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The restriction mapping of a massive number of individual DNA
molecules by optical mapping enables assembly of physical maps
spanning mammalian and plant genomes; however, not through
computational means permitting completely de novo assembly.
Existing algorithms are not practical for genomes larger than lower
eukaryotes due to their high time and space complexity. In many
ways, sequence assembly parallels map assembly, so that the
overlap–layout–consensus strategy, recently shown effective in
assembling very large genomes in feasible time, sheds new light on
solving map construction issues associated with single molecule
substrates. Accordingly, we report an adaptation of this approach
as the formal basis for de novo optical map assembly and demon-
strate its computational feasibility for assembly of very large
genomes. As such, we discuss assembly results for a series of
genomes: human, plant, lower eukaryote and bacterial. Unlike
sequence assembly, the optical map assembly problem is actually
more complex because restriction maps from single molecules are
constructed, manifesting errors stemming from: missing cuts, false
cuts, and high variance of estimated fragment sizes; chimeric maps
resulting from artifactually merged molecules; and true overlap
scores that are ‘‘in the noise’’ or ‘‘slightly above the noise.’’ We
address these problems, fundamental to many single molecule
measurements, by an effective error correction method using
global overlap information to eliminate spurious overlaps and
chimeric maps that are otherwise difficult to identify.

whole-genome shotgun optical mapping � map assembler

The optical mapping system developed by Schwartz and col-
leagues (1, 2) constructs genome-wide ordered restriction maps

through assembly of individual DNA molecules (genomic) cleaved
by a restriction enzyme. Cleavage events on single DNA molecules
are imaged by fully automated fluorescence microscopy as visible
gaps (�1 �m) on elongated DNA molecules. The combination of
a charged glass surface and fluid flow guided by a microfluidic
device (3) simultaneously elongates and deposits DNA random
chains as well defined stripes within the device. Because a critical
density of charge is maintained on these surfaces, absorbed and
elongated molecules under tension uniquely ‘‘flag’’ restriction
enzyme cleavage sites as visible gaps formed due to relaxation of
adjacent DNA. The distance, or mass of each consecutive restric-
tion fragment is determined by integrated fluorescence intensity
measurements against an internal standard. Collectively, these
actions produce oriented, labeled molecules that work in concert
with downstream image processing, yielding a massive set of
restriction maps as relatively compact data files. Due to the
enormous throughput of this system, a genome is redundantly
spanned by individual restriction maps supporting ‘‘shotgun’’ as-
sembly techniques for whole genome analysis. However, genome
assembly is inherently complicated by the fact that measurements
are made on random individual DNA molecules, which cannot
benefit from averaging steps intrinsic to bulk measurement tech-
niques used by common DNA sequencing platforms; no amplifi-
cation step is used during optical mapping. This finding places
another level of complexity within the genome assembly step, where

further error reduction must be must be performed after acquisi-
tion. Such errors are characterized as: (i) spurious, or false restric-
tion sites, (ii) partial digestion, or missing cuts (where restriction
sites are not observed in optical maps), (iii) small fragments (�2 kb)
are underrepresented in maps, (iv) sizing error, and (v) chimeric
maps that result from images of ambiguously overlapping DNA
molecules.

Ordered restriction maps reveal structural detail across a genome
in ways that are only surpassed by DNA sequence data, and recent
findings show prevalent structural variations in human populations
(4, 5) with many loci linked to diseases. Also, cancer genomes are
notoriously rife with aneuploidy and structural aberrations fostered
by unchecked genomic instability, which when fully characterized at
high-resolution present new routes for diagnostics (6) and treat-
ment. Our current techniques for discovery of structural alterations
are somewhat bound by the limitations imposed by DNA hybrid-
ization or cost (sequencing). For example, genomic microarrays do
reveal deletions (7), but are confounded by common genomic
repeats and cannot discern inversions (8). Furthermore, insertions
and other genomic events not represented on a chip array cannot
be assayed and go undiscovered. As such, ordered restriction maps
broadly reveal genome structural events potentiating their discov-
ery and physical characterization in one step. Accordingly, the
scalable de novo assembly approach presented here will greatly
facilitate the construction of physical maps for this emerging field
of human and tumor biology.

Prior Optical Mapping Algorithms
The optical map assembly problem proved to be a challenging task
because optical mapping employs measurements performed on
individual molecules. Several research groups have worked on
restriction map reconstruction algorithms (9–12).

Some formulations of this problem were demonstrated to be
NP-hard (12), whereas others allowed polynomial time algorithms
(11). These algorithms were designed for reconstruction of short
restriction maps using cloned DNA substrates. These methods
produced accurate consensus restriction maps but could not be
applied to ‘‘shotgun’’ optical mapping data, which is most typical
form of data in current optical mapping system. In ‘‘shotgun’’
optical mapping, maps of DNA molecules are produced by random
shearing of genomic DNA. This implies that optical maps represent
random parts of genome rather than identical DNA molecules.

Ananthraman et al. designed a Bayesian method that could
accommodate shotgun optical mapping data by searching over a
large space of order assignments, but their algorithm had deficien-
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cies in terms of scalability to large genomes.¶ Consequently, appli-
cation of this algorithm to genome assemblies more complex than
bacteria required additional extensive ad hoc approaches.

As such, there is a need for new algorithms that are specifically
designed for handling many computational issues inherent to the
assembly of large genomes, such as plant and mammalian. Here, we
approach optical map assembly problem by using an approach that
is quite different from existing restriction map reconstruction
algorithms. Our method utilizes an overlap–layout–consensus strat-
egy commonly used in existing DNA sequence assemblers because
it proved to be practical even for assembling sequence reads from
very large genomes. As a key step of our assembly method, we use
a highly efficient error correction method to eliminate false positive
overlaps and chimeric maps that otherwise render assembly prob-
lem highly ambiguous.

DNA Sequence Assemblers
Most existing DNA assembly methods use a three-step computa-
tional framework termed overlap–layout–consensus. In this frame-
work, sequence read connectivity is established by the overlap step;
then local and global connectivity is combined into assembly contigs
and scaffolds and their relative order�orientation is assigned in the
layout step; finally, finished sequence contigs are computed in the
consensus step. Such an approach is used in the Celera assembler
(13), CAP (14), and ARACHNE (15). All of these assemblers also
incorporate a number of sophisticated error correction techniques
to ensure high accuracy of the finished sequence. Alternative
sequence assembly tools such as Euler (16) rely heavily on tuple
matches underlying multiple sequence alignment and infer the
consensus sequence from the tuple graph.

An Optical Map Assembly Method
Here, we describe an algorithm for the whole-genome de novo
assembly of optical maps. The general idea behind the method is to
represent significant overlaps of optical maps as a connectivity
graph and then apply a three-type error correction method to
eliminate errors ubiquitous in that overlap graph. Components of
the graph corresponding to genomic regions represented by con-
nected optical maps are explored to construct a draft consensus
map with approximate positions of most restriction sites. We then
employ a refinement procedure to correct draft map inaccuracies
and report a consensus restriction map. To our knowledge, this is
the first whole-genome map assembly tool with feasible computa-
tional complexity and space requirement. Here we report on the
details of the method as well as some assemblies. To date, we have
performed assembly of several bacterial genomes (�5 Mb), one
microbial genome (34.5 Mb), one plant genome (430 Mb), and one
human genome. Comparison of the two bacterial maps produced by
our map assembly method to the known DNA sequences confirms
the high accuracy of our method. The overlap structure that we

employ for representation of region connectivity is capable of
accommodating assemblies from polymorphic genomic regions
such as those found in diploid organisms and populations of tumor
cells with highly aberrant genomes.

Optical Mapping Measurements
Typically, we use restriction enzymes with a 6-bp cognate recog-
nition sequence or, for mammalian genomes, enzymes that are CpG
methylation insensitive. Each optical map is represented by an array
of fragment sizes in the order they are determined on a given
molecule. Individual optical maps range from 350 kb to 4 Mb in
total size, typically bearing 30 restriction fragments. About 20% of
restriction sites are not observed in a given optical map due to
imperfect digestion. Also, about three false cuts per 1 Mb of DNA
are usually present at random positions. Most fragments �500 bp
are not observed in our data, and fragments under 2 kb are
generally underrepresented. Sizes of restriction fragments X typi-
cally have normal distribution (X � N(Y, �2Y) for �2 � 0.3), where
Y represents the true genomic size of corresponding region of DNA
(17). This finding implies, for example, that for a 20-kb DNA
fragment, 80% of the measurements are within 3.3 kb of 20 kb.

Results
We evaluated the capabilities of our optical map assembly method,
by performing unsupervised de novo assembly of several genomes
using experimental results from a series organisms of increasing
genomic complexity and size (Table 1).

Our first map assembly attempts focused on small bacterial
genomes, Yersinia pestis strain KIM genome and Escherichia coli
(strain K12), with results closely compared with their reference
maps (in silico maps). The reference map was obtained by the
restriction digestion, in silico, of the published sequence (18, 19)
with the same enzyme used for optical map construction (20).
Looking at Table 1, the first step of calculating all pairwise overlaps
is the most computationally intensive of all, quadratic in the number
of optical maps and requiring extensive computer resources. How-
ever, subsequent steps, layout, consensus, and refinement, are fast,
requiring no more than 60 min on a single 3-GHz desktop com-
puter. We assessed the quality of the draft and refined consensus
maps by their alignments to corresponding DNA sequence for
tabulation of errors consisting of missing fragments, false, or
missing restriction sites, and restriction fragment size discrepancy.
For Y. pestis, the draft assembly contained 30 missing and 12 false
cuts, which after the refinement step (using the entire optical map
data set) reduced to only one missing cut and no false cuts. Also,
only six small restriction fragments (�2 kb) were missing after the
refinement, reflecting their known underrepresentation in optical
maps (21). The E. coli strain K12 assembly benefited from a large
number of optical maps (6,750), yielding 184,522 accurate overlaps
that were combined in the overlap graph producing a draft map
spanning the entire genome. After the refinement, the final assem-
bly contained 4,352 maps (�500� coverage), and map to sequence
alignments showed no false or missing cuts and only seven very
small, missing restriction fragments (0.1–0.7 kb).

¶Ananthraman, T., Schwartz, D, Mishra, B. The Seventh International Conference on
Intelligent Systems for Molecular Biology, 1999.

Table 1. Summary of de novo assemblies for several organisms

Genome
Genome
size, Mb Enzyme

Average
genomic

fragments
size, kb

No. of
optical
maps

Over-
sampling

Overlap
calculation,

h

Layout-
consensus

calculation, h

Refinement
calculation,

h
Overlap

yield

Contig
yield

(mass,
Mb)

% of
genome
covered

Contigs
aligned
to ref.
(mass,
Mb)

Y. pestis 4.6 XhoI 17.3 251 49� 0.1 0.01 0.1 691 1 (4.8) 100 1 (4.8)
E. coli 4.6 XhoI 26 6,750 708� 31 1 1 184,522 1 (4.6) 100 1 (4.6)
T. pseudonana 34.5 NheI 9.8 34,460 435� 2,400 1 6 254,978 46 (38) 100 18 (6.4)
O. sativa 430 NheI 11.8 260 � 103 268� 96 � 103 1.2 1 8 � 106 307 (236) 52 288 (225)
Human CHM 3,200 SwaI 13.5 213 � 103 30� 57 � 103 1 2 12 � 106 219 (150) 4.6 171 (109)
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In terms of map assembly, the greater genome size and com-
plexity of eukaryotic genomes dictate that significantly larger and
more informative sets of optical maps must be considered. Accord-
ingly, assemblies for Thalassiosira pseudonana, Oryza sativa ssp.
japonica (rice), and Homo sapiens used only optical maps contain-
ing 15 or more restriction fragments as a strict filter for map quality,
commesurate with the current throughput of the optical mapping
system, to reduce the amount of computation while ensuring
sufficient genome coverage. Looking at Table 1, we see very long
computational times for calculating the overlaps for T. pseudonana
and rice, but subsequent layout-consensus and refinement steps are
rapid; taking only �1 h on a desktop computer. In terms of
assembly accuracy of O. sativa ssp. japonica genome, of maps which
aligned with the threshold to the reference genome, 91% of their
total length matched by using local and gapped-local alignment.
The nonaligned part concentrated most often in the end of the
maps due to lower optical map coverage. Details of the alignments
revealed that �1.4% of contig restriction sites did not align to any
restriction site in the sequence (this corresponds to �1.4 extra sites
per 1 Mb of DNA sequence). Also, 13% of genomic DNA sequence
restriction sites did not match to any contig site (in the original
optical map data set, 20% of sites are missing). Also, the vast
majority of fragments �1 kb was not represented by our consensus
maps, and 1,107 of 1,575 fragments between 1 and 3 kb were missing
in our consensus maps. Finally, nine of 288 contigs produced
alignment patterns consistent with misassemblies (we should note,
however, that the published rice genome may also contain misas-
semblies because it is not entirely finished).

Following the same steps as before, the human genome assembly
(from a tumor sample derived from a complete hydatidiform mole;
S. Reslewic, personal communication) produced 219 assembled
contigs (150 Mb) containing 10 or more optical maps. These were
compared through local and gapped alignment to NCBI human
build 35 (22) showing 171 (109 Mb) of 219 (124 Mb) contigs aligning
with high scores (q score, 11). We attribute a low amount of
assembled contig mass to low effective coverage of this human data
set. Specifically, even when optical maps are aligned to the refer-
ence genome, only 20% of these maps score above threshold. In
terms of accuracy of the assembled contigs, we observed 81 extra
sites (one extra site per 1.3 Mb of reference sequence), and 210
missing sites of 6,153 reference map sites. Also, vast majority of
fragments under 1 kb was not represented by our consensus maps,
and 420 of 645 fragments between 1 and 3 kb were not represented.
Finally, two assembled contigs showed patterns that appeared to be
possible misassemblies.

Discussion
In this paper, we have described an algorithm for whole-genome
unsupervised de novo restriction map assembly using optical maps
constructed from randomly sheared genomic DNA molecules. To
our knowledge, this is the first algorithm capable of producing
accurate restriction maps, using single DNA molecules, of very
large genomes (such as human or rice) in feasible time, through the
leveraging of increasingly available cluster computing resources.
The uniqueness of the method is in the application of the overlap–
layout–consensus strategy to the assembly of optical maps and in
the effective distance-based error-elimination method. Together,
these features enable ‘‘impossible’’ assemblies due to ubiquitous
false overlaps created by local errors and chimerism found in optical
maps. The main application of our method will be in the realm of
‘‘structural genomics,’’ where restriction maps reveal kilobase-sized
alterations in test genomes as novel restriction sites, missing restric-
tion sites, large indels (�5 kb), and complex rearrangements. When
such alterations are assessed in populations, new structural poly-
morphisms will emerge; in cancer, new breakpoints will be discov-
ered and characterized at high-resolution.

Methods
Optical maps from a target organism serve as input data for the
whole-genome optical map assembly process, which computes a
consensus restriction map of the genome. The assembly process
consists of seven steps that we outline in this section. The method
is designed in such way that the most computationally demanding
step (calculation of pairwise overlaps) only needs to be done once,
and the other less computationally intense steps use computed
overlaps as an input for further calculations. In this way, maps can
be fast and easily reassembled if a change in the assembler
parameters is required. Below, we briefly describe our map assem-
bly method and in the following sections we discuss the details of
the outlined steps.

1. Calculation of overlaps. We first compute all pairwise align-
ments (overlaps) of optical maps. These overlaps are screened to
identify accurate overlaps by using an alignment score as a proxy
for overlap significance. Provided that we have large quantities
of optical maps such as those from currently mapped human
genomes (0.5 million or more optical maps), the amount of
necessary computation can be very impressive. Fortunately, this
step can take advantage of the massive parallelization offered by
large modern computing clusters. The computation can be
performed in a relatively short time provided a large number of
available processors available. Furthermore, the memory re-
quirement for this computation is very moderate. Each overlap
between a pair of maps with m and n fragments is computed in
O(mn) time, equivalent of �1�100 of a second on an average PC,
and requires O(mn) storage.

2. Overlap graph construction. Pairwise overlap relations between
individual maps are represented by the overlap graph, which is
a central object of our analysis. In this graph, optical maps are
represented by graph nodes, whereas overlaps between pairs of
maps are represented by edges connecting corresponding nodes.
This representation is convenient, because we can carry out all
calculations in the graph by using simple graph algorithms such
as breadth-first search (BFS), depth-first search (DFS), and
heaviest path.

3. Graph correction procedure. Unless the errors present in the
overlap graph are addressed, construction of accurate consensus
maps is often impossible. Overlap graph errors appear in the
form of false edges (due to spurious overlaps) and spurious
nodes (due to chimeric maps) that suggest false connectivity of
genomic regions. To address this problem, we carry out a graph
correction procedure to eliminate such errors. This is accom-
plished in three steps to account for three error types: (i)
orientation consistent false overlaps, (ii) orientation inconsistent
false overlaps, and (iii) chimeric maps.

4. Identification of islands. After the graph correction procedure,
the overlap graph breaks into multiple components correspond-
ing to connected genomic regions spanned by overlapping
optical maps. Each of these graph components, also termed
islands, must be processed independently of each other to yield
consensus maps representing these regions.

5. Contig construction. Within each of the graph components,
contigs can be represented by paths connecting sources and
sinks. To produce the most extensive map representing the
genomic region of a given graph component, we find the heaviest
cycle-free path, maximizing the estimated genomic distance
spanned by that path. In sequence assembly problems, scaffold-
ing, described orienting and ordering contigs relative to each
other and a reference genome, is commonly provided because
sequence reads are typically mate-paired. In optical mapping,
this is not the case, so sets of assembled contigs are not
‘‘scaffolded’’, i.e., no additional orientation and�or order be-
tween the map contigs is given. However, if the mapping process
is parallelled by resequencing, this disadvantage can be over-
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come to provide more detailed information about the assembled
maps.

6. Construction of draft consensus map. Extracted paths within the
overlap graph produce draft consensus maps by merging cor-
responding optical maps according to their overlaps.

7. Consensus map refinement. In our approach, draft consensus
maps are constructed by concatenating single optical maps.
Therefore, errors in the form of missing cuts, false cuts, and
fragment size inaccuracies inherently appear in these draft maps.
However, if the draft map retains enough accuracy, errors can
be corrected by combining information from a large number of
optical maps obtained from the corresponding graph compo-
nent. This refined map is reported as a consensus map repre-
senting the relevant genomic region.

Given the potentially large number of pairwise comparisons
required in the overlap step, a question arises as to whether
something can be done to reduce the number of candidate pairs by
some heuristic method without calculating all pairwise alignments.
In sequencing, this problem is addressed by means of k-mer hashing
(e.g., k � 23) that allows detection of a high percentage of correct
overlaps by finding long word matches and thus avoids the expen-
sive dynamic programming step for many pairs of sequence reads.
The reason why this idea works well for sequence reads produced
by the Sanger sequencing method is because the errors in sequence
reads are usually somewhat rare. This rarity is due to the fact that
averaging over a large population of clonal sequences results high
sequence read accuracy (�95%). We investigated the possibility of
geometric hashing of adjacent optical map fragments for quick
elimination of spurious overlaps (23). However, because optical
mapping is a single-molecule mapping technology, averaging is not
embedded in the primary measurement, as it is in Sanger sequenc-
ing, which results in higher error frequency when compared with
sequence reads. False cuts and especially missing cuts are ubiqui-
tous in optical maps, thus requiring the tuple size k to be small to
ensure a high probability of finding true overlaps. On the other
hand, if k is chosen to be small, only a small number of nonover-
lapping map pairs can be eliminated before the alignment step, and
a large fraction of maps still need to be aligned. Therefore, we
abandoned hashing in favor of exhaustive pairwise comparisons for
the purpose of finding accurate overlaps.

Overlap Graph Construction. A directed overlap graph G � (V, E) is
defined by a set of nodes V corresponding to individual optical maps
taken in a particular orientation, and a set of directed edges E,
corresponding to high-quality overlaps between optical maps. Ini-
tially, all pairwise overlaps of optical maps are calculated by using
our likelihood-based scoring method (17). The quality of reported
overlaps is based on the site match measure that we term ‘‘q score’’
(A.V., unpublished data). Overlaps with q scores exceeding a
specified threshold are considered to be accurate and are selected
for construction of the graph. Specifically, they are sorted according
to their q score values and progressively added to the graph in
decreasing order of significance. Each map is placed in a particular
orientation (normal or reverse), and the graph is grown as more
edges are added. At this point, orientation consistency is checked.
If an edge, suggested for addition to the graph, connects two nodes
within the same component of the graph, orientation of maps
represented by these nodes must be consistent with orientation of
maps within the suggested overlap. If orientation is inconsistent, the
edge is not added to the graph and therefore not considered in
further analysis. This step accomplishes elimination of false over-
laps with inconsistent orientation. The idea behind this step is to
embed correct overlaps into the graph as early as possible. False
overlaps generally have low q scores; hence, by the time they are
considered for the addition to the graph, we hope that enough
accurate overlaps are embedded already to purge the spurious
orientation-inconsistent overlaps from further consideration. Un-

like the greedy merge procedure used in CAP (14), this step does
not create a problem if a false edge is incorporated early in the
graph. As will become clear below, our graph correction procedure
will eliminate such an edge, so corresponding regions will remain
unconnected instead of causing a spurious consensus map to be
reported.

Previously, we explained that each map in the overlap graph
appears in a particular orientation o � {N, R}, where N stands for
normal orientation (fragments appear in the same order as in the
map stored in the file) and R stands for reverse (fragments appear
in the opposite order compared with the way the map is stored in
the file). Furthermore, edges within the overlap graph can be of two
types: containment edges and noncontainment edges. A contain-
ment edge connects two maps, one of which is contained by another
through their pairwise alignment. More precisely, if map M1
represents genomic region G1 and map M2 represents genomic
region G2, than map M1 contains map M2 if G1 � G2. In this case,
M1 is called master map, and map M2 is called a slave map.
Therefore, noncontainment edges represent overlaps of maps that
contain both common and unique regions.

Below we describe how we assign edge directions and weights
in the overlap graph. Suppose that maps M1 and M2 appear in
orientation o1 and o2 in their pairwise overlap. The edge weights
in the overlap graph are given by estimates of genomic distances
between optical map midpoints deduced from their overlap, so that
weight (M1

o13M2
o2) � dist(M1

o1, M2
o2). Fig. 1 gives an illustration how

this distance can be calculated for maps M1 and M2. Based on the
positions of map centers C1 and C2, we can identify the largest
common alignment block (u1, u2; v1, v2) that does not contain map
centers C1 and C2. We use corresponding map regions with sizes
B1 � �u2 � u1�, B2 � �v2 � v1�, A1 � �u1 � C1�, and E2 � �C2 � v2�
to estimate the distance: dist(M1

o1, M2
o2) � (�1) I{u1�C1, C2 �v2} �

(A1 � (B1 � B2)�2 � E2). Of course, all of the numbers are defined
by the map orientation; for example, v2 � �i�1

k�1 fi for M2
N and v2 �

�M2� � �i�1
k�1 fi for M2

R. Here fi are fragment sizes of map M2 and k
is the index of the site corresponding to v2. It is clear that changing
the direction of the edge will change the sign of the edge weight, but
not its absolute value. So, when constructing the graph, we choose
edge directions so that edge weights are positive.

Graph Correction Procedure. Although we only embed high quality
overlaps in the overlap graph, some of them can be spurious. Such
overlaps introduce false edges. Chimeric maps are another type of
error in which a single map represents a concatenate of two or more
different genomic regions. Thus, in the overlap graph, these maps
bridge unrelated genomic regions and can cause errors in the
construction of consensus maps. Fig. 2 gives examples of what such
errors look like when they arise in the overlap graph. Below we
describe in more detail how we eliminate false edges and chimeric
maps from the overlap graph. Note that false edges and chimeric
maps can look very similar to regions with low coverage and poor

C1
Map M1

Map M2

C2

A1 B1

B2 E2

u1 u2

v1 v2

N

N

Fig. 1. The distance between optical map midpoints. The distance between
maps M1

N and M2
N is given by the distance between map centers. In this case,

dist(M1
N, M2

N) � dist(C1, C2) � (�1)I{u1�C,1v2�C2} � (A1 � (B1 � B2)�2 � E2), where
u1 represents the closest to C1 matching site of the largest alignment block (u1,
u2; v1, v2) that does not contain center points C1 and C2.
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overlap alignment quality. In our method, however, we require that
genomic regions connected in the overlap graph provide multiple
evidence of connectivity. In other words, any two connected regions
must be connected by at least two different paths within the overlap
graph with no common intermediate nodes. If such evidence cannot
be found in the overlap graph, our procedure will disconnect the
graph at the corresponding node. Although this implies that
genomic regions must be deep in terms of map coverage, there is
a significant benefit in terms of reduction of overlap graph errors,
which allows for accurate map assemblies.

Elimination of False Edges with Inconsistent Orientation. This step is
accomplished at the graph construction stage because edges added
to the overlap graph must connect maps consistently with the
orientation of maps already placed in the graph. We first sort all
overlaps in decreasing order of significance and then add them to
the overlap graph. Suppose an edge suggested for addition to the
graph connects two maps M1 and M2 in orientation o1 and o2. If
these maps belong to the same component, they are already
assigned orientations r1 and r2. Hence, the overlap is consistent if
either r1 � o1 and r2 � o2 or r�1 � o1 and r�2 � o2. If the edge is
consistent, it is included in the graph, otherwise it is skipped.

Elimination of False Edges with Consistent Orientation. We can use
the proposed genomic distance between optical maps to our
advantage to eliminate orientation consistent false edges still
present in the overlap graph. For every node Ni in the graph, we
perform a depth-first search of specified depth taking only outgoing
edges and collect all nodes Nj such that there exist multiple
independent paths through the graph connecting nodes Ni and Nj.
For each of those paths P� we compute its spanning genomic
distance D� by adding weights of edges taken along the edges of
each path. Distances from correct paths must be distributed ac-
cording to the distance error model. In our previous analysis (17),
we have established that for genomic region of size y, its size X,
estimated from the optical map, is normally distributed with mean
EX � y and variance Var(X) � �2y. Naturally, we adopt the same
error model for the genomic distances between optical maps,
because they are calculated by adding sizes of fragments within
optical maps. Unfortunately, for a given pair of maps Mi and Mj,
represented by nodes Ni and Nj, their true genomic distance is
generally unknown. To overcome this limitation, we want to find the
path P� with distance D� connecting Ni and Nj, that maximizes the
size of the cluster of paths connecting Ni and Nj with distances found
within � standard deviations � � 	D� of D�. If there is more than
one path within such a cluster (including the path corresponding to
D�), then all of the edges within those paths are marked as

‘‘confirmed’’ (because we found multiple evidence of connectivity
with agreeable distance). Unconfirmed edges are then eliminated
from the overlap graph along with all isolated nodes.

Chimeric Map Elimination. Even after elimination of false edges,
some chimeric maps may be present in the overlap graph. Chimeric
maps have a very distinctive appearance in the overlap graph (Fig.
2), namely, a set of maps L(M) overlapping with the left part of
chimeric map M and a set of maps R(M) overlapping with the right
part of M must not be locally connected in the overlap graph other
than through that chimeric map. This observation is based on the
fact that right and left parts of map H must belong to different
regions. Therefore, potential chimeric maps are identified as local
articulation nodes, removal of which disconnects the local subgraph
(in this case, edge direction is not important, because finding
articulation points suffices). Provided enough optical map cover-
age, we can use this as a strategy for finding chimeric maps. From
every node adjacent to map M, we perform a breadth first search
of specified depth without taking paths through M to discover all
immediate neighbors of M. If we fail, the node corresponding to M
is removed from the graph.

Genomic distances between map centers as we described in this
section provide simple, yet powerful measures that can be used to
filter out overlap errors that make assembly problematic. Conve-
niently, this method can also be extended into assembly of se-
quences, where distance would represent nucleotide count between
centers of sequence reads based on their overlap. A corresponding
distance error model would be derived from parameters of the
sequencing instrument, where the amount of sequencing errors will
depend on the DNA content of a particular genomic region.
Naturally, this distance would allow detection of false overlaps
between sequence reads and aid the sequence assembly process.

Opt. map M1

Opt. map M2

Opt.map M3

Opt. map M4

Opt. map M5

Draft consensus map

Fig. 3. Draft map construction based on the path from the overlap graph.
Draft map is constructed by concatenating regions of optical maps based on
their pairwise overlaps.
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Fig. 2. Errors in the overlap graph. (i) Cycles in graphs from linear genomes. False edge (red) connects two nodes within the same component and creates a
cycle. In graphs built for circular genomes, cycles arise naturally, but graphs from linear genomes should not contain cycles. (ii and iii) False edges. Orientation
inconsistent false edge (ii, red edge) creates an orientation conflict when placing a map in the graph in a particular orientation. False edges that do not introduce
orientation conflict (iii, red edge) can spuriously connect maps from unrelated genomic regions. (iv) Chimeric maps. Chimeric maps (D) combine maps from at
least two different genomic regions (shown in blue and orange), resulting in falsely connected regions.
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Layout and Consensus Map Reconstruction. After false edges and
chimeric maps are eliminated from the overlap graph, the graph
should break into components representing islands of overlapping
maps. For each component of the graph, we want to extract a contig
representing the genomic region corresponding to this island. In
other words, we must find a cycle-free path through a subgraph
maximizing the genomic distance spanned by this path. To do this,
we first identify sources within the component and perform depth-
first search from each source assigning the longest distance accu-
mulated along the paths to each of the discovered nodes. Consider
node Ni with weight wi corresponding to the longest spanning
distance of the incoming path ending at that node. If Oi is a set of
edges incoming to Ni, then Si gives the set of nodes for which edges
from Oi are outgoing. The maximization recursion for Ni outgoing
is given by

wi ¢ max
j�Si

{w j � w j¡i},

where wj is the the weight stored at the node Nj � Si and wi3j �
dist(Ni, Nj) is the distance between maps Ni and Nj. The heaviest
path is found by locating the node with the largest weight and the
heaviest path ending at that node. The prescribed merging of optical
maps within a corresponding island is thus given by the set of maps
as they appear along this heaviest path starting from a relevant
source node.

Each graph component yields a draft map by combining portions
of corresponding optical maps based on their pairwise overlap
relations (Fig. 3). Although the draft map is a concatenate of

multiple optical maps, each fragment in it is given by a fragment
from a single optical map. Therefore, a draft map inherently
contains errors in the form of missing cuts, false cuts, and fragment
size inaccuracies. These are subject to further correction, which we
accomplish through a map refinement procedure (24). More spe-
cifically, maps from the corresponding overlap graph component
are used to improve draft map accuracy by (i) removing false cuts,
(ii) adding missing cuts, and (iii) reestimating fragment sizes (Fig.
4). To accomplish this, we align optical maps to the draft map and
perform hypothesis testing to identify positions of draft map where
sites need to be added and�or deleted. Fragment size reestimation
is accomplished by taking average of fragments of optical maps
corresponding to fragments of the draft map. This procedure is
repeated until no further corrections can be made. During each
iteration of the refinement procedure, optical maps are realigned to
yield more accurate corrections. The refinement process converges
rapidly and equilibrium is usually reached within 10�13 iterations.
The corrected consensus map is reported as a map representing the
corresponding island.
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Fig. 4. Fragment size discrepancy for map assembly of XhoI digest of E. coli K12 strain. For the restriction fragment sizes x of XhoI E. coli consensus map, y gives
the true fragment sizes inferred from the published sequence; x � y gives the sizing error of consensus map fragments produced by our optical map assembler.
(Left) The scatter plot shows the size discrepancy depending on the size of the underlying fragment. (Right) The histogram illustrates the marginal distribution
of the size discrepancy for the finished restriction map.
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