferred
pattern starts at any position 1�l¼ 0:05. These parameters are the
same as in Reinert et al. (2009) for the pattern transfer model. For
these parameters, the power of both Dn

2 and Ds
2 when k¼5 tends to a

limit less than 0.6. The following three steps are used to simulate the
power. First, one thousand pairs of related sequences are generated
for different sequence lengths n¼ 2j

� 102, j¼ 1, . . . ,7 through the
pattern transfer model described in Section 2.1. Second, the values of
Tn

sum and Ts
sum for different combinations of ðn,k,W ,SÞ are calculated

for each pair of sequences. Third, the power p is approximated
by the fraction of times p̂ that Tn

sumZtnsumða,n,k,W ,SÞ

(or Ts
sumZts

sumða,n,k,W ,SÞ). The standard deviation of the estimated

power is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ=1000

p
r0:016. Thus, the 95% confidence interval

of p is at most ðbp�0:03,bpþ0:03Þ.

2.4.2. The effect of evolutionary time after pattern transfer on the

power of the statistics

In the above simulations, we study the power of the statistics
to detect the relationship between two sequences immediately
after the pattern transfer. In many situations, the two sequences
evolve after the pattern transfer. It is important to understand
how evolutionary time affects the power of the different statistics.
The following simulation strategy is used to answer this question.
First, two sequences are generated as in Section 2.4.1 using the
GC-rich model and 1�l¼ 0:05. Second, we evolve one of the
sequences using the HKY model (Hasegawa et al., 1985) with
transition to transversion ratio equal to 2.0. Let y¼ tm where t is
the evolutionary time and m is the mutation rate. Note that t and
m are confounded in the HKY model and the evolved sequence
depends only on y. The values of the statistics for the original
sequence and the evolved sequences are calculated with
W¼S¼400 and k¼5. Third, we repeat the first and the second
steps 1000 times and the power is approximated by the fraction
of times that the value of the statistic is equal to or larger than the
corresponding threshold values found in Section 2.4.1. We repeat
the above steps for different values of y¼ 0:0120:10, and
sequence lengths 2000 and 5600.

2.4.3. The power of the statistics based on Drosophila intergenic

sequences

The above two simulation strategies generate i.i.d sequences
through pattern transfer with/without evolution. For many geno-
mic sequences, the i.i.d model may not fit the sequence data well
and the Markov models may fit the sequence better. Under this
scenario, the statistics Dn

2, Ds
2,Tn

sum, and Ts
sum need to be slightly

modified by estimating pw using the Markov model instead of
the i.i.d model. Here we use the first order Markov model for
the analysis. Higher order Markov models do not increase the
performance of the statistics for our data set (results not shown).
To see the power of these statistics for comparing sequences
related through pattern transfer when the original sequences are
from genome sequences, we use the following simulations. First,
we download all the intergenic sequences (dmel-all-intergenic-
r5.35.fasta) of the Drosophila genome from FlyBase (http://
flybase.org/). Second, we randomly select 5000 sequence pairs
of the same length L from dmel-all-intergenic-r5.35.fasta and
calculate the corresponding statistics. These values are used to
approximate the background distribution of the statistics and
corresponding threshold values for type I error a¼ 0:05 are
obtained. To study the power of the statistics, we choose another
set of 5000 sequence pairs as above and transfer segments of one
sequence to the other as in our pattern transfer model with k¼5
and 1�l¼ 0:05. The power is approximated by the fraction of
times that the value of the statistic is equal to or higher than the
corresponding threshold value.

2.4.4. Applications of the statistics to the analysis of HIV-1 sequences

We use the statistics Cn

2, Cs
2, Rn

sum, and Rs
sum to analyze 42

pure type HIV-1 sequences from Wu et al. (2007). The lengths of
the HIV-1 strain sequences are in the range of 9210 kbp.
Our objective is to see which of the four statistics are most
appropriate to analyze the data under what conditions. To achieve

http://flybase.org/
http://flybase.org/


X. Liu et al. / Journal of Theoretical Biology 284 (2011) 106–116110
this objective, we study the correlation of the values of the
various statistics with the sequence similarity based on sequence
alignment, for different ranges of sequence similarity. The
sequence similarity is defined as the percentage of matches
between the two sequences over the reported aligned region
(including any gaps in the length). The similarity scores of two
sequences are directly calculated by the ‘‘needle’’ program. The
needle program is a pairwise sequence global alignment tool
based on the Needleman–Wunsch method from the EMBOSS
(version 6.3.1) software suite (Rice et al., 2009).
3. Results

For two given sequences, the statistics Tn
sum and Ts

sum depend
on the following parameters: the length of the tuple k, the
window size W, and the size of the shift S. We first investigate
whether there are parameter regions where the new statistics can
be more powerful than the original global statistics. We then
study how the power of the statistics depends on these para-
meters. As in our previous studies, we consider two models: the
uniform model with pA ¼ pC ¼ pG ¼ pT ¼ 1=4 and a GC-rich model
with pA ¼ pT ¼ 1=6, pG ¼ pC ¼ 1=3. We present the results for the
uniform and the GC-rich models separately.

Fig. 1(a) and (b) compare the power of the new statistic
Tn

sum with the original global Dn

2 statistic for the (a) uniform and
(b) GC-rich models, respectively, when k¼5 for different values of
window size (W)¼shift (S)¼(400, 800, 1600) as a function of
sequence length n. Fig. 1(c) and (d) show the corresponding
figures for Ts

sum and Ds
2. It can be seen from these figures that
Fig. 1. The power of Tn
sum under the (a) uniform and (b) GC-rich models for tuple siz

The same figures for Ts
sum are given in (c) and (d), respectively.
the power of the new statistics Tn
sum and Ts

sum is much higher than
that of the corresponding global statistics Dn

2 and Ds
2, respectively.

The power of both Dn
2 and Ds

2 increases slowly when sequence
length n is relatively short ðo2 kbÞ and stabilizes at their
corresponding limits less than 0.60 when sequence length is
above 2000. The power of the new statistics Tn

sum and Ts
sum for

all the three situations increases to 1 as sequence length tends to
infinity and is much higher than 0.60. We note also that
throughout Tn

sum is more powerful than Ts
sum, and the statistics

are more powerful in the uniform setting than in the GC-rich
setting. Given the promising results, we next study the effects of
tuple length k, window length W, and shift length S on the power
of Tn

sum and Ts
sum.

3.1. The effects of tuple size k on the power of Tn
sum and Ts

sum

In our simulations, the length of the transferred pattern k0 is 5.
Intuitively, if a statistic is reasonable, we would expect that the
tuple size k achieving the highest power should also be 5. Our
previous studies (Reinert et al., 2009; Wan et al., 2010) showed
that the power of global Dn

2 increases with tuple size k (up to
k¼10). Here we study the power of Tn

sum and Ts
sum as a function of

k for different combinations of window sizes and shift sizes.
Fig. 2(a) and (b) show the power of Tn

sum as a function of tuple size
when window size¼shift size¼400 for the (a) uniform and
(b) GC-rich models, respectively. Fig. 2(c) and (d) give the
corresponding figures for Ts

sum. The same set of figures for other
combinations of window size (W) and shift size (S) are given in
the supplementary material. It can be seen from Fig. 2 and
supplementary Figs. 1–5 that the power increases with tuple
e k¼5 and different values of window size (W)¼shift size (S)¼400, 800, 1600.



Fig. 2. The effect of tuple size k on the power of Tn
sum under the (a) uniform and (b) GC-rich models when window size (W)¼shift size (S)¼400. The same figures for Ts

sum

are given in (c) and (d), respectively.
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length k when kr5 and the power for k¼6 is slightly smaller
than the power for k¼5 for both Tn

sum and Ts
sum. Thus, a slight

increase of the tuple size above the optimal size will not have a
significant effect on the power of the statistics. However, using a
smaller tuple size may greatly reduce the power.
3.2. The effects of shift size S on the power of Tn
sum and Ts

sum

As shown above, the optimal tuple size k which gives the
highest power is related to the size of pattern to be transferred. In
our simulations, we let the size of the transferred patterns be 5,
and we fix the tuple size k¼5 when we study the effect of
window size and shift size. Based on the definitions of Tn

sum and
Ts

sum, we let the shift size (S) be less than or equal to the window
size (W) so that the whole sequence is covered. We expect that,
for fixed window size, the power of the test is a decreasing
function of shift size. The smaller the shift size (S), the higher the
power of the statistics is. Fig. 3(a) and (b) show the power of Tn

sum

for shift size S¼400, 800, 1600 with tuple size k¼5 and window
size W¼1600 for the (a) uniform and (b) GC-rich models,
respectively. Fig. 3(c) and (d) show the corresponding results for
Tn

sum. The results when k¼5 and W¼800 with shift size S¼400,
800 are given in the supplementary material. Fig. 3 and supple-
mentary Fig. 6 confirm our original hypothesis that the smaller
the shift size, the higher the power of the test. It should also be
noted that the power with shift size S¼800 is similar to that with
shift size S¼400. This may be caused by the overlaps between the
shifted intervals.
3.3. The effects of window size W on the power of Tn
sum and Ts

sum

We next study the effect of window size W. To study the effect
of window size on the power of the tests, we fix the shift size S ¼

400 and tuple size k¼5. We let the window size be W¼400, 800,
1600. Fig. 4(a) and (b) show the power of Tn

sum for different window
sizes for the (a) uniform and (b) GC-rich models, respectively.
Fig. 4(c) and (d) show the corresponding figures for Ts

sum. The
results with k¼5 and shift S¼800 for window size W¼800, 1600
are given in the supplementary material. In the range of window
sizes considered, the tendency is that the smaller the window size,
the higher the power of the test statistics is. We note, however,
that particularly when the sequence is short, the difference
between window size 400 and 800 is not very pronounced.

3.4. The effect of evolutionary time after pattern transfer on the

power of Tn
sum and Ts

sum

To study the effect of evolutionary time after pattern transfer
on the power of the test statistics, we let W¼S¼400 and k¼5.
Different sequence lengths and relative evolutionary rate y¼ tm
are studied. Fig. 5 shows the change of power with respect to y
when (a) L¼2000 and (b) L¼5600, respectively. We continue to
see that Tn

sum and Ts
sum are more powerful than Dn

2 and Ds
2,

respectively, across all values of y. In the simulated situations,
the power of Tn

sum is generally higher than the power of Ts
sum.

As expected, the power for all the test statistics decreases as a
function of y. Taking the average human mutation rate of about
m¼ 10�8 per base per generation as an example, when t¼106



Fig. 3. The effects of shift size on the power of Tn
sum under the (a) uniform and (b) GC-rich models with tuple size k¼5 and window size W¼1600. The same figures for Ts

sum

are given in (c) and (d), respectively.

X. Liu et al. / Journal of Theoretical Biology 284 (2011) 106–116112
generations, the power of Tn
sum decreases from 0.79 to 0.76. On the

other hand, with t¼107 generations, the power of Tn
sum decreases

to 0.41, which is low.

3.5. The power of Tn
sum and Ts

sum based on real sequence pairs

Fig. 6 shows the power of Tn
sum and Ts

sum for different window and
shift sizes when the probability of transfer 1�l¼ 0:05 and type I
error a¼ 0:05. It can be seen from the figure that the power of Tn

sum

increases when the window size and shift size decrease and is
higher than Dn

2. The same conclusions hold for Ts
sum and Ds

2.
Comparing Fig. 6 with Fig. 1, we can see that the power of the
statistics for comparing the real sequences related through pattern
transfer is lower than that for the simulated i.i.d background
sequences and that the power decreases with sequence length.
We also found that the power of all statistics does not increase with
the sequence length. A potential explanation for these observations
is that the intergenic sequences are heterogeneous and a common
Markov model may not fit the sequences well, in particular for long
sequences, resulting in low power of our statistics for detecting their
relationships. For our real sequences, the power of Tn

sum and Ts
sum are

mostly similar and sometimes the power of Ts
sum is higher than the

power of Tn
sum indicating that Ts

sum is more robust to the mis-
specification of sequence models.

3.6. The correlation between the various statistics with sequence

alignment similarity score

The relationships between the values of the statistics, Cn, Cs,
Rn

sum, and Rs
sum, and sequence alignment similarity scores are

shown in Fig. 7. From the figure, it is clear that there is not a
linear relationship between sequence alignment similarity and
any of the four statistics in the whole range of the similarity score
from 58% to 97%. The figure also indicates that neither of the four
statistics are highly correlated with sequence alignment similar-
ity when the similarity is less than 78%. Thus, we consider only
the region with similarity greater than 78%. The region is divided
into three intervals: [78%,83%), [83%,88%), and [88%,1). The
Pearson correlation coefficients (together with their 95% confi-
dence intervals) between Cn, Cs, Rn

sum, and Rn
sum and sequence

alignment similarity are given in Table 1. It can be seen that when
the sequence alignment similarity is between 78% and 83%,
Rn

sum and Rs
sum are positively correlated with alignment similarity

while Cn and Cs do not show a significant association with
alignment similarity, indicating the lack of distinguishing power
for sequences in this range. When the alignment similarity is
between 83% and 88%, the correlation of Cn (Cs) with alignment
similarity seems to be higher than the corresponding correlations
between Rn

sum ðR
s
sumÞ, however, their 95% confidence intervals

overlap indicating that the difference is not statistically signifi-
cant. The results indicate that, in this region, there are indications
that Cn and Cs have better distinguishing power than the corre-
sponding statistics Rn

sum and Rs
sum, respectively. However, the

correlations are only moderate with a range between 44% and 51%.
When the sequence alignment similarity score is higher than 88%, all
four statistics are highly correlated with sequence alignment simi-
larity with correlation above 0.70 and their 95% confidence intervals
overlap. Thus, all of the statistics have similar and high distinguishing
power.

We also found in this analysis that although the calculation of
Rn

sum and Rs
sum (window size W¼800, and shift size S¼800) is

slower than the calculation of Cn and Cs, it is faster than the



Fig. 5. The effects of evolutionary time on the power of Tn
sum, Ts

sum, and Dn

2 , Ds
2 , D2 when (a) L¼2000 and (b) L¼5600 under the GC-rich model with tuple size k¼5, window

size W¼400, and shift size S¼400. The pattern transfer probability 1�l¼ 0:05 and type I error a¼ 0:05.

Fig. 4. The effects of window size on the power of Tn
sum under the (a) uniform and b) GC-rich models when tuple size k¼5 and shift size S¼400. The same figures for Ts

sum

are given in (c) and (d), respectively.
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pairwise sequence alignment (the calculation of Rn
sum and Rs

sum

uses less than 1/3 computation time of the needle program).
4. Discussion and conclusions

In this paper, we develop two new statistics Tn
sum and Ts

sum, plus
re-normalized versions, for alignment-free sequence comparison.
These statistics depend on three parameters: tuple size k, window
size W and shift size S. We show through simulations that the new
statistics can be much more powerful than the previous global
statistics Dn

2 and Ds
2, respectively, under a pattern transfer model

when appropriate parameter values are used. Although under this
alternative model the power of Dn

2 and Ds
2 approaches limits that are

less than 1 as sequence length tends to infinity, the power of the new
statistics Tn

sum and Ts
sum increases with sequence length and tends to

1 as the sequence length tends to infinity, when choosing a large
enough tuple size. Thus, these new statistics are appropriate for
detecting relatedness of two sequences under the pattern transfer
model.

We then study the effect of the parameters on the power of the
statistics Tn

sum and Ts
sum. We show that the power is highest when
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the tuple length used in the statistics is the same as the length of
the patterns being transferred and decreases with shift size S. We
conjecture that when the window size is too small, the power of
Tn

sum and Ts
sum can be low because Dn

2 or Ds
2 will not be able to

identify the similarity between pair of subintervals of length W

resulting in low power. The optimal window size should depend
on the value of l and there should be an inverse relationship
between the optimal window size and l.

There are several limitations of our study. First, the pattern
transfer model is too simplistic to model the relatedness of two
sequences that are related through the transfer of genetic material.
The rate of pattern transfer 1�l is most likely to vary along the
genome sequences to be compared and may be sequence dependent.
Some regions are more likely to be transferred than other regions.
Thus, it is more appropriate to model l as a random variable instead
of a constant. Second, the transferred genomic regions may have
some specific characteristics compared to the other regions. Most
current studies on horizontal gene transfer consider the transfer of
coding regions and we are not aware of studies on the exchange of
genetic material for noncoding regions or gene regulatory regions;
there may be considerable differences. Third, we assume that the
regions being transferred have the same length which clearly is an
over-simplification of exchange of genetic material between gen-
omes. Despite these limitations, our study provides evidence that our
new statistics can potentially be used to study relationships between
genome sequences under the pattern transfer model.



Table 1
The Pearson correlation coefficients (PCC) with their 95% confidence intervals (CI)

between the sequence alignment similarity and statistics Cn , Cs, Rn
sum, and Rs

sum in

different intervals of sequence alignment similarity. The PCCs are calculated using

the R function ‘‘cor’’, and the CIs of PCC are calculated using the R function

‘‘cor.test’’.

Sample size (n) Alignment similarity interval

Statistic [78,83)% [83,88)% [88,100)%

258 273 39

PCC (CI) PCC (CI) PCC (CI)

Cn 0.06 (�0.06, 0.18) 0.51 (0.41, 0.59) 0.79 (0.63,0.88)

Cs 0 (�0.12, 0.13) 0.54 (0.45, 0.62) 0.79 (0.62, 0.88)

Rn
sum 0.40 (0.30, 0.50) 0.44 (0.34, 0.53) 0.70 (0.49, 0.83)

Rs
sum 0.40 (0.30, 0.50) 0.49 (0.39, 0.57) 0.74 (0.56, 0.86)

Table 2
The power (�100) of Tn

sum and Ts
sum for different values of W¼S and the corresponding

global statistics Dn

2 and Ds
2 under the common motif model for the GC-rich scenario.

Test W¼S Sequence length

800 1600 3200 4000 4800 5600

Tn
sum 400 52 82 98 100 100 100

Tn
sum 800 65 93 98 100 100 100

Tn
sum 1600 94 98 100 100 100

Dn

2 65 95 99 100 100 100

Ts
sum 400 24 36 49 73 81 92

Ts
sum 800 28 43 54 75 83 93

Ts
sum 1600 53 59 82 82 95

Ds
2 28 53 69 81 88 96
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Throughout the paper, we assume the pattern transfer model.
A natural question is whether the new statistics Tn

sum and Ts
sum are

more powerful than the corresponding global statistics Dn

2 and Ds
2,

respectively, under the common motif model described in detail
in Reinert et al. (2009) and Wan et al. (2010). We carried out a
relatively simple simulation study to answer this question. As in
Reinert et al. (2009), the inserted pattern is ‘‘AGCCA’’ and the
probability that the pattern is inserted at a position is 0.01. Both
uniform and GC-rich background models are simulated. Table 2
shows the power of the new statistics Tn

sum and Ts
sum for different

values of W¼S¼400, 800, 1600 and the corresponding global
statistics Dn

2 and Ds
2 under the GC-rich model. The results for the

uniform model are given in the supplementary material. It can be
seen from this table that the global statistics Dn

2 and Ds
2 are

generally more powerful than the statistics Tn
sum and Ts

sum,
respectively, under the common motif model. There are signifi-
cant differences between the common motif model and the
pattern transfer model. Under the common motif model, the
expected number of word occurrences differs from that under
the null model, thus making the power of global statistics close to
1 when sequence length tends to infinity. The local statistics such
as Tn

sum and Ts
sum did not make full use of that information making

them less powerful compared to the global statistics under the
common motif models. Thus, depending on the real underlying
models for the relationships between the sequences, different
statistics should be used.
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