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Abstract New generation sequencing systems are changing how molecular biology is practiced. The widely promoted
�1000 genome will be a reality with attendant changes for healthcare, including personalized medicine. More broadly the
genomes of many new organisms with large samplings from populations will be commonplace. What is less appreciated is
the explosive demands on computation, both for CPU cycles and storage as well as the need for new computational methods.

In this article we will survey some of these developments and demands.
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1 Introduction

It may be somewhat futile to attempt to track per-
fectly an explosion. But here we hope to give some
hints about the technological and computational chal-
lenges that will surely be addressed along the path
to the commoditization of sequence information. As
the cost of sequence information drops, its utility will
grow as sequencing directly alters medical care, the type
and safety of our food supply, and of course, now un-
fathomable applications: who would have predicted 50
years ago that lasers would find broad application as
“pointers”? Accordingly, we expect that the experi-
mental and computational challenges will become pro-
gressively intermingled in ways that may foster devel-
opment of completely new disciplines for tackling the
even greater challenges that are now unthinkable. In
this regard, we present here a brief overview of the cur-
rent state of DNA sequencing, and our best guesses for
how technology and computation may interact for cre-
ating this future.

2 Current Technology

Although commercial next generation platforms dif-
fer from each other in how sequence is actually ob-
tained, they share the common advantage of not

requiring bacterial clone libraries. In many ways, the
obviation of clone library construction and handling is a
major reason why genome sequencing costs have plum-
meted, while platform throughput is dramatically in-
creasing. Templates for large scale DNA sequencing
are made from a library spread across massive culture
plates and individual clones are isolated by “picking
robots” for downstream sequencing reactions. Such op-
erations, for large genomes such as human, require fac-
tory floor settings bristling with robots and technicians
before any sequencing data is acquired. In contrast,
next generation platforms construct “clone” libraries
directly from individual genomic DNA molecules, which
are amplified by emulsion or bridge PCR (polymerase
chain reaction). Entire genome libraries consist of small
vesicles, or surfaces laden with amplicons, but there
is one company[1] whose libraries comprise unamplified
genomic templates that are bound to surfaces.

2.1 Next-Generation Sequencing

Today, an investigator can choose between four com-
mercially available systems, each offering a panoply of
technical strengths and weaknesses that need to be con-
sidered against overall cost and application: 1) Illu-
mina’s Genome Analyzer, 2) Life Technologies’ SOLiD
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System, 3) Roche’s 454 GS FLX, and 4) Helicos’
Heliscope Sequencer. See [2] for an extensive review.
This list of platforms should be considered as merely
an initial offering, because another half-dozen systems
will be announced through 2010. These commercial
sequencing systems are now regarded as “next gen-
eration” platforms and use variations of a venerable
approach — SBS, or sequencing by synthesis, for the
acquisition of sequence reads using cycles of poly-
merase action incorporating labeled nucleotides, which
are tracked by microscopy. A quick summary of next
generation sequencing systems follows (company web-
sites offering informative media presentations).

2.1.1 Illumina’s Genome Analyzer
(http://www.illumina.com/)

Genomic templates, after attachment of complemen-
tary adaptors, are captured and tethered to a glass slide
for amplification by bridge PCR[3]. Reads lengths are
about ∼75bp and paired-end sequencing is possible us-
ing 200 bp∼5 kbp inserts.

2.1.2 Life Technologies’ SOLiD System
(https://products.appliedbiosystems.com)

Emulsion PCR amplicons using genomic DNA
molecules are captured on beads and enriched for ex-
tended products. Beads are then deposited onto a glass
slide for sequencing cycles. In place of polymerase-
mediated synthesis, the SOLiD system is distinguished
by its cycles of ligation that sequentially incorporate
strings of labeled di-base (2 nt) probes. Each cycle
of ligation is followed by cleavage with a nicking re-
striction enzyme and then the entire extension pro-
duct is removed. A new primer, offset by one base-
pair, is annealed and a new round of ligation mediated
extension proceeds. These operations are repeated 5
times. SOLiD achieves read length of 50 bp and ac-
commodates inserts for paired end sequencing spanning
600bp∼10 kbp.

2.1.3 Roche’s 454 GS FLX
(http://www.454.com/)

Like the Illumina platform, the Roche system uses
emulsion PCR and amplicon attachment to beads to
set up templates for sequencing through cycles of
polymerase-mediated addition of unlabeled nucleotides.
Templates and immobilized enzymatic reagents are de-
posited into individual microwells for cycles of sequenc-
ing. Unlike all other platforms, the Roche system
does not use a fluorescence detection scheme, but in-
stead leverages chemiluminescent signals transduced
from pyrophosphate[4-5] liberated during each cycle
of polymerase-mediated primer extension. Luciferase

action is triggered by ATP through transduction of
available pyrophosphate into ATP via sulfurylase. Lu-
ciferase plus ATP converts luciferin into oxyluciferin ac-
companied by photon emission, which is optically de-
tected. This transduction step and subsequent pho-
ton emission are quantitative meaning that the count
of nucleotides added per cycle is precisely measured.
However, some issues do arise when long homopoly-
mer tracts (long strings of the same nucleotide) are
sequenced[6]. Because chemiluminescence requires no
external excitation, the 454 system presents low back-
ground (excitation) for any optical detection scheme.
Lastly, the long 400 bp∼600bp read lengths and the
capability for paired end sequencing, up to 20 kbp, en-
able this platform to deliver data supporting de novo
assembly of bacterial genomes.

2.1.4 Heliscope Sequencer
(http://www.helicosbio.com/)

The Heliscope handles genomic DNA samples in
much the same way as the Illumina Genome Analyzer,
but dispenses with any amplification steps once individ-
ual template strands are captured onto a glass surface
for sequencing. Read lengths are ∼25 bp and the He-
liscope will accept up to 5 kbp inserts for paired end
sequencing.

2.2 Next-Next Generation (Gen-3) Sequencing

Even more advanced sequencing platforms, called
Gen-3, or next-next generation, will likely appear dur-
ing 2010. Gen-3 systems will accrue even greater
throughput (lower costs) by real-time, direct detection
of polymerase action during synthesis, using labeled nu-
cleotides and a single molecule template. Essentially,
this is sequencing by synthesis or SBS, but without se-
rial biochemical steps for acquiring reads. Since this
type of SBS is “free running,” nucleotides have 5′ fluors
that are cleaved off when polymerase incorporates them
during elongation. Detection of these events requires
measurement of transient emissions for each added nu-
cleotide, since the fluor is not detected long after clea-
vage from the nucleotide. The principal advantages
here are the obviation of slow, expensive sequencing
cycles manifesting next generation platforms and the
need for template amplification steps. In fact, it would
be quite difficult to coordinate polymerase action on
multiple, amplified templates, so that these platforms
intrinsically require single molecule samples. There are
two major platforms under development for real-time,
cycle-free sequencing:

2.2.1 Pacific BioSciences (PacBio)

The PacBio platform uses a very unique detection
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scheme based on the properties of zero mode wave-
guides (ZMWs) to control the radiative “reach” of the
excitation entering it. The ZMWs are an array of alu-
minum nanowells, just 100nm wide, fabricated over a
glass slide the slide providing a tiny window for each
ZMW. The action of a single polymerase bound to
a template, sitting at the bottom of each nanowell,
is actively imaged during incorporation of labeled nu-
cleotides, which is accompanied by concerted release
of their fluorochrome labels. Because ZMWs limit ex-
citation close to their glass windows, ∼10nm detec-
tion is limited to only those fluorochrome labeled nu-
cleotides engaging polymerase during strand elonga-
tion. This feat ensures normal polymerase action by
allowing optimized nucleotide concentrations, while eli-
minating the fluorescence background caused by specta-
tor nucleotides bearing fluorochromes[7]. At this stage
of development it is too early to definitively state reads
lengths; however, PacBio uses a highly processive DNA
polymerase, which they have shown capable of strand
displacement synthesis stretching multiple kbp.

2.2.2 Life Technologies

The details regarding Life Technologies’ Gen-3 sys-
tem are still somewhat obscure, but sufficiently com-
pelling to discuss here. This Gen-3 is uses similar
chemistries and attenuation of detection volume as the
PacBio system, but ingeniously places the detection
burden onto an individual DNA polymerase. Although
reagent nucleotides are fluorochrome labeled, they are
only visible by FRET (fluorescence resonance energy
transfer) excitation, when incorporated within a grow-
ing strand, mediated by a labeled polymerase. Not de-
tected are labeled nucleotides that are freely diffusing,
and like the PacBio system, this advantage allows op-
timized concentrations of nucleotides during sequenc-
ing. Such specificity is engendered by FRET excita-
tion, which requires a fluorochrome donor — accep-
tor pair, and here the labeled polymerase provides the
donor, while the acceptor is attached to the incoming
nucleotide.

2.3 Next-Next-Next Generation: Nanopore
Sequencing

Characterizing the previous two sequencing systems
as Gen-3 means that nanopore sequencing should be
called “Gen-4.” Conceptually, it may be the simplest
way to sequence DNA, but possibly the most diffi-
cult to implement. Briefly, a single strand of DNA
is electro-kinetically threaded through a tiny pore of
comparable width (∼1 nm ∼ 2 nm), and the measured
electrical signature of each base, acquired as it moves
through the pore, reports how much current it blocks.

Purines (A, G), being more bulky than pyrimidines
(C, T), block more current, as electrically measured
across a pore[8]. For this purpose, nature has provided
an almost ideal pore protein — hemolysin — when
suitably engineered[9] creates new routes for very in-
expensive sequencing[10]. Nanofabrication approaches
are also creating synthetic pores for DNA sequenc-
ing offering new opportunities to place novel detec-
tion schemes within the same device[11]. The main ad-
vantages of nanopore sequencing are that DNA sam-
ples can be immediately analyzed without any label-
ing, or involved preparation. The non-optical elec-
tronic detection scheme lays the basis for the develop-
ment of supremely miniaturized instrumentation, which
will dramatically reduce costs. Recent developments
in nanopore sequencing are reinvigorating an early
single molecule sequencing approach championed by
Keller and colleagues over 20 years ago[12]. Here, both
old and new approaches use exonuclease for serially
clipping bases (Keller used fluor labels) from a DNA
strand for separate downstream detection, but the mod-
ern approach identifies liberated bases by nanopore
detection[13], obviating enzymatically troublesome la-
beled nucleotides and optical detection.

2.4 The Central Problem: Cost

Even when we reach the goal of a �1000 genome,
this price is still far too costly for supporting the
commoditization of sequence information. In the fi-
nal analysis, there is an almost an unquenchable need
for more sequence information within dramatically ex-
panded databases and from citizens, who will expect
to perform numerous assays as a normal part of their
daily lives.

3 Computational New Generation Sequence
Assembly

In this section we will focus on computational as-
pects of the assembly of genomic DNA sequence from
reads. There are a multiplicity of issues resulting from
determining the reads from the machines discussed in
the previous section, issues which are specific to each
technology. With Sanger sequencing the quality scores,
determined by estimating the probability that the read
was actually the reported letter, became very popular
and useful although these q-values are not always from
an accurate estimate of the probability. Here we ne-
glect such matters in order to provide a more general
discussion.

While our discussion is organized around what is
called de novo sequence assembly, a host of other chal-
lenges result from using a sequenced genome to “map”
the reads onto, cataloging the RNA gene transcripts,
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studying epigenomics data such as that which results
from bisulfide sequencing. See the paper by Zhang and
Smith in this issue for epigenomics issues[14], Morozova
et al. for functional genomics applications[15] and Chen
et al. for an in depth discussion of mapping reads onto
genomes[16].

3.1 Classical Sequence Assembly

The chain termination method of DNA sequencing
was developed by Fred Sanger in the 1970s and became
increasingly popular in the last 25 years of the 20th cen-
tury. Dideoxynucleotide triphosphates (ddNTPs) are
used as DNA chain terminators and initially there was
a gel electrophoresis lane for each of four reactions. Gel
resolution of one base pair allowed the calling of the
sequence of bases for a read. Later dye terminator se-
quencing allowed all four reactions to be run in a single
channel. Technological advances in Sanger sequencing
created the workhorse of the Human Genome Project
and allowed early completion of that project.

In the same way that increasingly sophisticated im-
provements of Sanger sequencing allowed production of
the data for the Human Genome Project, there was a
parallel development of computational programs to as-
semble DNA sequence from random reads. The reads
were randomly located on the target DNA as well as
randomly either strand of the double helix. (We ig-
nore issues of diploid targets for now.) Roger Staden
was called on by Fred Sanger to write code that as-
sembled DNA sequence. Initially he employed a greedy
approach. As the DNA was produced, he assembled
overlaps into longer pieces (super-reads) by taking the
longest overlaps first[17]. At the same time Gingeras
et al. employed a similar approach[18]. Later that
strategy was used with a collection of reads. A sim-
plification of the greedy method was presented to the
theoretical computer science community: given a col-
lection of reads, what is the length of the shortest su-
perstring which contains each read (exactly)? See [19].
The known results require some sophisticated computer
science. See [20] for a proof that the sequence provided
by the greedy algorithm is at most 4 times optimal. It
is known that the answer is at most 2.5 times optimal
and there is a conjecture that 2 times optimal is the
best possible bound.

However greedy is a weak algorithm and the wide
occurrence of repeats in many genomes including the
human genome makes the answers provided by greedy
unsatisfactory. The first systematic study of DNA as-
sembly was in [21]. Many valuable papers by Gene My-
ers and collaborators brought sophisticated improve-
ments to assembly, and Myers led the Celera assem-
bly team to that company’s resulting Human Genome

Sequence[22-25]. Just as celebrated was the Santa Cruz
assembly of the data from the public project, see [26].
[27] is a comparison of the results of these justly cele-
brated projects.

The sequence assembly algorithms we have been de-
scribing can be outlined in three steps: Overlap, Lay-
out and Consensus. Overlap requires considering for
each pair of reads whether they overlap in the presented
orientation or in another orientation. This means two
comparisons, conceptually. The most straightforward
comparison is to use overlap dynamic programming,
which takes time proportional to the product of the
read lengths. The Celera project had approximately
26.5 million reads of length approximately 550, so this
direct approach was not feasible, but it indicated the
magnitude of the problem. The next Layout step is
even more challenging, requiring the determination of
sets of reads with mutually consistent overlaps, and de-
termining approximately how they might be arranged
on the genome. Here the difficult problem of determin-
ing which orientation each overlapping pair needs to be
solved. With 106 reads there are 2106

= 10301000 pos-
sible orientations. Finally for Consensus, given an ap-
proximate alignment of a set of consistent overlapping
reads, the multiple alignment problem must be solved
to produce a consensus sequence. This too is a very
challenging computational task.

3.2 Euler Sequence Assembly

With the New Generation Sequencing methods de-
scribed in Section 2, we see many critical differences
from the classical Sanger data. First of all the reads
are often much shorter, and also there are many more
reads. An approach using Overlap-Layout-Consensus
is doomed to failure and a new method must be found.
Fortunately there was a paper in 1995 by Idury and
Waterman which, although virtually unnoticed at the
time, can be exploited for these uses[28]. Essentially
it trades huge computing costs for a substantial (and
sometimes huge) storage cost. It was a quite new ap-
proach for DNA assembly.

The idea for the new 1995 method is based on Eu-
lerian graphs. There is a natural way to take a se-
quence and encode it into a graph. One chooses a value
of k and extracts all of the n − k + 1 k-words from
the sequence. Then the vertices of the sequence graph
are the various k − 1 words from the k-words and the
edges are the corresponding k-words. Note that we have
gone from a sequence to a graph. If the data were the
k-words from an unknown sequence, then an identical
graph could be produced and the job would be to infer
that unknown sequence from the data. Note that this
job is simple when there is a unique answer from our
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graph. Of course the answer need not be unique but
one sequence consistent with the data can be produced
in linear time, or it can be decided in linear time that
no such sequence exists, if indeed there is none. These
ideas and procedures are part of the theory of Eulerian
graphs which for sequences goes back over 100 years.
Contrast these easy operations with the difficulties for
another encoding where the k-word data are identified
with graph vertices. In that case we have a Hamiltonian
path problem which is NP-hard.

The extension of sequence graphs to sequence assem-
bly begins with a specification of k and every fragment
is decomposed into its overlapping k-words. The to-
tal set of these k-words for all fragments is merged,
where attached to a k-word is a list of all fragments
and fragment positions where the word occurs. Then
a sequence graph is constructed from this set, carrying
along all the annotation, which is of course associated
with edges. The choice of k is based on the short-
est length where most k-words in the genome will be
unique. The target coverage needs to be deep enough
so that the correct k words will appear in the frag-
ments fairly often; in this way sequencing errors will
be out voted. Errors, of a few letters either substitu-
tions of indels, will then cause bubbles to diverge in the
graph from heavier weighted edges by which the erro-
neous k-words appear on the graph. The 1995 paper[28]

recommended trimming such edges. In the programs
that have appeared in the last few years, so-called er-
ror correction is instead recommended. Pevzner has
introduced what he calls the Eulerian superpath prob-
lem where the goal is to extract Eulerian paths from
the sequence graph which breaks as few original frag-
ment paths in the graph[29-30]. That is just what all
the heuristic methods attempt to do. Pevzner also has
extended the technique to handle paired-end sequenc-
ing. Myers has shown this problem is NP-hard, but the
heuristic algorithms still run linear time and work quite
well[31]. In some sense the final sequence graphs after
processing data from a genome project are simply el-
egant data structures containing what is known about
the target genome. Here is a schematic of the method:

Algorithm Assembly. Set N , k: input: f1, f2, . . . , fN .

1) Take all fragments and their reverse complements.

2) Construct the sequence graph on (k−1)-tuples for the
k-tuples from step 1).

3) Perform an Eulerian tour(s) and infer the sequence(s).

4) Align fragments to sequence(s) produced by step 3).

See [32-34].
As mentioned earlier, this discussion leaves out any

mention of the error properties of the particular se-
quencing technologies. Not all reads are equally reli-
able and this should be taken into account. Errors can

arise from runs of the same base in the material to be se-
quenced and other issues such as bias in the reads which
are recorded. We do not go into details of the various
platforms here but they are essential in constructing
effective assembly and read mapping packages.

Storage is a serious drawback to Eulerian path me-
thods, and it is difficult to imagine that several more
orders of magnitude improvement to sequencing tech-
nologies can proceed without a breakthrough in the ba-
sic computational methods (including storage).

4 The Future

Overview: five years ago, one company dominated
the market for the platforms and reagents used for se-
quencing. Today, this is no longer true and the current
situation is characterized by vibrant activity in both the
academic and commercial settings that are creating a
torrent of new ways for sequencing DNA. The prob-
lems, challenges, and promises to be encountered, as
sequencing costs drop, will certainly have evolutionary
components, but will likely also present radical shifts in
how we approach scientific problems and view ourselves
within the continuity of life, or society.

4.1 Absentee Genomics

Given the just described characteristics of Gen-2 and
Gen-3 sequencing systems, there is an enormous gap de-
veloping between the quantity and quality of sequence
data. Aside from the great variety of new error pro-
cesses associated with new sequencing platforms, short,
but plentiful sequence reads are presenting new oppor-
tunities for reliable sequencing. However, there looms
the issue of completeness if a sequenced genome harbors
any gaps, or misassemblies, it is incomplete, but can ac-
commodate most gene hunting activities. Modest read
length and the absence of physical and genetic maps
aggravates this problem. It is somewhat sobering to re-
alize that there are only handful of “finished” genomes
despite current advances in sequencing technology and
assembly. Remarkably, the “finished” human genome
reference map does not include much sequence informa-
tion regarding centromeric regions — critical chromo-
somal regions that anchor cell division. Unfortunately,
an imperfectly and incompletely sequenced genome is
a compromised reference for comparative studies. Any
study aimed at discovering genomic polymorphisms and
mutations is weakened by questions of reference map
accuracy, whose validations often are commensurate in
scope with the efforts required for cataloging the ge-
nomic alterations.

In response to the problem outlined above,
we project that over the next 2 years, refer-
ence genomes[35-36] will be constructed using new
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algorithms[36] combining long-range physical maps with
voluminous Gen-2/3 datasets[37]. In this regard, the
Optical Mapping System constructs genome-wide or-
dered restriction maps from individual (∼500 kbp) ge-
nomic DNA molecules[38-39]. Like the Gen-3 sequencing
platforms, Optical Mapping is a single molecule system
that uses microscopy for imaging dense arrays of in-
dividual DNA molecules[40]. Although sequence infor-
mation is not acquired, a dense restriction map is con-
structed for each 500kbp molecule, enabling maps to
bridge across complex genomic regions. Optical Map-
ping data sets comprise hundreds of thousands of maps
that are assembled into genome-wide physical maps us-
ing de novo[36,41] and anchoring approaches utilizing
provisional sequence scaffolds[35,42]. A successor to Op-
tical Mapping — “Nanocoding”[43] — promises dra-
matic boosts to throughput by leveraging novel DNA
nanoconfinement effects (long DNA molecules are elec-
trically squeezed in tight tubes). Other advancements
are aimed at new systems that directly combine se-
quencing and long-range mapping within a single ap-
proach. Here, a string of short sequence reads is ac-
quired along a large molecule that is mapped[44-46];
called “Optical Sequencing.” In this way, many of the
issues surrounding modest read lengths are addressed
and such developments support that assembly of truly
finished genomes.

4.2 Every Genome Matters

Although new sequencing approaches will drive the
compilation of a Noah’s ark catalog of sequenced
genomes, somatic genomes present an almost infinite
collection of genotypes for discovery by even more ad-
vanced sequencing approaches. Analysis of tissue sec-
tions will yield subtle genomic alterations when ultra-
deep sequencing becomes economically feasible. These
rare genomic alterations sometime arise from inher-
ent genome instability[47], and may evolve further into
pervasive cancerous states. Consider that gathering
1 000 000 X coverage is about 100 000 times deeper than
the publicly available human reference genome. An-
other way of thinking about this is 1 000 000 X genome
coverage is equivalent to sequencing 100 000 individu-
als. The computational challenges arising from this are
far beyond our current capacities; even today’s Eulerian
methods are bound from the excessive memory require-
ments. As always the solutions must be closely linked
to the technologies.

Extensive resequencing will reveal outlier popula-
tions of cellular genomes (the genome of an individual
cell) when sequencing is done on a per cell basis. If
cellular DNAs are pooled then sequenced, a more prac-
tical approach, a spectrum of rare genotypes spanning

the entire genome will be apparent for a given tissue
sample. It is likely that most of these altered genotypes
are mutations, but more interestingly, we will have the
chance to discover new developmental programs that
may guide differentiation and ensure pluripotency.
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