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Abstract—A mixed Poisson approximation and a Poisson approximation for the

length of the longest exact match of a random sequence across another sequence

are provided, where the match is required to start at position 1 in the first

sequence. This problem arises when looking for suitable anchors in whole genome

alignments.

Index Terms—Poisson approximation, mixed Poisson approximation, length of

longest match, Chen-Stein method.
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1 INTRODUCTION

WHEN aligning whole genomes, often a seed-and-extend technique
is used. Starting from exact or near-exact matches, reliable ones
among these matches are selected as anchors and then the remaining
stretches are filled in using local and global alignment. See Lippert
et al. [1] for a discussion of genome alignment methods using
anchors. To select a match that is both sensitive and specific, they
introduce a score based on the length,Rn, of the longest exact match
of a random sequence across another sequence, where shifts are not
allowed. For Rn and the associated scores, they find that their
approach based on a mixed Poisson approximation, although valid,
is computationally not feasible if the distribution of the random
letters making up the random sequences is not uniform, as the
mixing takes place over too many terms; the authors resort to a
Monte Carlo method. Here, we provide a Poisson approximation for
the number of matches of fixed length, along with bounds provided
by the Chen-Stein method, and we obtain an approximate
expression for the cumulative distribution function of Rn that is
easy to compute. The bound on the error in the approximation turns
out to be small, thus making our suggestion a useful approach.

The set-up for our problem is as follows: Let A ¼ A1A2 . . .An

and B ¼ B1B2 . . .Bn be two independent sequences with i.i.d.
letters from a finite alphabet A with d elements. Let �ðaÞ be the
probability that a random letter takes on the letter a, and let �� ¼
maxa2A �ðaÞ be the maximum of these probabilities. The letter
distribution is not necessarily uniform. We put

Rn ¼ max
m
fAk ¼ Bjþk; k ¼ 1; . . . ;m; for some 0 � j � n�mg;

thus Rn denotes the length of the longest exact match of a random
sequence across another sequence, where shifts are not allowed.

Note that, if the match in sequence A was not required to start
at position 1, the problem would reduce to the distribution of the
well-understood

Hn ¼ max
m
fAiþk ¼ Bjþk; k ¼ 1; . . . ;m; for some 0 � i; j � n�mg;

see Waterman [3]. Our problem differs from the study of Hn by
requiring an exact match beginning at a fixed position in the first
sequence.

To reveal the Poisson-type structure in the problem, we use a
standard duality argument as follows: If Rn < m, then there are no
matches of length m (or longer) in the sequence. Ignoring end
effects, this means that there are no occurrences of A1 . . .Am in B.
Let Wm denote the number of (clumps of) matches of length m (or
longer) in the sequence so that P ðRn < mÞ � P ðWm ¼ 0Þ.

In Section 2, we shall give a mixed Poisson approximation for
P ðWm ¼ 0Þ. Section 3 derives the Poisson approximation for
P ðWm ¼ 0Þ and applies it to obtain an approximation, with bound,
for P ðRn < mÞ. Finally, in Section 4, we illustrate that the
approximation for P ðRn < mÞ is indeed easily computable.

2 A MIXED POISSON APPROXIMATION

For Poisson and mixed Poisson approximation, it is useful to think
in terms of clumps of occurrences, see Reinert et al. [2], because
declumping disentangles the dependence arising from self-overlap
of words. We say that a clump of a word ! ¼ !1!2 . . .!m starts at
position i in B if there is an occurrence of ! at position i and there
is no (overlapping) occurrence of ! at positions i�mþ 1; . . . ; i� 1.

Thus, when ignoring end effects the study of Rn is equivalent to
the study of

Wm ¼
X�n

i¼1

1ða clump of A1 . . .Am starts at position i in BÞ;

where we abbreviate �n ¼ n�mþ 1. End effects only arise from the
possibility that, when embedded in an infinite sequence, the
sequence B ¼ B1B2 . . .Bn starts within a clump in the infinite
sequence.

Assume that B1 ¼ � � �B�1B0B1 � � �BnBnþ1 � � � is an infinite
sequence for now so that we can ignore end effects. Then, we have

Rn < m()Wm ¼ 0:

If m is large enough, then a fixed word ! of length m will rarely
occur at a given position i in the random sequence B. When using
clumps in order to account for the strong dependence between
neighboring occurrences in the case that ! has a large amount of
self-overlap, it is plausible and indeed established that the number
of clumps of ! in B is approximately Poisson distributed,
Proposition 1 below. For any fixed !, we let

Wmð!Þ ¼
X�n

i¼1

1ða clump of ! starts at position i in BÞ:

In what follows, we shall always assume that! ¼ w1 � � � wm 2 Am
so that

�ð!Þ ¼
Ym
i¼1

�ðwiÞ

is the probability that a random word of lengthm equals!. If there is
a p such thatwi ¼ wiþp, i ¼ 1; . . . ; m� p, then p is called a period of !.
A period is a principal period if it is not a strict multiple of the
minimal period. An occurrence of! starting at position i is a clump if
and only if, for none of the periods p of !, the truncated word !ðpÞ ¼
w1 � � �wp starts at position i� p. It is easy to see that it suffices to
consider all principal periods. The probability that a clump of !
starts at a given position in the sequence is then given by

e�ðwÞ ¼ �ðwÞ � X
p2P0ð!Þ

�ðwðpÞwÞ;

where !ðpÞ! ¼ w1 � � �wpw1 � � �wm is the concatenated word and
P0ð!Þ is the set of principal periods of !. In particular,

EW ¼ ~�ð!Þ :¼ �ne�ð!Þ:
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To describe the distance between the distributions of
nonnegative integer valued random variables X and Y , we
use the total variation distance, defined by

dTV ðX;Y Þ ¼ sup
B�f0;1;...g

jP ðX 2 BÞ � P ðY 2 BÞj:

It will be convenient to abbreviate, for r ¼ 1; 2; 3; . . . ,

�r ¼
X
a2A
ð�ðaÞÞr;

the probability that r random letters match.
Corollary 6.4.6. in [2], together with the independence of the

letters, immediately gives the following proposition.

Proposition 1. Let ~Zð!Þ � Poð~�ð!ÞÞ be Poisson distributed with mean
~�ð!Þ. Then,

dTV LðWmð!ÞÞ; Poð ~�ð!ÞÞ
� �
� ðn�mþ 1Þ~�ð!Þfð6m� 5Þ~�ð!Þ þ 2ðm� 1Þ�ð!Þg:

Proposition 1 only counts the number of occurrences of a fixed
word, whereas, in our problem, the firstm letters of the sequence A,
namely, A1 . . .Am, constitute a random word. Thus, we need to
condition on the words! thatA1 . . .Am take on and, using the rule of
total probability, we obtain a mixed Poisson approximation.

Theorem 1. With the above notation,���P ðWm ¼ 0Þ �
X
!

�ð!ÞP ðPoð ~�ð!ÞÞ ¼ 0Þ
��� � Rem1 � ð8m� 7Þ�n�m3 :

Remark 1. Recalling that �� ¼ maxa2A �ðaÞ, we note that
~�ð!Þ � nð��Þm. If we consider the regime that nð��Þm is
approximately constant, with m fixed, then ð��Þm ¼ Oðn�1Þ
and, using the bound �3 � ð��Þ2

P
a2A �ðaÞ ¼ ð��Þ2, we obtain

that Rem1 ¼ Oðn�1Þ, thus indicating that the bound in Theorem
1 is of useful order.

Proof of Theorem 1. Writing out the different sequences that
A1A2 . . .Am can take on, we have

P ðWm ¼ 0Þ ¼
X
!

�ð!ÞP ðWmð!Þ ¼ 0Þ

¼
X
!

�ð!ÞP ðPoð ~�ð!ÞÞ ¼ 0Þ þ
X
!

�ð!Þ�1ð!Þ;

where, by Proposition 1,���X
!

�ð!Þ�1!
��� � �n

X
!

�ð!Þ~�ð!Þfð6m� 5Þ~�ð!Þ þ 2ðm� 1Þ�ð!Þg

¼: Rem1:

For Rem1, we use that ~�ð!Þ � �ð!Þ to bound

Rem1 � ð8m� 7Þ�n
X
!

ð�ð!ÞÞ3:

Now, if A1 � � �Am, B1 � � �Bm, and C1 � � �Cm are three indepen-
dent random words, thenX

!

ð�ð!ÞÞ3

¼
X
!

P ðA1 � � �Am ¼ !ÞP ðB1 � � �Bm ¼ !ÞP ðC1 � � �Cm¼!Þ

¼ P ðA1 � � �Am ¼ B1 � � �Bm ¼ C1 � � �CmÞ
¼ ð�3Þm;

using that the letters are independent so that

Rem1 � ð8m� 7Þ�nð�3Þm;
as claimed. tu

3 POISSON APPROXIMATION TO THE MIXED POISSON

APPROXIMATION

Although Theorem 1 is valid,
P

! �ð!ÞP ðPoð~�ð!ÞÞ ¼ 0Þ is
difficult to evaluate, the sum growing exponentially with
alphabet size. As much of the computational difficulty lies in
accounting for the different periods in all words ! 2 Am, our
idea is to approximate P ðPoð~�ð!ÞÞ ¼ 0Þ by the simpler expres-
sion P ðPoð�ð!ÞÞ ¼ 0Þ, where

�ð!Þ :¼ �n�ð!Þ:
Thus, we ignore the period correction in the Poisson parameter.
While this may much distort the limiting distribution for words !
with a large amount of self-overlap, there are not too many such
words in Am; indeed, we provide a bound on the error in this
approximation in the next theorem. Recall that �� ¼ maxa2A �ðaÞ.
Theorem 2. For ! 2 Am, let ~Zð!Þ have Poisson distribution with mean

~�ð!Þ and letZð!Þhave Poisson distribution with mean�ð!Þ. Abbreviate
f ¼ �2

2

�3
. Then,���X

!

�ð!ÞP ð ~Zð!Þ ¼ 0Þ �
X
!

�ð!ÞP ðZð!Þ ¼ 0Þ
��� ¼ Rem2;

where

Rem2 � ð1� e��nð��Þm Þ ð�2Þm f
�mþbm2cþ1

1� f þ bm
2
cð��Þm

� �
: ð1Þ

Here, bxc denotes the integer part of x.

Remark 2. In the regime considered in Remark 1, that nð��Þm is
approximately constant, it follows that Rem2 ¼ Oðn�1Þ, indicat-
ing that the bound in Theorem 2 is usable.

Proof of Theorem 2. First, we wish to bound

jP ð ~Zð!Þ ¼ 0Þ � P ðZð!Þ ¼ 0Þj ¼ je�~�ð!Þ � e��ð!Þj:
By series expansion, it is easy to see that, for any 0 � � � � <1,

� e��� � 1
� � � ð�� �Þ e� � 1

� �
and direct manipulation yields

e�� � e�� � ð�� �Þ 1� e
��

�
:

Applying this bound with � ¼ �ð!Þ and � ¼ ~�ð!Þ, we have, for
each fixed !, that

jP ð ~Zð!Þ ¼ 0Þ � P ðZð!Þ ¼ 0Þj � 1� e��ð!Þ
�ð!Þ �n

X
p2P0ð!Þ

�ðwðpÞwÞ:

Thus,���X
!

�ð!ÞP ð ~Zð!Þ ¼ 0Þ �
X
!

�ð!ÞP ðZð!Þ ¼ 0Þ
��� ¼ Rem2;

where

jRem2j �
X
!

�ð!Þ 1� e
��ð!Þ

�ð!Þ �n
X

p2P0ð!Þ
�ðwðpÞwÞ

� ð1� e��nð��Þm Þ
Xm�1

p¼1

X
!

1ðp 2 P0ð!ÞÞ�ðwðpÞwÞ:
ð2Þ

In the last step, we used the uniform bound �ð!Þ � ð��Þm for all
!. To bound the sum

P
p2P0ð!Þ �ðwðpÞwÞ, we consider the cases

that p � bm2 c and p 	 bm2 c þ 1 separately.
For p 	 bm2c þ 1, we note that 2pþ 1 	 m and writing out the

period yields
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X
!

1ðp 2 P0ð!ÞÞ�ðwðpÞwÞ

¼
X
!

1ðp 2 P0ð!ÞÞP ðA1 . . .Amþp ¼ wðpÞwÞ

¼
X
!

1ðp 2 P0ð!ÞÞP ðA1 . . .Amþp ¼ wðpÞw;

A1 ¼ Apþ1 ¼ A2pþ1; . . . ;

Am�p ¼ Am ¼ Amþp;Am�pþ1 ¼ Amþ1; . . . ; Ap ¼ A2pÞ
� P ðA‘ ¼ A‘þp ¼ A‘þ2p; ‘ ¼ 1; . . . ; m� p;A‘ ¼ A‘þp;
‘ ¼ m� pþ 1; . . . ; pÞ:

But this probability can be expressed by the probability �3 that
three random letters match and the probability �2 that two
random letters match. We have m� p equations forcing the
matching of three random letters each, and 2p�m equations
forcing the matching of two random letters each. As the letters
are independent, the probabilities are easy to calculate;

P ðA‘ ¼ A‘þp ¼ A‘þ2p; ‘ ¼ 1; . . . ;m� p;
A‘ ¼ A‘þp; ‘ ¼ m� pþ 1; . . . ; pÞ

¼ �m�p3 �2p�m
2 ¼ �3

�2

� �m �2
2

�3

� �p
:

Thus, with f ¼ �2
2

�3
, which is less or equal to 1,

Xm�1

p¼bm2 cþ1

X
!

1ðp 2 P0ð!ÞÞ�ðwðpÞwÞ �

Xm�1

p¼bm2 cþ1

�m�p3 �2p�m
2 ¼ ð�2Þm f

�mþbm2cþ1 � 1

1� f :

ð3Þ

For p � bm2 c, we note that, if a word ! has period p � bm2 c,
then the letters wpþ1; . . . ; wm are uniquely determined. There-
fore, any word can possess at most one prinicpal period
p � bm2 c.

Again spelling out the periodicity, we obtain that

Xbm2 c
p¼1

X
!

1ðp 2 P0ð!ÞÞ�ðwðpÞwÞ

�
Xbm2 c
p¼1

P Ai ¼ Aiþp ¼ . . . ¼ Aiþðbmþpp cÞp; i ¼ 1; . . . ;mðmodpÞ;
	

Aj ¼ Ajþp ¼ . . . ¼ Ajþðbmp cÞp; j ¼ mðmodpÞ þ 1; . . . ; p



¼
Xbm2 c
p¼1

�bmþpp c
	 
p�mðmod pÞ

�bmþpp cþ1

	 
mðmod pÞ
:

ð4Þ

Expression (4) can be bounded further by using that
�r � ���r�1 � ð��Þr�1, giving

Xbm2 c
p¼1

�bmþpp c
	 
p�mðmod pÞ

�bmþpp cþ1

	 
mðmod pÞ
�
Xbm2c
p¼1

ð��Þmðmod pÞ �bmþpp c
	 
p

¼
Xbm2c
p¼1

ð��Þm�bmpcp �bmþpp c
	 
p

� ð��Þmbm
2
c:

ð5Þ
Summarizing, we obtain from (3) and (5) that

Xm�1

p¼1

X
!

1ðp 2 P0ð!ÞÞ�ðwðpÞwÞ � ð�2Þm f
�mþbm2cþ1 � 1

1� f þ bm
2
cð��Þm:

ð6Þ
Substituting in (2) gives the stated result. tu

Remark 3. As �� ¼ maxa2A �ðaÞ, the bound �ðwðpÞwÞ � ð��Þmþp is
immediate. Using that any word of length m that has a
principal period p � bm2 c is completely determined by its first
p letters, instead of using (4), a “quick and dirty” bound is

Xbm2c
p¼1

X
!

1ðp 2 P0ð!ÞÞ�ðwðpÞwÞ �
Xbm2 c
p¼1

dpð��Þmþp

¼ ð��Þmþ1d
ð��dÞbm2c � 1

��d� 1
:

As
P

a2A �a ¼ 1, we have that ��d 	 1. However, if the letter
distribution is close to uniform and if m is relatively large, then
the above bound will be small.

Now, we apply our results to the original problem, the
cumulative distribution function of Rn, the length of the longest
exact position match.

Corollary 1. For ! 2 Am, as in Theorem 2, let Zð!Þ have Poisson
distribution with mean �ð!Þ. Then,

jP ðRn < mÞ �
X
!2Am

P ðZð!Þ ¼ 0Þj � Rem3;

where

Rem3 ¼ Rem1 þ 1þ ðm� 1Þð��Þmð1� e��nð��Þm Þ�1
	 


Rem2;

with Rem1 given in Theorem 1 and Rem2 given in Theorem 2.

Remark 4. In the regime that nð��Þm is approximately constant, we
have already seen in Remark 1 and in Remark 2 that Rem1 ¼
Oðn�1Þ and Rem2 ¼ Oðn�1Þ and, so, also Rem3 ¼ Oðn�1Þ,
providing a useful bound.

Proof of Corollary 1. In view of Theorem 1 and Theorem 2, all that
is required is to bound the end effects, resulting from B having
been idealized as just a part of an infinite sequence when it
came to counting clumps. To bound the end effects, note that
(see, e.g., [2, Equation (6.4.10)])

Pf1ðRn > mÞ 6¼ 1ðWm ¼ 0Þg
� ðm� 1Þ

X
!

�ð!Þð�ð!Þ � ~�ð!ÞÞ

� ðm� 1Þð��Þm
X
!

X
p

1ðp 2 P0ð!ÞÞ�ð!ðpÞ!Þ:

We now use (6), giving that

Pf1ðRn > mÞ 6¼ 1ðWm ¼ 0Þg

� ðm� 1Þð��Þm ð�2Þm 1� fbm2cþ1�m

f � 1
þ ð��Þmbm

2
c

� �
:

Applying Theorem 1 and Theorem 2 finishes the proof. tu
Remark 5. Lippert et al. [1] introduce as the Z-score

Zi;n ¼ max
m
fAiþk ¼ Ajþk; k ¼ 0; . . . ;m� 1; 1 � i 6¼ j � �ng:

This is similar to Rn, but allows self-overlap. Lippert et al. [1]
show that the probability PfQL

i¼1 1ðZi;n 	 kÞg that the scores
Zi;n exceed k consecutively across L positions can be expressed
by probabilities involving only Rn, so Corollary 1 can be
applied to approximate the distribution of the scores.

4 NUMERICAL ILLUSTRATION

A counting argument shows that
P

! �ð!ÞP ðZð!Þ ¼ 0Þ ¼P
! �ð!Þe��ð!Þ is not as difficult to evaluate as the expressionP
! �ð!ÞP ð ~Zð!Þ ¼ 0Þ, as follows: Let nað!Þ denote the number
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of times that letter a 2 A appears in !. Then, as the letters are
independent,

�ð!Þ ¼
Y
a2A
ð�ðaÞÞnað!Þ

and, hence, we obtain the multinomial expressionX
!

�ð!ÞP ðZð!Þ ¼ 0Þ

¼
X

ðna;a2AÞ:na2f0;1;...;mg;P
a2A na¼m

m

ðna; a 2 AÞ
� � Y

a2A
�ðaÞna

( )
exp ��n

Y
a2A

�ðaÞna
( )

:

ð7Þ
While there does not appear to exist a simplifying expression in
general, we note that (7) is a polynomial problem in m; indeed, we
only need to evaluate Oðmd�1Þ summands instead of OðdmÞ
summands. As we consider d typically much smaller than m, this
is a considerable reduction in complexity.

In particular, if A ¼ fA;C;G; Tg and if �A ¼ �T ; �C ¼ �G, as
may be reasonable to assume when considering both a DNA
sequence and its reverse-complement, then denoting the base-pair
probabilities by p ¼ 2�A ¼ 1� 2�C , (7) simplifies to a binomial
expectation,X

!

�ð!ÞP ðZð!Þ ¼ 0Þ ¼

Xm
k¼0

m

k

	 

pkð1� pÞm�k exp ��n2�mpkð1� pÞm�k

n o
;

where k stands for the sum nA þ nT .

Example. Suppose as in [1] that n ¼ 5:74
 109, the estimated
length of the human genome, NCBI build 28 and build 34,
with alphabet A ¼ fA;C;G; Tg of size d ¼ 4, and base-
composition in a nonrepeat region estimated as pA ¼ pT ¼
0:29 and pC ¼ pG ¼ 0:21 so that �� ¼ 0:29 and p ¼ 2pA ¼ 0:58.
Then, truncating after the first four digits, �2 ¼ 0:2564,
�2

2 ¼ 0:0657, �3 ¼ 0:0673, f ¼ 0:9768, and we can calculate
the mean of �ðA1A2 � � �AmÞ using that

E�ðA1A2 � � �AmÞ ¼ �n
X
!

�ð!Þ2 ¼ �n2�m
Xm
k¼0

m

k

	 

p2kð1� pÞ2ðm�kÞ:

Table 1 gives the expected Poisson parameter for m ¼ 15; . . . ; 22.
Thus, for m ¼ 15 we would expect W15 ¼ 0 and, hence, Rn < 15

with low probability, whereas, for m ¼ 22, we would expect W22 ¼
0 with high probability, hence Rn < 22 with high probability.

Table 2 gives a summary of the estimated probability �ðmÞ ¼P
!2Am P ðZð!Þ ¼ 0Þ for P ðRn 	 mÞ � 1� P ðWm ¼ 0Þ obtained in

Corollary 1, for m ¼ 15; 16; . . . ; 22, along with the Monte-Carlo
estimates �̂ðmÞ from [1]; we note that Table 8 in [1] indeed gives
estimates for P ðRn 	 mÞ instead of P ðRn < mÞ as written ibid. We
add our bound from Corollary 1 along with the estimated standard
deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ar�̂ðmÞp

from [1] and the separate remainder terms
contributing to our bound; recall that Rem2 is given in (1).

Our approximated probabilities are similar to the Monte-Carlo
estimates in [1]. However, whereas [1] can only conclude that, say,

an approximate 95 percent confidence interval for the true
probability P ðRn 	 mÞ is given by �̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ar�̂ðmÞp

, we indeed
proved that the true probability will lie within �ðmÞ � bound,
which is a shorter interval for all values of m considered in this
example.

Also, we see that both remainder terms Rem1 and Rem2

contribute in similar magnitude to the bound Rem3, indicating that
the bound on the error made in replacing the mixed Poisson
approximation by the Poisson approximation is not much larger
than the bound on the error made by the mixed Poisson
approximation in the first place.
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