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ABSTRACT

The recent development of microarray technology
provided unprecedented opportunities to understand
the genetic basis of aging. So far, many microarray
studies have addressed aging-related expression
patterns in multiple organisms and under different
conditions. The number of relevant studies continues
to increase rapidly. However, efficient exploitation of
these vast data is frustrated by the lackof an integrated
data mining platform or other unifying bioinformatic
resource to enable convenient cross-laboratory
searches of array signals. To facilitate the integrative
analysis of microarray data on aging, we developed a
web database and analysis platform ‘Gene Aging
Nexus’ (GAN) that is freely accessible to the research
community to query/analyze/visualize cross-platform
and cross-species microarray data on aging. By
providing the possibility of integrative microarray
analysis, GAN should be useful in building the
systems-biology understanding of aging. GAN is
accessible at http://gan.usc.edu.

INTRODUCTION OF GAN

The recent development of high-throughput technologies resulted
in an enormous volume of genomic data to understand the genetic
basis of aging.Among those, themicroarray technology allows us
to measure the expression level of all genes in a genome simulta-
neously. Thus far, more than 80 microarray studies have directly
addressed aging-related expression patterns in diverse model
organisms and under different conditions. We define ‘aging-
related’ data to be those datasetswhich include adult age as a vari-
able and which include diseases with strong adult age-group

dependency, e.g. Alzheimer’s disease. Given the large number
of aging-related microarray datasets comprising tens of millions
of measurements, we see many advantages to collecting them
on a single platform for integrative analysis: (i) Aging-related sig-
nals are generally more subtle than those disease-related signals
(e.g. cancer), therefore very difficult to detect. Identifying recur-
rent signals acrossmultiple datasets enhances signal/noise separa-
tion, and can elucidate essential transcriptional features in aging.
(ii) As the available aging microarray datasets generally measure
different aspects of aging (e.g under different endogenous condi-
tions and exogenous perturbations), combining those datasets can
complement each other in revealing the transcriptional mecha-
nisms of the aging. (iii) Comparing genomic expression profiles
across species may reveal evolutionary conserved mechanisms
in aging processes, as exemplified in McCarrol et al. (1).

However, technical obstacles complicate the integration of
multiple microarray datasets. A key problem is the existence
of the diverse microarray platforms. For instance, human
aging expression profiles were conducted using various
Affymetrix chips (HuGeneFL, HG_U95A, HG_U95Av2,
HG-U133A, etc.) and cDNA arrays (Incyte Genomics
and customized). Gene expression values generated by differ-
ent platform technologies are not necessarily comparable.
Even within the same technology, the alternate choice of
experimental parameters by different laboratories can cause
systematic variation among datasets that often exceeds the
capability of statistical normalization. Several recent studies
(2–6) proposed meta-analysis approaches to integrate multiple
microarray studies. By first extracting expression patterns from
individual microarray studies and then identifying recurrent
signals, those approaches can enhance signal-to-noise separa-
tion. Following this principle, the public database OncoMINE
(7) facilitates the identification of genes differentially
expressed between cancer and normal tissues or among differ-
ent cancer subtypes across a large collection of microarray
data. Given the large accumulation of aging-related microarray
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data, there is a great need for analytical tools and software plat-
forms to extract aging-relevant information across datasets.

Here we report the development of a web database
Gene Aging Nexus (GAN) freely accessible to the
biogerontological-geriatric research community to query/
analyze/visualize aging-related microarray data. GAN con-
sists of two parts: (i) a database of microarray datasets mea-
suring aging-related expression patterns; (ii) a data mining
platform to facilitate the identification of recurrent expression
patterns across multiple datasets and species. The database is
intended as a shared repository for microarray data on aging
as well as to provide easy access to microarray data in a user-
friendly way. The web-based data mining platform allows
users to perform integrative analysis to derive customized
differentially expressed gene lists or co-expressed gene
pairs, and apply functional annotation tools. Although
GAN’s focus is on aging, the architecture is general and
could be adapted to other subject-specific knowledge mining
platforms for efficient and accessible usage of the public
microarray data.

GAN’S DATABASE SERVER FOR
AGING-RELATED MICROARRAY DATA

GAN database includes microarray datasets generated from
both Affymetrix and cDNA platforms. We collected 42
aging-related microarray datasets for the model organisms
human, mouse, rat, fruit fly, worm and yeast from the NCBI
GEO database, Stanford Microarray Database (SMD), individ-
ual publication websites and personal communications. This
comprises more than 14 176 000 gene expression measure-
ments from over 800 microarray experiments. A breakdown
of the datasets is shown in Table 1. The datasets can be cate-
gorized into four classes: (i) Gene expression profiling of dif-
ferent age groups in various tissues and organisms, e.g. human
frontal cortex, human kidney, human muscle, mouse retinal
pigmented epithelium, mouse coronary artery, mouse cerebel-
lum, mouse hematopoietic stem cells, rat nervous system, rat
muscle, rat glia, fly head, worm, etc. (ii) Effect of different
perturbations on aging, e.g. oxidative stress, caloric restriction
or GH/IGF-1 signaling disruption. (iii) Aging effect on meta-
bolism, e.g. glucose metabolism and neuroinflammation.
(iv) Studies on Alzheimer’s disease, e.g. Alzheimer’s disease
at different severity, comparison to control and animal models.

Normalized data from NCBI and SMD are directly
imported. For other datasets, if the raw image CEL files
are available, we have re-done the image processing,
background subtraction and normalization procedure by

using the Bioconductor software. Although it is not realistic
for us to undertake a full critical assessment of the quality
of each dataset, in our framework, pooling multiple datasets
to discover recurrent patterns is in fact a way to filter out
poor quality data. Conversely our framework will draw user’s
attention to those datasets which produce consistent results,
thus focus on the datasets with high quality.

ANALYSIS TOOLS

GAN’s analysis tools include a data visualization module, a
co-expression analysis module, a differential expression
analysis module and a functional analysis module.

Data visualization module

GAN provides a user-friendly web interface to browse the
collected datasets along with detailed dataset annotations
(Figure 1). Datasets are categorized by organisms and labor-
atories to expedite the selection process. After datasets are
selected, a brief summary of those datasets will be shown,
in order for the user to decide whether to further process
the datasets. Once the dataset ‘view’ option is chosen, the
expression matrix of the selected dataset will be displayed,
and users may use gene ID, gene symbol, Unigene or
GenBank accession no. to search the dataset. Expression
levels of a gene can be visualized using bar chart.

Differential expression analysis module

Differential expression analysis will be performed for indi-
vidual datasets, and genes with frequent differential patterns
will be identified across multiple datasets. User may load
multiple datasets (from different platforms or different spe-
cies) from the GAN database. Genes on the different array
platforms will be linked via their UnigeneIDs, and homologs
of different species will be linked based on the matches in the
NCBI HomoloGene Database. For each dataset, the user may
select experiments to construct the ‘case’ and the ‘control’
groups. Age groups may be defined as young and old, and
some examples of treatment groups include, for example,
caloric restriction and control, LPS stimuli and control. We
have implemented the t-test and the Mann–Whitney test to
assess the statistical significance of differential expression
in individual datasets. The significance is then adjusted for
multiple testing with the Q-value, a counterpart of the
P-value in the context of false discovery rate (8). The statis-
tical significance estimate can be combined with user-defined
fold change threshold to select the differentially expressed
genes. Based on differential expression analysis results
derived from individual datasets, users may select those
genes that are differentially expressed in at least m out of
the total n selected datasets. In this way, we may identify
genes that consistently demonstrate differential expression
pattern across comparable conditions or across different
species.

Co-expression analysis module

This module is used to derive the gene–gene co-expression
relationship across one or multiple datasets. Users may
submit the ID of a gene list to be analyzed, and upload one
or more datasets from the GAN database for analysis. The

Table 1. Categorization of aging-related microarray databases in GAN

Species Datasets Experiments Platforms
Affymetric cDNA

Homo sapiens 12 428 12 0
Rattus norvegicus 5 81 5 0
Mus musculus 17 222 12 5
Drosophila melanogaster 2 15 2 0
Caenorhabditis elegans 5 66 1 4
Saccharomyces cerevisiae 1 8 1 0
Total 42 820 33 9
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pairwise expression correlation among selected genes in
selected datasets will be displayed in a table format, which
allows the users to capture recurrent co-expression relation-
ships. We provide two correlation estimates: Pearson’s
correlation and ‘Jackknife correlation’. Here, the Jackknife
correlation is defined as the minimum of the absolute value
of leave-one-out Pearson correlation coefficient estimates.
This estimate is robust against single experiment outliers
yet still sensitive to overall similarities in expression patterns.

Functional analysis module

To facilitate the discovery of novel pathways or novel
candidate genes involved in the aging process, we annotate
genes with relevant gene ontology descriptions. Given a
differentially expressed gene set, we first map each gene
onto the Gene Ontology (GO) functional categories, and
then evaluate the statistical significance of functional enrich-
ment of each of these categories in the given gene set. We
used the hypergeometric distribution to model the probability
of observing at least m genes from a gene set of size n by
chance in a functional category containing M genes from a
total genome size of N genes. Owing to testing a large family
of hypothesis simultaneously, we employ stringent Bonfer-
roni correction for multiple testing adjustment. If a GO
functional category is statistically significantly enriched in a

differentially expressed gene set, the related biological
pathway may be activated in the corresponding aging-related
conditions. Furthermore, if this gene set contains genes of
unknown functions, those genes may be assigned to that
particular GO functional category.

DETAILED SYSTEM AND DATABASE
ARCHITECTURE OF GAN

Internally, GAN is designed as a layered architecture system,
composed of ‘presentation layer’, ‘integration and data
analysis layer’, ‘data access layer’ and ‘information system
layer’. The first layer, the presentation layer, is implemented
by JavaServer Pages (JSP) and JavaServer Faces (JSF). It is
responsible for providing user interfaces, forming field
validation logic and passing users’ requests to the web server.
The second layer, the integration and data analysis layer, runs
on a Tomcat web application server and is responsible for
handling requests from the presentation layer. It is the core
layer of GAN implemented by java objects and servlets that
contain logic to perform the bioinformatics computation and
security control for the system. The third layer, the data
access layer, contains Data Access Objects (DAO) that are
responsible for performing queries on the underlying data-
bases to gather information that are used for bioinformatics

Figure 1. The data visualization interface of GAN.
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analyses in the ‘integration and data analysis layer’. DAO is
also responsible for storing the analysis results into the data-
bases. Also, this layer uses the Spring framework to provide
connection pooling and transaction management mechanism
so that database connections created by one user can be
reused by another user, thus saving time and memory.
Finally, the information system layer contains databases
that store the integrated datasets and the analysis results for
each user.

The major responsibilities of this system, which include
presentation, analysis and database accessing, are separated
into components in each layer. Owing to the layered architec-
ture, it is easy to add functionalities and to change user
interfaces in the future without altering the codes too much.
This makes the system easy to maintain. Most of the user
interfaces are developed using JSF, which is a technology
designed to separate the presentation logic and business
logic clearly and provide many build-in rich UI components
which allow developers to build web application quickly,
clearly and easily. Also, with suitable ‘Integration Develop-
ment Environment’ tools, it allows developers to drag
and drop those build-in UI components and to generate
corresponding code automatically. The layered architecture
is conducive to future maintenance and scaling up, thus
providing the flexibility required to adapt to the future
demand from the research community.

The GAN database is composed of three PostgreSQL
databases: the Dataset database, the GeneInfo database and
the User database. The Dataset database is used to store
microarray data related to aging. The GeneInfo Database
contains gene annotations as well as information for linking
genes in different platforms or across different species. The
User database stores user identity, links to files used by the
user and metadata files generated by the user.

CONCLUSION AND FUTURE DIRECTIONS

Microarray data are noisy. Identifying recurrent signals from
independent microarray studies provide an effective means to
separate signal from noise. To facilitate the integrative anal-
ysis of microarray data on aging, we developed the web data-
base and analysis platform ‘Gene Aging Nexus’ which is
freely accessible to the research community to query/analyze/
visualize cross-platform and cross-species microarray data on
aging. The database is also expected to link the genomic
information from different species to facilitate the discovery
of candidate genes that are involved in aging through the
genome-wide comparative analysis. In future, we will imple-
ment more sophisticated meta-analysis approaches to extract
signals from multiple microarray datasets, e.g. network mod-
ules from multiple co-expression networks derived from inde-
pendent microarray datasets (9) and statistical significance of
recurrent differential expression patterns (4,5). We will also
systematically curate biological archival information needed
to interpret the expression patterns, e.g. known genes related

to aging, more functional annotation information
(e.g. BIOCARTA and KEGG pathways), gene sequences,
transcription regulation information and protein–protein
interactions. By integrating such data, users will be able to
better interpret the results derived from integrative microar-
ray analysis results, to assign unknown genes to aging-
related pathways and to predict transcriptional regulation.
As GAN is continuously expanding, this system is designed
in such a way that maintenance and scaling up are easy to
implement. We hope that GAN can significantly facilitate
the re-use of the vast amount of existing aging-related
microarray data and reduce the necessity to re-generate data.
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