
Research Article

An Integrative Network Approach to Map

the Transcriptome to the Phenome

MICHAEL R. MEHAN, JUAN NUNEZ-IGLESIAS, MRINAL KALAKRISHNAN,

MICHAEL S. WATERMAN, and XIANGHONG JASMINE ZHOU

ABSTRACT

Although many studies have been successful in the discovery of cooperating groups of genes,
mapping these groups to phenotypes has proved a much more challenging task. In this
article, we present the first genome-wide mapping of gene coexpression modules onto the
phenome. We annotated coexpression networks from 136 microarray datasets with phe-
notypes from the Unified Medical Language System (UMLS). We then designed an efficient
graph-based simulated annealing approach to identify coexpression modules frequently and
specifically occurring in datasets related to individual phenotypes. By requiring phenotype-
specific recurrence, we ensure the robustness of our findings. We discovered 118,772
modules specific to 42 phenotypes, and developed validation tests combining Gene Ontology,
GeneRIF and UMLS. Our method is generally applicable to any kind of abundant network
data with defined phenotype association, and thus paves the way for genome-wide, gene
network-phenotype maps.
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1. INTRODUCTION

The fundamental aim of genetics is to link phenotype to genotype, and traditional genetic studies

have sought to associate single genes to a particular phenotypic trait. However, it has become clear that

complex diseases, such as cancer, autoimmune disease, or heart disease, are effected by the interaction of

many different genes. For this problem, genetic association studies lack power. Locus heterogeneity, epis-

tasis, low penetrance, and pleiotropy all contribute to mask or reduce the detectable signal (Lander and

Schork, 1994; Risch, 2000).

In recent years, high-throughput approaches have been used to study the interaction of groups of genes.

In a gene network, nodes represent genes (or gene products), and links between nodes represent functional

relationship between the nodes. Examples include protein-protein interaction networks, genetic interaction

networks, and gene coexpression networks. Borrowing or expanding tools from the fields of network

analysis and graph theory, researchers have devised numerous ways to use these networks to determine

which genes work together (Zhou et al., 2002; Bader and Hogue, 2003; Spirin and Mirny, 2003; Kelley

et al., 2003; Hu et al., 2005; Yip and Horvath, 2007). However, virtually all of this work fails to complete
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the link between genotype and phenotype. Genes and gene products are grouped into modules and com-

plexes, but these are not linked to phenotypes. We note two remarkable exceptions: Butte and Kohane

(2006) used differential expression analysis to systematically associate genes with specific phenotypes and

environments, using data from the Gene Expression Omnibus (Barrett et al., 2007); and Lage et al. (2007)

used OMIM protein annotations to associate protein complexes with disease phenotypes. However, the

former approach does not consider genes in a network context, while the latter approach only considers

annotated nodes in a single static network. Neither approach, nor any other, has systematically mapped

gene networks to the experimental phenotype conditions under which they are activated.

In this article, we introduce the first approach to explicitly bridge this gap. Like Butte and Kohane, we used

the large amount of microarray gene expression data from the Gene Expression Omnibus. Here, instead of

gene-phenotype associations, we used integrative network analysis to infer network module to phenotype

associations. A series of microarray datasets can be modeled as a series of coexpression networks as follows:

each node represents a gene, and a link is placed between two nodes if their expression profiles in that dataset

are highly similar. The crucial advantage of this approach is that each generated network can be labeled with

the phenotypic information of that dataset, such as the type of biological sample, the disease state, drug

treatment, etc. The Unified Medical Language System (UMLS) (Bodenreider, 2004) provides an extensive

catalog of medical concepts and their relationships, as well as language processing tools that enable the

automated mapping of text onto UMLS concepts. This allowed us to automatically annotate each microarray

dataset with UMLS phenotype classes by using the associated MEDLINE reference.

For each phenotype, we partitioned the datasets into a phenotype class, consisting of datasets annotated

with that phenotype, and a background class, consisting of the rest of the datasets. We designed a graph-

based simulated annealing (Kirkpatrick et al., 1983) approach to efficiently identify groups of genes which

form dense subnetworks preferentially and repeatedly in the phenotype class. Note that a dense subnetwork

in a coexpression graph represents a coexpression cluster. Although microarray data is noisy, we have

shown in our previous work (Zhou et al., 2005; Yan et al., 2007) that coexpression clusters recurrent across

multiple datasets represent true functional or transcriptional modules with high probability. Here, we

further show that, if a frequent coexpression cluster additionally is specific to a phenotype class, it is likely

to effect that phenotype.

We applied our approach to the analysis of 136 microarray datasets, covering 47 phenotype conditions.

We discovered approximately 120,000 modules specific to 42 of these phenotypes, and developed a novel

way to validate this specificity by integrating gene and dataset annotations from Gene Ontology (Gene

Ontology Consortium, 2006), Gene Reference Into Function (GeneRIF) (Mitchell et al., 2003), and UMLS.

Our method lays the foundation for a genome-wide, gene network-phenotype map, which will benefit our

understanding of complex diseases and their treatment. Our present map of network patterns to phenotypes

has many applications, such as predicting the phenotypic effects of multiple interacting genetic pertur-

bations, in silico testing of genetically complex hypotheses, and prioritization of candidate genes for

targeted intervention. Furthermore, the concept of our approach is general, and can be easily extended to

incorporate any standardized phenomic procedures, as suggested, for example, by the Human Phenome

Project (Freimer and Sabatti, 2003).

2. METHODS

2.1. Dataset preparation

2.1.1. Dataset selection. We selected every microarray dataset from NCBI’s Gene Expression

Omnibus that met the following criteria: all samples were of human origin; the dataset had at least eight

samples (a minimum for accurate correlation estimation); and the platform was either GPL91 (corre-

sponding to Affymetrix HG-U95A) or GPL96 (Affymetrix HG-U133A). Throughout this study, we only

considered the genes shared by the two platforms (and therefore all datasets), of which there are 8,635. We

averaged expression values for probe that map to the same gene within a dataset. The 136 datasets that met

these criteria on 28 February 2007 were used for the analysis described herein.

2.1.2. Dataset annotation. We determined the phenotypic context of a microarray dataset by mapping

the Medical Subject Headings (MeSH) of its corresponding PubMed record to UMLS concepts using the

MetaMap Transfer tool provided by the UMLS. This is more refined than attempting to scan the abstract or
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full text of the paper, and in practice it results in much cleaner and more reliable annotations (Butte and

Kohane, 2006; Butte and Chen, 2006). UMLS is the largest available compendium of biomedical vocabu-

laries, spanning approximately one million interrelated concepts, including diseases, treatments, and phe-

notypic concepts at different levels of resolution (molecules, cells, tissues and whole organisms). In order to

infer higher-order links between datasets, we annotated datasets with the matched UMLS concept and, in

addition, all its ancestor concepts. This resulted in a total of 467 annotations, of which 80 mapped to more

than five datasets, or 60 after merging annotations that mapped onto identical sets of datasets.

2.1.3. Correlation estimation and graph generation. For each dataset, we used the Jackknife

Pearson correlation as a measure of similarity between two genes (the minimum of the leave-one-out

Pearson correlations). To determine the coexpression network, we selected a cutoff corresponding to the

top-ranking 150,000 correlations of the total 8635
2

� �
� 3:73 · 107 gene pairs (0.4%). The cutoff was gen-

erated by exploring frequency of coexpressed pairs of genes that share a functional annotation for a range

of correlation values. We found that this cutoff was consistent across many datasets and therefore provides

coexpression graphs with similar densities, regardless of the number of experimental samples.

Once a cutoff was determined, we defined that dataset’s coexpression network as the graph Gi¼ (V, Ei),

where V corresponds to the set of genes being investigated, and (ga, gb) [ Ei if the correlation between ga

and gb is higher than the cutoff.

2.1.4. Differential coexpression graphs. To dramatically increase the probability of finding opti-

mal modules across the many massive networks, we wished to narrow down the search space. We therefore

constructed a weighted differential coexpression graph for each phenotype, which summarizes the dif-

ferences between the gene coexpression networks in the phenotype class and those in the background class.

This graph was used by the simulated annealing algorithm to create neighboring states (see Section 2.2).

We describe it formally as follows.

To begin, we define G as the set of all graphs constructed from the microarray datasets. For each

phenotype P, we partition G into the phenotype graphs GP , corresponding to datasets annotated with P, and

the background graphs Gc
P ¼G n GP , corresponding to the rest of the datasets.

We then construct a weighted differential coexpression graph G�¼ (V , E�) to reflect edges (coex-

pression relationships) that are present frequently in GP but not in Gc
P . This specificity can be measured by

the significance p of a hypergeometric test, assessing the abundance of an edge in GP relative to its overall

abundance in G. In GD, the vertex set V is the same as in every graph in G, and the weight associated with

(ga, gb) is then w�(ga, gb)¼ � log (p). Edges of weight 0 are not in E�. In this way, heavier edges in this

graph represent pairs of genes that exhibit elevated coexpression highly specific to GP .

2.2. Simulated annealing design

2.2.1. Goal and rationale. Our aim was to find sets of genes that satisfy three criteria: first, the genes

must be tighly coexpressed in multiple datasets; second, the annotations of these datasets must be enriched

for some specific phenotype; and third, the gene set must be sufficiently large while meeting the first two

criteria.

As explained in Section 2.1, from each annotated dataset we derived a coexpression graph. For a set of

vertices V 0 � V having m edges between them, the density is �(V 0)¼m / jV 0j
2

� �
¼ 2m / (jV 0j(jV 0j � 1)). This

is exactly the proportion of gene pairs from V0 that are coexpressed, taken over all possible pairs

f(u, v) : u 2 V 0, v 2 V 0g. We say that a vertex set is dense if d is large (typically greater than 0.66). Then,

for each phenotype, we wanted to find a set of vertices that is dense in a large proportion of datasets

annotated with that phenotype, and that is not dense in datasets not annotated with it.

As we demonstrated in our earlier work (Yan et al., 2007), the problem of identifying frequent dense

vertex sets is NP-complete. Much work has been done on identifying dense vertex sets in single graphs

(Ding and Peng, 2005; Asahiro et al., 2002; Feige et al., 2001; Srivastav and Wolf, 1998), and it is easy to

show that the additional requirement of phenotype specificity does not decrease the complexity of the

problem. Hence, we decided to use simulated annealing, a well-established stochastic algorithm with

successful application in other NP-complete problems (Suman and Kumar, 2006). Our design for the

simulated annealing (SA) algorithm follows.
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2.2.2. Search space. A state in our SA design is defined as a set of vertices, and the search space is

the set of all sets of vertices, although for simplicity and for computational considerations we limited

ourselves to sets smaller than 30 vertices. We believe this to be an ample margin for phenotypically

relevant gene sets. Formally, we define the search space as S¼fx : x � V , jxj � 30, jxj � 3g.

2.2.3. Objective functions. Recall that we needed to optimize three different objectives: size, den-

sity, and specificity. We created one objective function for each of these goals, and then supplemented them

with a fourth objective, called density differential.

Much work has been done to generalize the simulated annealing process to multiple objectives,

collectively known as MOSA (Multiple Objective Simulated Annealing). The general strategy is to

create an energy function fi for each objective i, and then combine them into a single energy function

by using a weighted sum f (x)¼
Pk

i¼ 1 wifi(x). The key difficulty with this approach is determining an

appropriate set of weights. In previous studies, this has been accomplished empirically (Collette and Siarry,

2004), and this is the approach that we take for the following reasons: we were interested in a single optimal

combination of objective functions, rather than exploring the extremes of each; our design for individual

functions was such that overall effectiveness of the algorithm was consistent throughout a range of weights;

and the parameters we chose based on performance on simulated data behaved well on the real data. The

weights we chose for size, density, specificity, and density differential were 0.05, 0.05, 5, and 50, re-

spectively.

The individual energy functions that we designed take the following forms:

fsize(x)¼ exp � a
jxj
�
� os

� �� �
(1)

fdens(x)¼ exp � a min
i2GA

(�i(x))� o�

� �� �
(2)

fspec(x)¼ log (P(Y � jGA \ GPj)) (3)

fdiff (x)¼ 1

jGc
Pj
X
i2Gc

P

�i(x)� 1

jGPj
X
i2GP

�i(x)

0
@

1
A (4)

where GP is the set of datasets annotated with the current phenotype; GA is the set of datasets in which the

gene cluster is dense; and Y�hypergeometric (jGAj, jGPj, jGc
Pj).

From previous studies, we have determined criteria for favorable coexpression clusters: size of 7 or more

and density greater than 0.66 (Yan et al., 2007). For simulated annealing, however, we cannot simply

enforce these thresholds as we need to accept intermediate states that may be unfavorable. We therefore

designed the energy functions for size (1) and density (2) to enforce soft thresholds, by using an exponential

increase in energy for unfavorable values. Since we combine the functions using a linear weighted sum,

extreme solutions (such as a single triangle that is very dense, but very small) will be rejected by the

exponential energy increase of this soft threshold, but states slightly below our threshold will still have a

probability of being accepted.

The specificity function (3) is the log of a hypergeometric p-value for enrichment, so that more sig-

nificant enrichment for the phenotype datasets will be rewarded with lower energies. Unlike the first two

objectives, the specificity function has no threshold component. It does however continue to reward more

significant enrichment with large decreases in energy, whereas the soft thresholds have very small de-

creases in energy once the threshold is achieved. Therefore the first three objective functions attempt to

maximize the phenotype specificity while enforcing soft thresholds on both size and density. To ensure that

our module is not only phenotype-specific but also a frequently occurring cluster, we enforce a minimum of

five active datasets when evaluating both the density and specificity functions. This prevents the algorithm

from settling on a module that is very dense in a single dataset related to the phenotype, rather than

identifying a recurrent module present in many phenotype-related datasets.

Finally, equation (4) shows the density differential objective function, which consists of the difference

between the average density of the cluster in the background datasets and that in the phenotype datasets.

The density differential objective function is designed to complement the density and specificity objective

functions. Since the specificity function takes a state’s active datasets as its argument, only neighboring
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states with a new set of active datasets will have a different specificity energy value than the previous state.

However, many neighboring states can have subtle changes in the density distribution among the active and

inactive datasets that is not captured by the density and specificity functions alone. The density differential

function is therefore designed to reward these subtle density changes, and thus direct the simulated

annealing process towards more phenotype-specific clusters. We found that using the density differential

objective function in combination with specificity and density allowed the algorithm to converge faster and

to better clusters than either function alone.

We selected the parameters a¼ 20, g¼ 30, od¼ 0.85, and os¼ 0.2 based on our simulation results with

biologically validated clusters compared with clusters arising from random chance.

2.2.4. Initial state. A SA approach aims to find a global optimum during each run. Therefore, if we

were to use random initial states and run the algorithm for a long enough time, we will always find

approximately the same set of vertices, representing the largest set having the most evidence for coex-

pression and phenotype specificity. We were, however, interested in a large number of vertex sets showing

evidence for coexpression and phenotype specificity. To this end, we designed a systematic way of

generating initial states, or seeds, and we restricted the SA search space to clusters containing these seeds.

We define a triangle as a set of three vertices that is fully connected in at least one dataset. The

hypothesis underlying our strategy is that if a set of genes is coexpressed specifically in datasets annotated

with the phenotype of interest, then at least one recurrent triangle will appear in the phenotype datasets and

it is unlikely to appear in many of the background datasets.

Therefore, for each phenotype, we tested every possible gene triplet for enrichment (using the hy-

pergeometric test) of triangles in the phenotype datasets with respect to the background datasets. For each

seed having a hypergeometric p-value less than 0.01, we ran the SA algorithm, with the constraint that

states in that run must be supersets of the initial triplet. Of the 60 non-redundant phenotypes, 47 had at least

one signficant seed at a false discovery rate (FDR) of 0.01.

2.2.5. Selection of neighboring states. We defined a neighbor as a state that contains either one

more or one less vertex than the current state. We created neighboring states by first determining whether to

add to or remove a vertex, then choosing the vertex based on the appropriate probability distribution.

If a cluster has size 3, it consists only of the initial seed, and so a vertex must be added. Conversely, if a

cluster has size 30, it has reached the maximum size, and a vertex must be removed. For intermediate

values, we proceeded as follows.

Let x be the current cluster. We narrowed the search space of vertices to be added by considering only

vertices that have at least one edge to a vertex in x in at least one of the phenotype datasets. This is easily

justified because vertices not meeting this criterion could not possibly contribute to x as a dense, phenotype-

specific cluster, even as an intermediate step. It can be shown that this set corresponds exactly to

N x¼ g : g =2 x,
P
h2x

w�(g, h) > 0

� �
(see Section 2.1).

The probability of removing a vertex is then given by prem¼ s0 / jN xj, where s0 is an estimate of how

many vertices will improve the cluster. This is to allow the SA process ample time to consider many

neighbors before attempting to remove a vertex, since the number of neighboring vertices vastly out-

numbers the number of vertices in a cluster. We heuristically used s0¼ 20 as an appropriate average

number. In the future, an iterative estimation of s0 as the average size of the returned clusters might

improve the performance of the algorithm.

In the event that a gene is to be removed, it is chosen uniformly from the cluster. When adding a gene,

however, we made the probability that a vertex g 2 N x is added proportional to the sum of the weights of

edges from g to the members of x in the differential coexpression graph. Formally, we have:

P(ga is added)¼
P

a2x w�(ga, a) /
P

b2N x

P
a2x w�(a, b).

2.2.6. Annealing schedule. We used the schedule Tk¼ Tmax / log (kþ 1), where k is the iteration

number and Tk is the temperature at that iteration (Geman and Geman, 1984). The initial temperature for

our study was 4 degrees. This schedule form guarantees optimality for long running times. Although it can

be argued that the exponential running times required makes this schedule impractical, we found that for an

identical number of SA iterations, it resulted in lower-energy clusters than the often-used exponential

schedule, Tkþ 1¼ aTk ¼ akTmax. We ran the algorithm for a maximum of 1,000,000 iterations per run or
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until the simulated annealing converged. If the maximum number of iterations was reached, we forced

convergence to the best local minimum by a near-greedy exploration of the neighborhood of the best state,

achieved by decreasing the temperature to near-zero.

2.2.7. Post-filtering. Recall that we enforced the inclusion of the initial seed triangle in the final

result. Clearly, some seeds will result from noise alone, and therefore the final output will not be bio-

logically significant. To remove these clusters, we filtered the SA output clusters by discarding any vertex

set not meeting the following criteria: size greater than 6; density greater than 0.66; FDR-corrected

phenotype-specificity p-value less than 0.01; and dense in at least 3 datasets related to the target phenotype.

After filtering, we merged redundant clusters, defined as pairs clusters for which intersection/union was

higher than 0.8.

3. RESULTS

3.1. The modules returned by our algorithm are functionally and conceptually homogeneous

We applied our simulated annealing approach to the 136 microarray datasets, covering 42 phenotype

classes that contained initial seeds that were statistically significant after FDR correction. These included a

range of diseases (e.g., leukemia, myopathy, and nervous system disorders) and tissues (e.g., brain, lung,

and muscle). Starting from the recurrent triangle seeds for each of the 42 phenotypes, we identified 118,772

clusters that satisfied our criteria for a concept-specific coexpression cluster. The number of clusters we

found for a given phenotype increased with the number of datasets annotated with it: most of the phe-

notypes with only a few associated datasets yielded few clusters. The most represented phenotype we

studied was ‘‘nervous system disorders,’’ which had 15 associated datasets and a total of 22,388 clusters.

We used two different methods to evaluate cluster quality. First, we assessed cluster functional homo-

geneity by testing for enrichment for specific Gene Ontology (Gene Ontology Consortium, 2006) biological

process terms. If a cluster is enriched in a GO term with a hypergeometric p-value less than 0.01, we

declare the cluster functionally homogeneous. Of the 118,772 clusters derived from all phenotypes, 78.98%

were functionally homogenous by this measure. An advantage of our approach is demonstrated by this

validation: since we identified clusters specific to only subsets of all our datasets, we were less likely than

previous studies to detect constitutively expressed clusters, such as those consisting of ribosomal genes or

genes involved in protein synthesis.

While the GO approach provides information about gene function, it fails to describe its phenotypic

implications. To map individual genes to phenotypes, we used GeneRIF (Mitchell et al., 2003). The

GeneRIF database contains short statements derived directly from publications describing functions,

processes, and diseases in which a gene is implicated. We annotated genes with phenotypes by mapping the

GeneRIF notes to UMLS metathesaurus terms as we did with the dataset MeSH headings (see Section 2.1).

Similar to GO annotations, we assessed the conceptual homogeneity of gene clusters in specific UMLS

keywords with the hypergeometric test, enforcing a minimum p-value of 0.01. The proportion of modules

that were conceptually homogeneous was 46.83%. Clusters usually show less conceptual homogeneity than

functional homogeneity, which is likely due to the sparsity of GeneRIF annotations. There are cases,

however, in which GeneRIF performs very well. For example, many of the cancer related phenotypes, such

as ‘‘Neoplasm Metastasis’’ and ‘‘Neoplastic Processes,’’ show higher GeneRIF homogeneity, which could

be attributed to the abundance of related literature. The functional and conceptual homogeneity of clusters

derived from different phenotype classes is summarized in Figure 1.

3.2. The modules returned by our algorithm are specific to particular phenotypes

In addition to testing for functional and conceptual homogeneity, we assessed whether the returned

clusters were involved in the phenotype condition in which they were found. Again, we used both GO and

GeneRIF independently for this.

Recall that each functionally homogeneous module is associated with one or more GO biological

functions, and that it is also associated with the phenotype in which it was found. We summarized these GO

functions by mapping them to ‘‘informative nodes,’’ which we introduced in our earlier work (Zhou et al.,

2002), and then tested them for overrepresentation in that phenotype class. This provided, for each of 33
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phenotypes (out of 42 phenotypes having at least one module), a list of gene module functions that are

active in that phenotype more often than expected by chance. Many of these GO functions are clearly

related to the phenotype in which they were found. For example, the phenotype ‘‘Mental disorders’’ has

three GO biological processes related to brain function: ‘‘synaptic transmission’’ (2.3e-62), ‘‘neuron dif-

ferentiation’’ (5.4e-42), and ‘‘central nervous system development’’ (7.9e-25). Furthermore, our approach

identified biological processes related not only to disease phenotypes, but also to tissue phenotypes. For

example, the ‘‘Skeletal muscle structure’’ phenotype is significantly enriched with modules homoge-

neous for the biological functions ‘‘muscle system process’’ (4.0e-221), ‘‘actin filament-based process’’

(1.23e-150), and ‘‘skeletal development’’ (1.53e-03). The functional association between a module’s GO

function and the phenotype in which it is active suggests that our clusters are indeed linked to the

phenotype conditions under which they were identified. In addition to GO informative nodes, we also tested

each phenotype for over-representation of UMLS concepts from GeneRIF. This over-representation shows

which diseases, tissues, and biological concepts are significantly enriched in each phenotype. In Table 1, we

highlight some of these over-represented functions and concepts. The full table can be found on the Zhou

Lab group webpage (see Section 4).

The preceding analysis relies on our subjective evaluation of matches between UMLS and GO terms. We

reasoned that we could make a more objective analysis with GeneRIF, as it can be mapped directly to the

same UMLS terms as the dataset phenotypes. We thus counted the modules that were conceptually

homogeneous for the same UMLS annotation as the datasets in which they were identified. Of the 42

phenotypes represented in our study, 26 had one or more matching modules. The proportion of matching

modules among total modules in these 26 phenotypes ranged from 0.04% to 33.6%. Although these

numbers may not sound immediately impressive, we showed that these proportions are larger than expected
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FIG. 1. Cluster homogeneity by phenotype. For each phenotype, the proportion of clusters that are significantly

enriched ( p-value < 0.01) for a GO biological process (black) or a GeneRIF UMLS concept (gray). The dotted lines

show the overall homogeneity for all clusters. The dendrogram shows the distance between phenotypes in terms of

dataset overlap.
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by chance. We used a permutation test to assess the statistical significance of our analysis. For each of

1,000,000 permutations, we randomly assigned existing clusters to the 42 phenotypes that had at least one

cluster, maintaining the number of clusters assigned to each phenotype constant. The thirteen phenotypes

that were statistically significant after FDR correction are shown in Table 2. The high significance for many

of the phenotypes indicates that the low percentages are probably due to a dearth of GeneRIF annotations,

and as GeneRIF becomes more comprehensive we would expect the performance to improve in both the

percentage of matching clusters as well as the number of phenotypes that are significant. We also found that

the UMLS text mining of the GeneRIF database and the MeSH headers is not perfect, so further im-

provements and refinements in those areas should also improve our validation results.

3.3. Example modules identified by our algorithm

Below we illustrate two examples of identified phenotype-specific modules, one from a disease phe-

notype and another from a tissue phenotype.

The first example is an 8-gene module (CD14, CFP, FCER1G, IFI30, ITGB2, MPO, S100A9, TYROBP)

which is specific to the phenotype ‘‘leukemia’’ (Fig. 2a). The module has density higher than 0.67 in five

out of the total 136 datasets (GDS1059, GDS1064, GDS1067, GDS1388, GDS1454), all of which are

annotated with the phenotype ‘‘leukemia,’’ which gives a specificity p-value of 2.2e-6.

Strikingly, seven genes are annotated as being involved in ‘‘defense response’’ in the GO biological

process database, and the eighth gene, IFI30, is an interferon gene that is known to have immune system

function although it is not annotated as such in GO. Additionally, three of the genes are associated with the

UMLS concept ‘‘Acute Leukemia,’’ including CD14 and ITGB2, which are known to have a direct protein-

protein interaction in vitro. The dataset specificity, interactions between module members, and near

complete immune system functional homogeneity all suggest a role for this module in leukemia.

Table 1. Selected UMLS Concepts and Their Principal Annotations

Concept Total Over-represented GO annotations

Over-represented GeneRIF

annotations

Lymphoma 890 Cell cycle phase (9.2e-276) Lymphoreticular tumor (2.6e-93)

Cell cycle checkpoint (1.2e-14) Abnormal hematopoietic and

lymphoid cell (2.6e-22)

Regulation of cell cycle process (3.2e-08) Low grade B-cell lymphoma

morphology (3.5e-19)

Antigen processing and

presentation (7.7e-03)

Mental disorders 866 Synaptic transmission (2.3e-62) Schizophrenia (4.3e-12)

Neuron differentiation (5.4e-42) Neurons (1.2e-11)

Central nervous system

development (7.9e-25)

Alzheimer’s Disease (3.4e-04)

Muscle 584 Muscle system process (7.9e-52) Heart (1.2e-20)

Intrathoracic cardiovascular

structure (3.1e-19)

Muscle, striated (8.2e-15)

Myopathy 6328 Actin filament-based process (7.2e-21) Coronary heart disease (<le-324)

Muscle system process (4.6e-06) Disorder of skeletal muscle (<le-324)

Neoplastic Processes 1486 Keratinocyte differentiation (<1e-324) Lung neoplasms (2.6e-207)

Cell cycle checkpoint (1.0e-124) Triploidy and polyploidy (2.8e-179)

Regulation of mitotic cell cycle (7.4e-122) Tumor of dermis (8.2e-123)

Cell division (1.7e-107) Glioma (6.4e-121)

Skeletal muscle

structure

6719 Muscle system process (4.0e-221) Musculoskeletal structure

of limb (4.3e-46)

Actin filament-based process (1.2e-150) Heart (7.6e-46)

Skeletal development (1.5e-03)

We annotated clusters using Gene Ontology and GeneRIF, as detailed in the text. We then identified the annotations that were

preferentially found in one concept relative to the others, as assessed by the hypergeometric test (Bonferroni-corrected p-values shown

in parentheses).
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Knowledge of modules such as this could guide further experiments in the study of these diseases, as well

as to elucidate the module’s regulators.

The second example module consists of 12 genes, and is specific to the ‘‘Skeletal muscle structure’’

phenotype (Fig. 2b). Four of the five active datasets study expression in muscle tissue (GDS268, GDS198,

GDS563, GDS2055). This cluster is highly functionally enriched, containing seven genes that are annotated

with a GO biological process related to muscle contraction. Specifically, in muscle fibers, troponin genes

(TNNC2, TNNI2, TNNT3) along with tropomyosin associate with actin (ACTA1) to regulate muscle

contraction via binding to the myosin complex (MYH2, MYLPF). The module also contains SLN, which

regulates the ATP-dependent transport (ATP2A1) of Ca2þ in muscle cells. ALDOA and ENO3 are known

TYROBP

S100A9

CFP

MPO

CD14

ITGB2

IFI30

FCER1G

TNNI2

TNNT3

ATP2A1

MYH2

MYLPF

PYGM

ACTA1

ALDOA

RPS15A

SLN

ENO3

TNNC2

a b

FIG. 2. Two examples of phenotype-specific modules. The opacity of an edge is proportional to the recurrence of the

edge in the active datasets. (a) A module specific to ‘‘leukemia’’ datasets. Genes represented as diamonds are annotated

with the GO term ‘‘defense response.’’ Shaded nodes represent genes known to be implicated in ‘‘leukemia’’ via

GeneRIF text mining. (b) A module specific to the ‘‘Skeletal muscle structure’’ datasets. Genes represented as dia-

monds and rectangles are annotated with GO terms ‘‘muscle contraction’’ and ‘‘regulation of muscle contraction’’

respectively. The shaded genes are annotated as ‘‘Muscle’’ tissue genes via GeneRIF text mining.

Table 2. Phenotypes for Which the Annotated Clusters Are Consistent with the Phenotype Class

in which They Were Derived

Phenotype

Total clusters in

phenotype class

Matching clusters in

phenotype class (%)

Matching clusters in

background class (%) q-value

Mental disorders 791 3.12 0.17 <4.7e-06

Lymphoma 409 20.11 0.97 <4.7e-06

Myopathy 645 15.46 3.65 <4.7e-06

Musculoskeletal diseases 1,619 2.26 1.33 <4.7e-06

Genetic diseases, inborn 1,470 7.86 1.82 <4.7e-06

Neoplasms, nerve tissue 765 33.60 2.02 <4.7e-06

Neoplastic processes 794 9.08 4.19 <4.7e-06

Nervous system disorder 2,214 4.44 2.69 <4.7e-06

Skeletal muscle structure 154 0.94 0.18 <4.7e-06

Hemic and lymphatic diseases 1,129 1.17 0.65 1.3e-05

Bone marrow diseases 523 1.31 0.52 5.3e-03

Leukemia 460 0.55 0.36 2.9e-02

Muscle 483 1.03 0.31 3.5e-02

The first column indicates a UMLS phenotype. The second column displays the total number of clusters active in that phenotype

class. The third and fourth columns show the percentage of clusters annotated with that phenotype in that phenotype class and in the

background class, respectively, and the fifth column shows the FDR-corrected p-value for the difference between the classes. Statistical

significance was calculated by permuting the clusters across the dataset phenotypes 1,000,000 times. Concepts with a q-value less than

4.7e-6 were never outperformed by the permutations.
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to be expressed specifically in skeletal muscle. The final cluster gene, PYGM, is known to be involved in

glycogen metabolism in muscle. In total, 11 of the 12 genes in the cluster are known to be related to muscle,

providing strong evidence for the cluster’s phenotypic specificity.

4. DISCUSSION

The importance of considering the phenotypic context of gene modules cannot be overstated. Ultimately,

molecular understanding is most useful when its macroscopic effects are well understood. In this article, we

described a graph-based approach integrating many microarray datasets to derive a genome-wide mapping

of coexpression modules to phenotypes.

The provable computational complexity of this problem drew us to stochastic algorithms, and as a result

we developed a number of useful graph-mining optimizations to the simulated annealing method. Firstly,

we devised a strategy to divide the search space effectively by defining fully connected triplet (triangle)

seeds. Secondly, we designed highly robust energy functions that could be linearly combined over a range

of weights. And thirdly, we designed a method to prioritize neighbor searching. Overall, we have dem-

onstrated that simulated annealing is a highly effective and adaptable strategy for pattern-mining in graphs.

We associated gene modules with human diseases on a genome-wide scale. The resulting map em-

phasizes that multiple genes must act together to effect phenotype, and, more specifically, that a gene in

different contexts may participate in the manifestation different phenotypes. It has not escaped our notice

that our map may represent the largest collection of examples of genetic pleiotropy to date. We reserve the

results of this analysis for a future work ( Jeffery, 2003b,a; Zhang, 2004).

In this study, we applied our method to microarray data, which is so far the most abundant data

measuring the genome-wide molecular activity under different phenotype conditions. We are well aware

that microarray data has limitations, and that not all module activities can be assessed with expression

profiling. We emphasize, however, that our method is generally applicable to any kind of abundant network

data having clearly defined phenotype annotations. One possibility is a dynamically-annotated protein-

protein interaction network consisting of conditional interactions. Given the current unrelenting pace of

technological innovation in the biological sciences, we envision that a vast amount of genome-wide,

phenome-annotated profiling data will soon complement our current view of the genome-phenome asso-

ciation, for not only mRNA but also other molecules, such as protein and miRNA.

5. SUPPLEMENTARY MATERIAL

Availability

The complete catalog of phenotype-specific gene clusters can be found as online Supplementary Material

at www.liebertonline.com.

Phenotype-specific modules

Table of phenotype-specific gene modules. The file contains Module ID, Module Gene IDs, Module

Gene Symbols, Min Density, Enrichment p-value, Module Active Datasets, Module Phenotype Datasets

(subset), and Dataset Phenotype. The first column contains a unique identifier for the module in the format

c[i]_m[j] which corresponds to module number j from phenotype i. The phenotypes were identified by

performing UMLS text mining on the dataset MeSH headings. The full table of the dataset phenotypes can

be found below. The second and third columns list the genes found in the module. Negative gene ids are

listed for Affymetrix probe ids that did not map to an NCBI gene id. The active datasets are the datasets in

which the module had a density greater than 0.66. The module phenotype datasets are the subset of active

that were annotated with the phenotype.

Dataset phenotypes

Table containing the UMLS phenotypes associated with at least 5 datasets. The table contains the

Phenotype ID that we assigned for the purposes of the study, the UMLS phenotype(s), and the associated

datasets.
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Dataset description

This file contains the description of the 136 GEO datasets. The file contains dataset ID, number of

experimental columns, dataset title, and a description for each dataset.

Go enrichment data

The Gene Ontology enrichment data for each of the phenotypes. Each file begins with a prefix con-

cepts3_n5_##, where ## is the phenotype id. This id can be found in the Dataset Phenotypes file.
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