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ABSTRACT

Optical mapping is an integrated system for the analysis of single DNA molecules. It con-

structs restriction maps (noted as “optical map”) from individual DNA molecules presented

on surfaces after they are imaged by fluorescence microscopy. Because restriction digestion

and fluorochrome staining are performed after molecules are mounted, resulting restriction

fragments retain their order. Maps of fragment sizes and order are constructed by im-

age processing techniques employing integrated fluorescence intensity measurements. Such

analysis, in place of molecular length measurements, obviates need for uniformly elongated

molecules, but requires samples containing small fluorescent reference molecules for accurate

sizing. Although robust in practice, elimination of internal reference molecules would reduce

errors and extend single molecule analysis to other platforms. In this paper, we introduce

a new approach that does not use reference molecules for direct estimation of restriction

fragment sizes, by the exploitation of the quantiles associated with their expected distribu-

tion. We show that this approach is comparable to the current reference-based method as

evaluated by map alignment techniques in terms of the rate of placement of optical maps

to published sequence.
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1. INTRODUCTION

OPTICAL MAPPING is a proven, high-throughput, single-molecule system that constructs physical maps

spanning entire genomes. Because restriction maps describe large-scale structure (0.5 kb—entire chro-

mosomes), they intrinsically reveal a broad range of genomic alterations reflecting polymorphisms and

aberrations. Also, such maps aid genome sequencing projects by facilitating assembly, independent vali-

dation and finishing efforts (Zhou et al., 2007). Although optical mapping analyzes clones and polymerase

chain reaction (PCR) amplicons, significant automation efforts have centered on the construction of whole

genome maps using large, randomly sheared genomic DNA molecules (Armbrust et al., 2004; Reslewic
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et al., 2005). Here, a microfluidic device deposits genomic DNA molecules as a series of centimeter long

stripes onto critically charged glass surfaces. Since large molecules exist in solution as random coils, this

procedure unravels them, producing a stretched form, which is electrostatically adhered to the surface,

thus ensuring optimum presentation prior to restriction digestion. After staining with a fluorochrome dye,

these cleavage sites are imaged by fluorescence microscopy as micron-sized gaps formed due to the local

release of stored tension within stretched versus relaxed molecules. Restriction fragments retain their order

and an automated image-acquisition and machine-vision system provides capacious single molecule data

sets for analysis. Optical map construction uses integrated fluorescence intensity measurements for estima-

tion of restriction fragment sizes. This procedure considers internal fluorescence standards consisting of

co-mounted small DNA molecules (reference molecules) of known sequence composition for establishing

a standard measure of integrated fluorescence intensity per Kb of DNA; a simple relationship then sizes

restriction fragments (Lin et al., 1999) as follows:

Estimated fragment size (kb) D
integrated intensity for fragment

standard intensity per Kb
: (1)

This sizing method suffers errors in the estimated standard intensity because of the estimation in Equa-

tion (1). Such errors arise because optical mapping estimates restriction fragment sizes by essentially

assessing the ratio of dye molecules bound to a target and reference, and these measurements must deal

with issues regarding dye uptake by DNA molecules bound to surfaces (Dimalanta et al., 2004).

We overcome these limitations by development of a new approach for the estimation of restriction

fragments associated with optical maps. Currently, our approach assumes that a reference genome is

available. We treat the sizing problem as a “blind inversion” problem. That is, we regard the process of

measuring the fluorescence signals from single molecules as a system that considers inputs and outputs as

just fragment sizes and intensities. Although both the effective system and input DNA fragment sizes are

unknown to us, we can still estimate sizes given their intensities through a quantile-quantile correspondence.

The procedure is dictated by the rationale of Blind Inversion Needs Distribution (BIND) (Li, 2003).

A similar quantile method has been applied to the normalization of microarrays (Bolstad et al., 2003).

Since our method uses only fluorescence intensity determinations of analyte molecules and a sequence

from a reference genome, this approach eliminates the need for assaying internal reference molecules,

and renders moot any errors stemming from such measurements. Furthermore, reduction of experimental

variables gives increased simplicity, and this can foster development of new single molecule platforms

aimed at genomic analysis. Here, preliminary analysis shows that the performance of our approach is

comparable to that of the current reference molecule method as judged by rate of map placements to a

reference map.

The remainder of the paper is organized as follows. Section 2 describes the proposed method with

discussion regarding the treatment of typical errors associated with optical maps, including missing or

spurious (false) restriction sites and missing fragments. In Section 3, we describe experimental results on

some optical mapping data sets. Section 4 concludes the paper with some directions of further research.

2. METHODS

A statistical model for optical mapping

Our method utilizes the following statistical models dealing with measurement errors associated with

optical mapping described in Valouev et al. (2006), and we briefly summarize them in what follows.

� M1: A Poisson model for enzyme cuts. Sizes (in Kb), Y , of genomic restriction fragments have an

exponential density with mean EY D � that depends on the endonuclease used for the digestion.

Consequently, the number of restriction sites in s Kb of DNA is a Poisson process with intensity s=�

(Churchill et al., 1989; Waterman, 1995). Typical enzymes produce fragments with average lengths of

12–40 Kb.
� M2: Missing cuts. After the DNA is enzymatically cleaved, some restriction sites are left uncut by the

endonuclease (partial digestion). Observations of restriction sites on the optical maps are assumed to
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be Bernoulli trials with the digestion rate p (usually p � 0:8). Hence, observed restriction sites are

explained by a thinned Poisson process with intensity p=� (Grimmett and Stirzaker, 1982).
� M3: False cuts. False cuts result from random DNA breaks or non-specific activity of endonuclease.

We assume that random breaks show no sequence dependent bias and are uniformly distributed across

the entire reference genome. According to the model, the number of false cuts per s Kb of DNA is a

Poisson process with intensity �s. On average, we observe about five false cuts per 1 Mb of DNA.
� M4: Measurement error. During the staining of DNA, the fluorescent dye randomly binds to sites on

DNA molecules, despite saturation conditions. For a true fragment size Y , its observed fluorescence

intensity X approximately follows a normal density N.�Y; ��2Y / for sufficiently large fragments (e.g.,

>4 Kb). This result is analytically supported by the central limit theorem (Valouev et al., 2006).

In addition, we have the following considerations.

� Missing fragments. Because electrostatic forces are used for retaining DNA molecules, smaller restric-

tion fragments preferentially detach from the surface, and are consequently under-represented in data

sets.
� Chimeric maps. Molecules that physically overlap on glass surfaces cannot be spatially resolved for

revealing true connectivity of their respective portions. Consequently, some maps are chimeric, meaning

that they represent multiple unrelated genomic regions.

Distribution of observed fragment intensities and an exponential approximation

Under the model assumptions, it was shown in Valouev et al. (2006) that measured sizes X of optical

map fragments have an exponential density with the mean
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for X � �, where � is a positive number and � D
�

� C p
�

��1
. We note that the exponential distribution can

be viewed as an approximation to that of the real fragment intensities. In Figure 1, we plot the histograms

of intensities from a human mapping project (see Section 3) using the enzyme SwaI with and without

chimeric reads. Note that a large fraction of short fragments are missing as can be seen at the lower ends

of the histograms. Also, histograms have longer tails than an exponential distribution. In the Q-Q plot,

data are from samples in the quantile interval (0.15, 0.95) and the reference exponential distribution has

FIG. 1. Histograms and a Q-Q plot from SwaI-human optical maps with and without chimeric reads. In figures,

intensity unit is 1000. Histograms have longer tails than an exponential distribution. In the Q-Q plot, data are from

samples in the quantile interval (0.15, 0.95). Corresponding exponential distribution has mean 1:27�10
6. (a) Histogram

of observed fragment intensities with chimeric reads. (b) Histogram without chimeric reads. (c) Q-Q plot without

chimeric reads.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.0006&iName=master.img-008.jpg&w=407&h=158
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mean 1:27 � 106. It is clear that the distribution of the real fragment intensities is well approximated by

an exponential distribution except for the lower and upper tails.

Distribution of fragment lengths

Now let us consider the hypothetical situation in which one fluorescence unit corresponds to exactly

one base pair. If we apply the exponential approximation (2), then we have � D 1. Namely, measured

fragment lengths of optical maps follow an exponential density with the mean � D Œ 1
�

q

2
�

C 1
�2

� 1
�2

��1.

Note that the three parameters—the digestion rate p, the false break rate �, and the standard deviation of

measurement �—are confounded in the expression of the exponential scale parameter. To reflect the detailed

features of the human genome, we can simulate missing cuts and false cuts on the human genome according

to M2 and M3, and common rate values. That is, restriction sites are skipped by 20% independently of each

other, and on average, five false cuts per 1 Mb are induced according to a Poisson process. For the moment,

we ignore the measurement error in the simulation. The distribution of the fragment lengths is shown in

Figure 2a. Although a longer tail exists on the right, the middle part of the histogram looks fairly close to

an exponential density. This is confirmed by the Q-Q plot of data versus exponential in the quantile range

(0.15, 0.95). Furthermore, we observe excessive short fragments under 1 Kb in the log-scale Q-Q plot.

The deviations from the exponential distribution on the lower and upper ends indicate the non-randomness

of DNA sequences. Although it is well known that genome sequences are non-random, Churchill et al.

(1989) found that the exponential density fits best for modeling the distribution of restriction fragment sizes

compared to several other densities they examined in the case of E. coli. This assumption remains largely

valid for other genomes from our experience. However, the assumption may be violated at the lower and

upper ends as shown in Figure 2a and 2b. We take into account these issues in our sizing scheme by a

censoring strategy.

Correspondence of the two distributions

Suppose we have n observed intensities x1; : : : ; xn. Their corresponding fragment lengths are denoted

by y1; : : : ; yn, which are unknown. The goal is to estimate fragment length yi of given intensity xi . We

formulate their relationship by

x D h.y/; (3)

FIG. 2. Histogram and Q-Q plots of fragment sizes (kb) of human restriction map for enzyme SwaI. The histogram

has a longer right tail (not shown in the figure) than the exponential distribution. Note that some long fragments could

be more than 400 kb. In the Q-Q plots, the horizontal axis is the sorted fragment sizes of human restriction map while

vertical axis is the quantiles of a reference exponential distribution with mean 11.49. Clearly, the major part of data

follow an exponential distribution well as verified in (a) and (b). However, (c) indicates that there exist excessive short

fragments (under 1 kb). (a) Histogram. (b) Q-Q plot of data in the quantile range (0.15, 0.95). (c) Q-Q plot in the

log-scale of data in quantile interval (0, 0.95).

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.0006&iName=master.img-014.jpg&w=408&h=156
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where h.�/ represents the system of optical mapping instruments. In this formulation, both input y and the

system function h are unknown. This is a typical “blind inversion” problem that appears in many scientific

measurement problems such as DNA sequencing (Li, 2003). If it is true that larger fragment sizes have

larger intensities, then we assume the following:

A1. h is monotone. That is, if yi � yj , then xi � xj .

Sort, respectively, the intensities and fragment sizes in the ascending orders, namely, y.1/ � y.2/ � � � � �

y.n/, and x.1/ � x.2/ � � � � � x.n/. Under the monotone transformation, the size of y.i/ should map to

x.i/. But the latter are unfortunately not observed. However, if the distribution of the input is known, we

can approximate fx.i/g by the i=n-th quantiles of x. Ideally, the larger the n is, the more accurate the

approximation is. Explicitly, the rationale for the sizing method is as follows:

A2. The distribution of the reconstructed fragment lengths should match the expected distribution of

fragment lengths.

If we have the complete data set of all fragment intensities, small or large, the problem is solved since

we can obtain the expected distribution of fragment lengths as illustrated earlier. In this case, we even

do not need to assume any parametric model other than the random mechanisms of missing and false

cuts. However, the size estimation is difficult because many short fragments are missing in the observed

intensities as shown in Figure 1b and 1c. Besides, there are only a few very large fragments and the match

of quantiles on the very right end is difficult. To be able to apply our method, we use the following strategy

to deal with the complications.

A3. For both the distribution of the observed fragment intensities and the expected distribution of frag-

ment lengths, the middle part of the distribution approximately follows a truncated (from both ends)

exponential distribution.

Figures 1 and 2 show supporting evidence to this claim. Moreover, we describe each of the two distri-

butions respectively by a mixture model of three components. The principal component is an exponential

distribution; two other components respectively have their mass located mostly at the lower end and the

upper end. Note that the mixing fractions of these two components are small and we avoid assuming any

specific forms. Besides, a fraction of small fragments is missing in the distribution of intensities. To deal

with the difficulties on the two ends, we modify the scheme as follows: first we estimate the fragment

sizes in the middle part by matching quantiles; second, we estimate the fragment sizes on the two ends

by the ratio of the two exponential scales, respectively, estimated from intensities and fragment lengths of

the simulated reference genome.

MLE for the exponential scale and two cutoff quantiles from the truncated data

As explained earlier, the major and middle part of both intensities and fragment sizes can be approximated

by exponential distributions. To reduce the influence of the two end components on the parameter estimation

of the principal exponential distribution, we remove data from the two ends. The above sizing schemes

requires estimates of the parameters in the exponential distribution. They include the scale parameter and

the two quantiles corresponding to two given cutoff values.

We propose two algorithms to compute the parameter estimates. One assumes that the middle part of

data follows a doubly truncated exponential distribution and uses standard maximum likelihood estimation

(MLE) method to estimate its mean. The other approach is an EM algorithm (Dempster et al., 1977; Redner

and Walker, 1984), which treats the exponential components on the two ends as missing data. Our simulation

(not shown) indicates that both algorithms perform well and give consistent estimates.

Let X be a random variable following an exponential distribution with mean �. Suppose we have n

observations x1; : : : ; xn. Given two cutoff values a < b, we remove observations such that xi < a or

xi > b and treat them as missing data. Suppose n0 observations are left and are denoted by x0
1; : : : ; x0

n0.



260 LI ET AL.

Now the remaining samples x0
1; : : : ; x0

n0 are drawn from a doubly truncated exponential distribution (Cohen,

1991) with density

f .xI �/ D
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F.b/ � F.a/
a � x � b;

(4)

where F.x/ D 1�e�x=� is the distribution function of exponential distribution. Therefore, the log likelihood

function is

L D �
1

�

n0

X

iD1

x0
i � n0 logŒ�ŒF.b/ � F.a/��: (5)

Newton-Raphson algorithm

By setting the derivative @L=@� equal to zero, we have

� D Nx � a C
.b � a/Œ1 � F.b/�

F.b/ � F.a/
; (6)

where Nx D 1
n0

Pn0

iD1 x0
i . Because no closed form solution exists, we compute a numerical solution using

the Newton-Raphson algorithm.

EM algorithm

Starting with an initial value of �, iterate over the following steps until �k converges.

E-Step. For the current parameter value �k , calculate qa D Pr.X < aj�k/ and qb D Pr.X < bj�k/.

Since n0 observations are in the range Œa; b�, on average n0qa=.qb � qa/ and n0.1 � qb/=.qb � qa/

samples are missing in the lower and upper ends, respectively. We impute the value of the lower

end samples by xa D E.X jX < aI �k/ D .�k � .a C �k/e�a=�k /=.1 � e�a=�k / and the upper

end ones by xb D E.X jX > bI �k/ D b C �k .

M-Step. Combine observations and imputed missing data, and compute the standard MLE on the complete

data. Namely,

�kC1 D

n0

X

iD1

x0

i C xan0qa=.qb � qa/ C xbn0.1 � qb/=.qb � qa/

n0=.qb � qa/
: (7)

Detailed sizing scheme

Given an optical map data of n intensities, we sort them in the ascending order. We choose two cutoff

values a and b corresponding respectively to two quantiles of the raw intensities, ra and rb such that

0 < ra < rb < 1. Suppose n1 intensities are smaller than a, n2 intensities are larger than b, and n0

intensities are in Œa; b�, where n1 C n0 C n2 D n. We next apply either the proposed EM or Newton-

Raphson algorithm to the n0 intensities in Œa; b� to estimate the mean value � of underlying exponential

distribution. Let qa D F.aj�/ and qb D F.bj�/. Similar to the imputation in the EM algorithm, there

should be, on average, na D qan0=.qb � qa/ intensities less than a and nb D .1 � qb/n0=.qb � qa/

intensities greater than b. Note that the imputation is for the principal exponential component. Denote the

sorted intensities in the range Œa; b� by a � y.n1C1/ � y.n1C2/ � � � � < y.n1Ci/ � � � � y.n1Cn0/ � b. As a

result, the quantile of y.n1Ci/ in the principal exponential distribution is given by

qi D
i C na

n0 C na C nb

: (8)
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FIG. 3. The algorithm of the quantile sizing method.

Similarly, we apply the above procedure to fragment sizes of the reference map to obtain the adjusted

quantiles excluding excessive short and long fragments. Denote by �r the estimated mean of fragment

sizes computed from the EM or Newton-Raphson algorithm.

Finally, we can map intensities fyi g in Œa; b� to fragment sizes fxj g at the same quantile. For in-

tensities less than a or greater than b, we cannot estimate their accurate quantiles because they do not

follow the same distribution. Instead, we estimate the standard intensity � by �=�r and determine the

fragment size x of an intensity y by x D y=� if y < a or y > b. Note that the fragment sizes esti-

mated in this way may differ from those obtained through quantile mapping at points a and b. Thus, we

make the following continuity correction: shift the sizes on each end by a constant so that the estimated

fragment sizes are continuous at cutoff points a and b. We summarize the entire sizing procedure in

Figure 3.

Practical issues

Clearly, qa and qb are critical for the precision of size estimation. The interval .qa; qb/ should be

appropriately selected so that we use as many fragments as possible in the quantile method whereas

excessive short and long fragments are excluded. Histograms and Q-Q plots are helpful for selecting qa

and qb . We may also optimize them according to the placement performance (Valouev et al., 2006). The

digestion rate p and random breakage rate � can be estimated from abundant previous optical map data

by fitting them to the reference map.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.0006&iName=master.img-022.png&w=352&h=361
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3. METHOD VALIDATION

Experiments

We implemented our method by analysis of optical mapping results from four separate “mounts” that

were part of an ongoing human genome mapping project. The DNA was digested using the restriction

enzyme SwaI. Mounts 1 and 2 are of high quality, whereas 3 and 4 are of typical quality.

The quality of these measurements is assessed by the number of “flagged” restriction fragments assigned

by the image processing software. Briefly, the software “flags” an imaged fragment when associated pixels

show abnormally high fluorescence intensities (Runnheim, private communication). This phenomenon

occurs—as one example—when molecules overlap, giving rise to chimeric maps. Because such occurrences

produce ambiguous results, we remove these fragments from the quantile sizing procedure.

Typically, the optical mapping microfluidic device deposits 48 independent stripes (channels) of DNA

molecules onto a surface. However, measurements from only 47 and 27 channels were acquired for Sur-

faces 1 and 4. The details of the four data sets are described in Table 1. Surface 1 has 77,986 fragments

from 4370 molecules, of which 22.9% fragments are flagged. Surface 2 has 75,991 fragments from 4565

molecules, of which 22.2% fragments are flagged. Surface 3 has 73,843 fragments from 5014 molecules,

of which 28.6% fragments are flagged. Surface 4 has only 48,596 fragments from 3015 molecules since

only 27 channels are available. Among them, 26.3% fragments are flagged. Clearly, Surfaces 1 and 2 are

of better quality than Surfaces 3 and 4 in terms of percentage of flagged fragments.

Given that this data set consists of randomly sheared molecules from a human genome, we do not have

independent validation of our size measurements. As such, we take an alignment strategy to indirectly

assess the sizing scheme. That is, we align optical maps sized by both the reference-DNA and the quantile

methods to the reference genome, and then check the number of significant and consistent placements. The

genomic identity of a single molecule optical map is found through its alignment to a reference genome.

When fragment sizes are precisely estimated, the alignment procedure correctly places a map; this is noted

by a significant score. However, when maps show a small number of fragments, often they are ambiguously

placed at many genomic locations. Accordingly, we only consider maps containing at least 20 non-flagged

restriction fragments.

The alignment and scoring system

We use the dynamic programming algorithm in Waterman et al. (1984) and Valouev et al. (2006) to

compute the optimal restriction map alignments. Define a reference map R D .r0; : : : ; rm/ by a set of site

positions relative to the start of the map, i.e., 0 D r0 < r1 < � � � < rm. Similarly, let Q D .q0; : : : ; qn/ be an

optical map such that 0 D q0 < q1 < � � � < qm. The alignment between R and Q is given by a sequence

of ordered pairs of matching site indices .i0; j0/; .i1; j1/; : : : ; .id ; jd /, such that i0 < i1 < � � � < id ,

j0 < j1 < � � � < jd , it and jt correspond to sites rit and qjt
of maps R and Q. Let S.i; j / be the optimal

score of the alignment between R and Q that the rightmost pair of sites i and j are aligned. The algorithm

calculates the score S.i; j / using the recursion

S.i; j / D max
.0_i�ı1/�g<i;.0_j �ı2 /�h<j

ŒS.g; h/ C X.qi � qg ; rj � rh; i � g; j � h/�; (9)

TABLE 1. DESCRIPTION OF THE TEST DATA SETS

Surface Channels Fragments

Flagged

fragments Molecules

Molecules with �20

non-flagged fragments

1 47 77,986 22.9% 4370 852

2 48 75,991 22.2% 4565 769

3 48 73,843 28.6% 5014 437

4 27 48,596 26.3% 3015 357
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where ı1 and ı2 are parameters that specify the sizes of maximum matching regions respectively for the

reference and optical maps, and the function X.qi � qg ; rj � rh; i � g; j � h/ calculates the score for the

region .g; h/ ! .i; j /.

The alignment algorithm adopts the scoring function proposed Valouev et al. (2006). The scores are log-

likelihood ratios under two hypotheses: a given optical map is indeed from the region to which it is aligned

or is independent of the region. The odds are based on the statistical model of optical map measurements

and other complications such as missing cuts and false cuts (Valouev et al., 2006). Currently we treat the

flagged fragments as missing when fitting optical maps to reference map. The scores for flagged fragments

are simply set to be zero at this point.

Results

The fragment intensities of the four data sets are converted into fragment sizes by both the reference

DNA and quantile methods. The obtained optical maps are then fitted to the reference genome. We want

to compare the two sizing methods. In the quantile sizing method, the values of the two end quantiles

ra and rb are around 0.30 and 0.95, respectively. In the scoring function of the alignment algorithm, the

parameter �, the mean of reference exponential distribution, is set to be 12.72 Kb, the average fragment

length of the reference map; the maximum matching region size ı is 5; the standard deviation � of size

error for long fragments (�4 kb) is 0.46; the standard deviation � of size error for short fragments (<4 kb)

is 0.53. The details of these parameters can be found in Valouev et al. (2006). The values of the digestion

rate and the random breakage rate are typical for many optical maps. The parameters ra, rb, � , and � are

obtained by optimizing the fitting of long molecules with no flagged fragments to the reference genome.

After obtaining the optimal fitting scores of molecules to the reference genome, we need to determine the

significant hits. Note that molecules consisting of more fragments tend to have larger scores. We address this

by considering the normalized score S=d , where S and d are, respectively, the fitting score of a molecule

and the number of matching blocks. A matching block is defined to be a minimal set of fragments flanked

by matching sites in the corresponding alignment to the genome. The significant placements are then

determined based on the normalized scores. In Table 2, we list the numbers of significant placements for

the cutoff value of 2.0 and 2.3. In order to assess the false positive rate, we did a simulation study. Namely,

we simulated random maps and real maps from the reference genome and fit them back to the reference

genome by the same set of parameters. The result shows a 5% false positive rate at the cutoff value of 2.3.

However, in this simulation, the sizing errors follow the model of Valouev et al. (2006) and do not include

the issue of flagged fragments. Thus, this evaluation only serves as a guide. We note that more multiple

hits are observed in the quantile method.

In Table 2, we show not only the numbers of molecules placed by each method but also the numbers of

molecules placed by both methods. In Surfaces 2, 3, and 4, large fractions of the significant placements are

common to both methods. The consistency for Surface 1 is not as good as others. We checked closely into

the placements of the “good” molecules that do not have flagged fragments by examining their alignments.

Since false cuts are rare compared to missing cuts, we take 1 for the value of ı1 and 5 for ı2. Again most

TABLE 2. A COMPARISON OF THE TWO SIZING METHODS

2.0 cutoff value 2.3 cutoff value

Sizing

method

Reference

molecule Quantile Both

Reference

molecule Quantile Both

Surface 1 282 173 133 159 86 67

Surface 2 299 260 223 191 165 136

Surface 3 32 22 11 14 7 7

Surface 4 27 36 17 9 10 7

For each surface, we fit optical maps sized by both methods. A placement is called by two cutoff values

2.0 and 2.3. The numbers of placements by the reference molecule method, the quantile method, and by

both methods are shown.
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(a)

(b)

FIG. 4. Two alignment examples. (a) One alignment hit by both sizing methods. “Flagged” fragments are represented

by “nan.” (b) One alignment hit by only the quantile method.

of the significant hits are common to both methods. We checked those “good” molecules placed by the

reference DNA method but not the quantile method, and found they contain more false cuts, indicating the

possibility of spurious alignments. There are three molecules placed by the quantile method but not by the

reference DNA method.

The average fragment size of the reference genome cut by SwaI is 12.72 Kb. After applying the 20%

missing cuts and five false cuts per Mb, the average size of fragment lengths becomes 14.76 Kb. As we

have explained, the principal exponential component of fragment lengths plays an important role in our

approach. If we take 30% and 95% as the truncation thresholds, the estimates of the principal exponential

components of the two kinds of fragment lengths are respectively 11.82, 13.85. The estimates of the

exponential scale parameter for the sizes determined by the quantile method are 13.08, 14.80, 14.91, and

14.92 Kb for Surfaces 1, 2, 3, and 4. In comparison, the corresponding estimates for the sizes determined

by the reference molecule method are 15.64, 18.63, 18.13, and 17.57 Kb. The difference may be accounted

by the sampling bias due to the missing fragments and the flagged fragments. Remember that we do not

include the flagged fragments in our quantile procedure. The average sizes of all fragments are larger than

the estimates of the exponential scale parameter for both methods and in all chips. This is not a surprise

because we only use an exponential density to approximate the principal component.

In Figure 4, we show two examples of alignment. The first one is hit by both sizing methods. “Flagged”

fragments are represented by “nan.” In the second alignment, only the score obtained by the quantile

method is significant.

4. DISCUSSION

Our quantile sizing method is a robust procedure. In the statistical literature, there are several perspectives

of robustness (Hampel et al., 1986; Huber, 1981). First, the influence curve or sensitivity curve of the

quantiles less than a given ˛.< 1/ is bounded. That is, the influence of an outlier of any kind is finite. As

˛ approaches 1, the sensitivity gets higher as the density function decreases to zero. This is one reason why

we exclude the very large fragments in the quantile matching. Second, the breakdown value of the ˛-th

quantile is min.˛; 1 � ˛/. This says that only quantiles on the two extremes are sensitive to perturbations.

In the proposed approach, we re-scale fragments on the two ends by extrapolating size information in the

middle part. Our numerical results support the view that our method is robust.

Even though the major and middle part of the observed fluorescence intensities is well approximated

by an exponential distribution, we do not use exponential quantiles for size estimation. Rather, we use the

quantiles obtained by mimicking the missing and false breaks on the reference genome. Importantly, the

exponential model is only used to determine the quantiles of the two cutoffs.
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Here, the quantile method has only been applied for the analysis of molecular fluorescence intensities

derived from each surface. Thus we have ignored any potential spatial effect. Recall that an optical mapping

microfluidic device contains multiple channels. A natural extension is to apply the method to each channel.

But in this data set, a single channel contains about 100 molecules and may not be sufficient to accurately

estimate the sizes. Alternatively, we can divide the surface into subareas and apply the quantile method to

each subarea.

According to our preliminary tests, the quantile method is quite consistent with the current reference

DNA method. Since the two perspectives are entirely independent, the new method can help validate the

results obtained from the reference DNA method. In addition, it could be very important in situations

where placement of reference DNA is difficult.

We describe a quantile method of sizing in the context of fitting optical maps to a reference genome.

The same idea with necessary modifications may be applicable to the optical map assembly problem. In

this problem, all pairwise overlaps are computed between optical maps (Valouev et al., 2006), and the

reference genome is unknown. A possible scheme for size estimation is sketched as follows. First we

compare the distribution of fragment intensities with an exponential distribution using Q-Q plots. Second,

we map intensities to a reference exponential distribution instead of a known reference genome. The mean

� of the reference distribution can be guessed from a highly related genome or simply a random genome.

We use the exponential distribution of mean � D .� C p=�/�1 to simulate fragment sizes. Third, we fit

an exponential distribution to the observed intensities excluding the lower and upper ends and apply our

method to estimate the sizes of optical maps. We will explore this scheme in our future research.
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