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ABSTRACT

Motivation: Genomic mutations and variations provide insightful

informationabout the functionalityofsequenceelementsand theirasso-

ciation with human diseases. Traditionally, variations are identified

through analysis of short DNA sequences, usually shorter than

1000 bp per fragment. Optical maps provide both faster and more

cost-efficient means for detecting such differences, because a single

map can span over 1 million bp. Optical maps are assembled to cover

the whole genome, and the accuracy of assembly is critical.

Results:We present a computationally efficient model-based method

for improvingqualityof suchassemblies.Ourmethodprovidesveryhigh

accuracy even with moderate coverage (<20 ·). We utilize a hidden

Markov model to represent the consensus map and use the

expectation-Maximization algorithm to drive the refinement process.

Wealso provide quality scores to assess the quality of the finishedmap.

Availability:Code isavailable fromwww.cmb.usc.edu/people/valouev/

Contact: valouev@usc.edu

1 INTRODUCTION

The comprehensive assessment of human genome polymorphism and

somatic aberration drives meaningful association studies and insights

into breakpoints that are prevalent in many types of cancer. As such,

restrictionmaps reveal many types of differences that include apparent

inserions/deletions, inversions, tandem duplications and even SNPs

(S. Reslewic et al., manuscript submitted). Sequencing efforts also

benefit from the use of accurate physical maps that span entire

genomes. More specifically, physical maps provide scaffolds essential

for sequence finishing and validation. Given this context, the optical

mapping system (Valouev et al., 2005; Dimalanta et al., 2004;

Ananthraman et al., 1999) constructs high-resolution ordered

restriction maps from individual genomic DNA molecules that are

assembled into map contigs spanning entire genomes.

Since optical maps are produced from single DNA molecules,

a unique set of errors must be dealt with to ensure accuracy of

inferred consensus map. In optical mapping, not only map assembly

is more difficult compared with sequencing, but also correctly

assembled draft consensus maps may contain inaccuracies that

include false cuts, missing cuts, and fragment size inaccuracies.

Our optical map assembler (A. Valouev et al., manuscript in pre-

paration) works in the following fashion: (1) it identifies pairs of

overlapping optical maps; (2) locates contigs as subsets of overlap-

ping optical maps representing a particular portion of genome; (3)

extracts a sequence of overlapping optical maps that represents the

region from beginning to the end; and (4) then extracts a draft map

by simply merging in order sequence of overlapping optical maps.

The draft map represents a composite of a sequence of optical maps

and outlines approximate positions of most restriction sites of cor-

responding region of the genome (Fig. 1). Notice from Figure 1 that

at each position of draft map, fragments come from a single optical

map, and also not all optical map measurements are incorporated,

since only a sequence of overlapping optical maps is chosen for the

construction. In sequence assembly, this problem is dealt with by

constructing multiple alignment of all sequence reads and then

inferring the consensus by majority vote across the columns of

multiple alignment. We cannot do our consensus inference the

same way because there is no multiple alignment algorithm for

restriction maps. Instead, we choose to construct the draft map

that only includes the subset of all measurements and then refine

it by combining remaining majority of optical map measurements

and voting off draft map inaccuracies. We proceed iteratively until

no further improvements can be made to the draft map and all

possible measurements are incorporated. This last step of improving

the draft map accuracy is termed ‘assembly refinement’ and is

considered in this paper.

We will describe the assembly refinement method that allows to

take inaccurate draft consensus map and gradually improve its

accuracy by introducing corrections. Our method takes advantage

of the ‘majority rule’ strategy by combining the information from

high-quality optical maps in order to purge draft consensus map of

its inaccuracies. In our method, we employ a hidden Markov model

(HMM) to represent the consensus map of interest. An expectation-

maximization (EM) algorithm (Rabiner, 1989) is then used to

eliminate the errors and update the consensus map within limited

iterations. In our approach, the progress of the refinement is

driven by changing the consensus towards the state where the

final consensus map best fits the optical map data.

Another important benefit of our analysis is that it addresses the

quality of the finished physical map. In sequencing efforts, quality

scores are routinely provided for gauging base calls, as well as for

finished sequence. For base calling, this is accomplished through

analysis of sequence traces (Ewing and Green, 1998), while the

quality assessment of finished consensus sequence is inferred

through analysis of a set of sequence reads (Churchill and
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Waterman, 1992). The situation is quite different in optical map-

ping, since raw quality scores for each optical map will require the

development of new set of metrics and analysis, specially contoured

to single molecule datasets. Nonetheless, the problem remains of

how to quantitatively assess the quality of finished physical map

contigs in ways that would parallel techniques for sequence assem-

bly. Here, we address this problem by providing consensus quality

scores that are based on the optical maps contributing to the final

assembly. These scores address correctness of estimated restriction

sites, possibility of additional sites at each map position. Finally, we

provide a simple method to find regions of potential mis-assembly

by screening the optical map coverage and reporting regions where

coverage is abnormally low.

2 OPTICAL MAPS AND ERROR MODELS

The optical mapping system (Dimalanta et al., 2004; Zhou et al.,
2004) uses randomly sheared genomic DNAmolecules (up to 4Mb)

as the mapping substrate. A microfluidic device is used to both

elongate and deposit long DNA molecules onto charged glass sur-

faces for analysis (Dimalanta et al., 2004). After deposition, a

solution containing buffer and a restriction enzyme is applied to

cleave immobilized DNA molecules, which are then fluorochrome

stained to reveal cleavage sites after imaging by fluorescence micro-

scopy. Automated imaging enables large image datasets to be

acquired and these are then analyzed by machine vision to produce

ordered restriction maps from individual molecules. Restriction

sites (cut sites) are characterized as punctuated dark gaps along

a molecular backbone; likewise spurious cut sites bear a similar

appearance. As previously mentioned, a unique set of errors is

associated with single molecule datasets. Below we state the

statistical models associated with the optical map inaccuracies.

Interested readers can refer to Valouev et al. (2005) to get familiar

with the detailed description and justification for the choice of

distribution parameters.

� Sizing errors. Apparent length measurements are not used

to estimate the size of restriction fragments since this would

require uniform elongation of DNA molecules that would

also retain its biochemical competence. Instead, integrated

fluorescence intensity is used to estimate the size of each restric-

tion fragment; however, such measurements suffer errors

because of unequal distribution of fluorochromes. Our analysis

indicates that for a DNA fragment of size Y, the estimated frag-

ment sizeX follows a normal distributionX�N(Y,s2Y) for some

constant s (Valouev et al., 2005) This is due to integration

of light intensity emitted along the span of the DNA fragment.

The value of s can vary slightly depending on experimental

conditions, but is usually taken to be 0.6. Sizes of smaller frag-

ments (<2 Kb) follow a different distribution which we take to

be X � N(Y, h2) for some constant h.

� Missing cuts. Although the enzyme efficiency is high, most

optical mapping datasets show that 20% of restriction sites

remain undigested and therefore are not observed in the optical

data.We treat the digestion of each restriction site as a Bernoulli

event with probability of success p ¼ 0.8. Furthermore, the

digestion at different sites and different DNA molecules is

assumed to be independent.

� False cuts. After the DNA is attached to the glass surface, it can

break at random positions that do not contain restriction sites.

The breakage process is assumed to be uniform, and therefore

the number of the breakage sites follows a Poisson distribution

with the rate z ¼ 0.005 · Kb�1.

� Missing fragments. Restriction fragments <1 Kb are not consis-
tently immobilized on a optical mapping surfaces since electro-

static retention forces scale with DNA length—covalent

attachment schemes would obviate this problem, but would

alsohinderenzymaticactivity.Consequently, suchfragmentsare

not uniformly represented within an optical mapping dataset.

� Molecular chimerism. DNA molecules can cross paths upon

deposition on an optical mapping surface, so that unambiguous

resolution can be difficult in many of these instances. Thus

sometimes, the image processing software may report a conca-

tenate of two unrelated optical maps as a single map—we call

this effect a molecular chimerism.

3 HIDDEN MARKOV MODEL

We use a HMM to represent the consensus map. Let 0 ¼ c0 <
c1 < � � � < cn+1¼ sCmark the positions of n cut sites on the consensus
map C, so that sC is the total size of map C in base pairs (sC ¼ kCk).
Here we include the beginning and the end of the map in the set

of sites. Our HMM for physical mapping is shown in Figure 2.

In this model, there are:

(1) Match states. We have n + 2 match states corresponding to

n internal cut sites ci and the two ends of the consensus map.

If an optical map contains a cut corresponding to the site ci on
the consensus, then we say that it goes through a match state

Mi at that position.

(2) Delete states. We have n delete states corresponding to n
internal cut sites of the consensusmap. If an opticalmap covers

the position ci and has no cut site corresponding to ci, then we
say that it goes through a delete state Di at that position.

(3) Insert states. We have n + 1 insert states corresponding to

possible inserted sites between the adjacent cut sites of the

consensus map. If an optical map covers an interval (ci, ci+1)
between two adjacent sites in the consensus map and contains

1 2 {0, 1, . . . } cut sites falling between the sites ci and ci+1,
then we say it goes through the state Ili at that position.

If the consensus map is accurate, then match states represent

the digested sites on optical maps delete states represent missing

cuts on optical maps and insert states represent false cuts on

optical maps. By aligning optical maps to the consensus, we

Map M1

Map M2

Map M3

Map M4

Map M5

Draft Map

Fig. 1. Construction of draft consensus map from pairwise optical map

alignments.
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represent each alignment as a path through the HMM. Further, we

use this path information to detect and correct inaccuracies in the

consensus map.

4 ALIGNMENTS

We represent alignments by pairs of matching sites of the consensus

and optical maps. Suppose that optical map O is aligned to the

consensus map C. Let 0 ¼ o0 < o1 < � � � < om+1 ¼ sO mark the

positions of cut sites on map O, where sO gives the total size of

the optical map O (sO ¼ kOk). Alignment between O and C is given

by an ordered set of matching site pairs ðoai
‚cbi

Þ for i 2 {1, . . . , h}
with natural ordering given by oa0

< � � � < oah
and cb0

< � � � < cbh
.

To relate this to our model, we represent each alignment as

the path through HMM. For these alignments, matching sites are

represented by visiting match states. If the alignment path visits

the delete state, the corresponding consensus site is missing in the

optical map. Likewise, a visit of the insert state represents cuts

in optical maps not present in the consensus. Figure 3 gives an

example of an optical map aligned to a consensus map along

with the representation of its alignment as a path through the model.

Given the alignment paths for all optical maps, we can calculate

how many alignments go through a certain state at each consensus

position ci, and infer errors in the consensus map. For instance, if at

some consensus location ci most alignments go through the delete

state Di, it indicates that site ci may not be present in the genome

and therefore should be removed from the consensus map. When

counting these alignments, we either use most likely alignments or

expected number of alignments at each consensus map locus.

The transition probabilities for the Markov model are calcula-

ted depending on the size of the restriction fragment s ¼ ci+1 � ci
between the two adjacent consensus sites ci and ci+1. Conditioned
on the correctness of the consensus map, the probability of going

through the insert state Ili between two adjacent consensus sites

ci and ci+1 is given by the Poisson likelihood of having exactly

l false cuts within a region of size s. Hence the transition probability
from match to insert and from delete to insert is given by

PrðMi ! Ili jMiÞ ¼ PrðDi ! Ili jDiÞ ¼ PrðF ¼ l j z‚ci+1 � ciÞ

¼ e�zðci+1�ciÞ z
lðci+1 � ciÞl

l!
‚

where for each optical map, l is the number of additionally optical

map sites falling between consensus sites ci and ci+1. Notice here

that case l ¼ 0 corresponds to no internal cuts (insertions) between

two match states. This is the case when there are no false cuts in the

region. Since we use Poisson distribution to calculate a probability

of having l false cuts between consensus sites ci and ci+1, the prob-
ability of going from Ili to a match stateMi + 1 is given by p, digestion
efficiency. Therefore, transition probability of going from Ili to Di+1
is given by 1 � p:

p ¼ PrðIli ! Mi+1 j IliÞ ¼ 1 � PrðIli ! Di+1 j IliÞ:

In our model, emissions correspond to observing particular frag-

ment sizes in optical maps. Therefore emission likelihoods are

calculated according to the size error model that we have formulated

earlier in this paper. Missing and false cuts complicate these cal-

culations since we need to account for regions rather than individual

restriction fragments. Corresponding calculations require knowing

the position of the last match state to determine the size of the

matching region. And since the last match state can occur more

than one model steps before a current profile position, our model can

not be represented by a simple first order HMM. Instead, we keep a

track of last d model steps. In our implementation we take d ¼ 5,

i.e. the most recent site match to the consensus within the last five

consensus sites.

The specified transition probabilities allow us to calculate the

probability of aligning a particular optical map to a specified region

of the consensus map. As an alternative to this approach, the most

D1 D2 D3

M0

c0 c1 c2 c3 cn-2 cn-1 cn cn+1

M1 M2 M3 Mn-2 Mn-1 Mn Mn+1

Dn-2 Dn-1 Dn...

...

...

Consensus Map

I
l
0 I

l
1 I

l
2 I

l
3 I

l
nI

l
n-2 I

l
n-1

Fig. 2. HMM for physical mapping. Each restriction cut site has a group of corresponding states in the model.
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Consensus map

Optical map

Fig. 3. Representation of optical map alignment by a path through the model

states. In the top figure, only the matching sites are connected by lines. The

bottom figure shows how the corresponding alignment can be represented as

a path through the model states.
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likely alignment can be used instead. In this case, the most likely

alignment is given by an optimal alignment score to the consensus

map (Valouev et al., 2005).

5 METHODS

Our method relies on iterative refinement of the consensus map to achieve

the accurate map approximation that best fits the optical map data. Given the

initial consensus map that may contain errors in the form of missing cuts

false cuts and fragment size inaccuracies, we refine it by iterating over the

following steps:

� deletion of some sites from the consensus map

� addition of some sites to the consensus map

� re-estimation of consensus fragment sizes.

Every time we update the model, we realign optical maps to the new

consensus, and use this new alignment information for the next update step.

Our procedure uses EM algorithm for the HMM update. The expectation

step (E-step) is accomplished by aligning optical maps to the profile. In this

calculation, alignment probabilities enable finding the expected number of

optical maps going through each of the model states. Alternatively, optimal

alignment can be used for each optical map. This gives the exact number of

best optical map alignments going through each of the model states.

This information is used to update the model during the maximization

step (M-step) when consensus errors are locally corrected by applying

one of the model-update steps described above.

Our procedure can be easily scaled-up to handle large mammalian-sized

genomes. The method complexity is O(d · n · t), where d is the average

depth of coverage by optical maps, n is the number of sites of the consensus

map and t is the number of refinement iterations, The stopping criteria for

the refinement procedure is usually taken to be a consensus state when no

further changes can be made to the consensus map. Our experience shows

that iterative process converges within 13–15 iterations (Table 2) and in

some cases may depend on the coverage.

In the next section we describe the exact update procedure for each of the

update steps.

5.1 Update: deletion of consensus sites

For each site on the current consensus, we perform a hypothesis test to

determine whether the site should be removed. Suppose for the consensus

site ci, k optical maps cover this position. Furthermore, suppose x of them go

through the corresponding delete state Di. If the most likely alignments are

used, x is given by the number of the most likely alignments going through

this delete state. If the model profile is used instead, x is given by the

expected number of optical maps going through corresponding delete

state by adding probabilities of all transitions to delete state over all optical

maps aligned to the profile.

The null hypothesis assumes that site ci is a correct site. Therefore, xmaps

going through the delete state Di must be due to failed enzyme digestion at

the corresponding genomic position ci. Given digestion efficiency p, we can

calculate p-value of observing at least x undigested sites. This probability is

given by the binomial distribution:

pv ¼ PrðX � x j kÞ ¼
Xk
j¼x

k
j

� �
ð1 � pÞjpk�j:

Another statistic that we use in addition to the p-values, employs a

likelihood ratio. It controls the number of false positives produced by

the first test. Under the H0, the probability of the data is given by

LH0
¼ k

x

� �
ð1 � pÞxpk�x‚

since x out of k optical maps have undigested sites corresponding to ci.

The alternative hypothesis assumes that the site ci is not correct, and

hence k � x matching to ci optical maps must be because of false cuts at

that position. This likelihood is given by the following expression:

LHa ¼
k
x

� �
uk�xð1 � uÞx‚

where u is the probability of having false cuts within a region of size

s ¼ ci+1 � ci and is given by u ¼ 1 � e�zs. Now we can conclude that

likelihood ratio for this test is given by

lr ¼ LH0

LHa

¼ 1� p

1� u

� �x p

u

� �k�x
:

The null hypothesis is rejected when the p-value and the likelihood ratio

are both smaller than the specified thresholds. If H0 is rejected, flanking

consensus fragments are merged to produce a single updated fragment of

the combined size.

5.2 Update: addition of consensus sites

For each interval (ci, ci + 1) of the consensus map, we perform a hypothesis

test to determine whether a cut needs to be added between consensus sites ci
and ci+1. Suppose that k optical maps cover the interval (ci, ci+1), and x of

them carry cuts that fall in between ci and ci + 1.

As before, if most likely alignments are used, x is given by the number of

the most likely alignments going through a corresponding insert state Ili for
l � 0. If the model profile is used instead, x is given by the expected number

of maps going through corresponding insert state Ili for l � 0. This number is

given by adding probabilities of transitions to insert state of all alignments

over all optical maps aligned to the profile.

Under the null hypothesis, the consensus map is correct, and hence there

are no additional restriction sites between ci and ci+1. Therefore, the p-value

of having at least x maps carrying such additional sites is given by

pv ¼ PrðX � x j kÞ ¼
Xk
j¼x

k
j

� �
ujð1� uÞk�j

‚

since these additional cuts must be due to random DNA breakage. Here u

gives the probability of observing at least one false cut within a given region

of size s ¼ ci+1 � ci. Thus u can be calculated according to the following

expression:

u ¼ 1 � e�zs‚

where z is the rate of the random DNA breakage.

To control the false positive rate for the first test, we also use additional

likelihood ratio test. Under H0, extra sites on optical maps must be due to

random DNA breaks. UnderHa, the consensus map is not accurate, and must

contain an additional site between ci and ci+1. Corresponding optical map

sites must be then due to the digestion of this restriction site by the endo-

nuclease. With the digestion efficiency p this gives an expression for the

likelihood ratio:

lr ¼ LH0

LHa

¼ u

p

� �x
1� u

1� p

� �k�x

:

Note that in order for the site to be inserted, cut locations on optical maps

have to be consistent. To ensure this, additional tests may be applied. Our

experience however shows that the first two tests are sufficient to make an

accurate decision.

We reject the H0 when the p-value and the likelihood ratio are smaller

than their corresponding test thresholds. If the null hypothesis is rejected,

the new site location is given by the maximum likelihood from the maps

carrying inserts. Suppose y is the location of the new consensus site between

ci and ci+1. Furthermore, suppose an optical map aligns exactly to the

interval (ci, ci+1) so that optical map sites ol and or are matching to ci
and ci+1 respectively. Let optical map site oq correspond to the insertion

within the interval (ci, ci+1). Hence we have ol < oq < or. Under the size

A.Valouev et al.
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error model, we have oq � ol � N(y � ci, s
2(y � ci)) and or � oq �

N(ci+1 � y, s2(ci+1 � y)). Thus the corresponding likelihood of observing

oq conditional on the position y of the new site is given by

lðyÞ ¼ 1

2ps2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � ciÞðci+1 � yÞ

p
· exp � ðoq � ol � y + ciÞ2

2s2ðy � ciÞ
� ðor � oq � ci+1 + yÞ2

2s2ðci+1 � yÞ

" #

Therefore, the total likelihood of the data is given by

LðyÞ ¼
Y
j

ljðyÞ‚

where the product is taken over x maps with insertions falling inside the

interval (ci, ci+1). New site position y is then calculated using an iterative,

gradient-based maximization of L(y).

5.3 Update: fragment size re-estimation

In our approach, model update is driven towards maximization of the like-

lihood of the observed data. Therefore, we use maximum likelihood estima-

tion to re-estimate sizes of the consensus fragments. Consider the i-th
consensus fragment and optical maps that match to that fragment exactly.

In other words, every optical map in our consideration must have sites

matching to consensus sites flanking the i-th consensus fragment.

Let x1, . . . , xk be the sizes of regions of optical maps corresponding to

the i-th consensus fragment. According to our error model, xj � N(yi, s
2yi)

for all j 2 {1, . . . , k}, where yi is the true underlying size. The maximum

likelihood method gives the following expression for the size estimate of

the i-th consensus fragment:

ŷyi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4

4
+
1

k

Xk
j¼1

x2j

vuut � s2

2
:

To improve the estimation, we can take into account the quality of the

optical map alignments from where x1, . . . , xk originate and weigh each x
2
j by

the matching likelihood.

5.4 Alignment selection

In order to ensure the convergence of our consensus map to the correct

approximation, it is critical to minimize the number of spuriously aligned

optical maps, so that they do not contribute to our estimations. We use the

alignment score to assess whether the optical map comes from a particular

consensus map region. The threshold for the alignment score is chosen based

on the simulation such that the false positive rate is lower than the specified

value.

Since draft consensus map may contain a multitude of errors, few optical

maps may initially align well. However, with the progress of consensus map

refinement, more consensus regions can be corrected, and thus more optical

maps can be accurately aligned. For each refinement step, we realign the set

of optical maps to the consensus map. Accurate alignments are then selected

to be used for further error correction.

6 QUALITY SCORES

Quality score provides a practical means to assess the quality of the

finished restriction map. Our quality scores address the accuracy of

cut sites, possible additional sites between the adjacent consensus

sites, sizing errors of consensus fragments and potential regions of

mis-assembly.

� Restriction site quality score. Restriction site quality score

provides comparison of likelihoods of two opposing hypothesis.

H0 asserts that consensus site ci is correct and hence optical

maps must have matching sites to the given consensus site.

Ha asserts that the site is not correct, hence all corresponding

matching optical map sites must be only due to false cuts. If x
optical maps carry matching sites and l of them span the corre-

sponding consensus position, the score is given by the following

expression:

scoreðciÞ ¼ x · log
p

u

� �
+ ðk � xÞ · log 1 � p

1 � u

� �
‚

where u ¼ 1� e�zðci+1�ci�1Þ. This quality score is derived from

the corresponding test likelihood ratio (see above). Positive

scores indicate correctness of consensus site ci.

� Site addition score. Site addition score between consensus sites
ci and ci+1 provides comparison of likelihoods of two opposing

hypothesis. H0 asserts that there should be no additional sites

between ci and ci+1, and hence all optical map cuts falling

between ci and ci+1must be explainedby randomDNAbreakage.

Ha on the other hand asserts that these cuts may be due to

presence of restriction site between consensus sites ci and

ci+1. If x optical maps carry cut sites falling between consensus

sites ci and ci+1 and total of k optical maps span this position

by their alignments, the corresponding quality score is given by

the following expression:

scoreðci‚ci+1Þ ¼ x · log
1 � u

1 � p

� �
+ ðk � xÞ · log u

p

� �
‚

where u ¼ 1 � e�zðci+1�ciÞ. Thus a positive score is indicative of
no additional sites between consensus sites ci and ci+1.

� Mis-assembly p-values. In case of correctness of consensus

map, optical map coverage process (Waterman, 1995) at each

consensus position must follow Poisson distribution with rate

c ¼ LN/G, where G is the size of the target genome, L is the

average size of optical map, and N is the number of optical

maps. Hence, mis-assembled regions must exhibit an abnor-

mally low coverage across mis-assembled positions, since

optical maps will fail to align well. If x optical maps span con-

sensus map position ci by their alignments, the corresponding

p-value is given by the following expression:

pci ¼
Xx
j¼0

e�c c
j

j!
:

This p-value may be used to find regions of abnormally low

coverage resulting from incorrect assembly.

7 RESULTS

In order to evaluate the accuracy of our method, we selected the

Yersinia pestis strain KIM bacterial genome to demonstrate how

errors in the initial assemblies can be corrected using our refinement

procedure.

The reference Y.pestis XhoI restriction map was produced by

in silico digestion of 247 restriction sites of DNA sequence

(Zhou et al., 2002). Our dataset comprised 251 optical maps,

equivalent of roughly 50· coverage of the whole genome.

We first conducted initial assembly of optical maps. This

involved the calculation of all pairwise alignments (or overlaps)

of optical maps (Valouev et al., 2005). We then selected accurate

overlaps based on the score and the matching measure of each

overlap. This produced 691 overlaps that we consider accurate.

Refinement of optical map assemblies
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Contigs were formed from optical maps using pairwise overlap

relations and extended until they covered the whole genome.

Draft consensus map was produced by progressively merging

overlapping maps.

This draft consensus map was then refined using our HMM-based

method. To evaluate the number of errors present in the consensus

map before and after the refinement, draft and refined consensus

maps were compared with the reference map produced from the

DNA sequence. Our draft consensus map contained 30 missing cuts

and 12 false cuts. After the refinement, our consensus map con-

tained only one missing cut, no false cuts and six missing fragments

<2 Kb. The sizing difference was also reduced significantly (Fig. 4).
Compared with the draft consensus map, fragment size variance was

reduced by the factor of 5, indicating more accurate fragment size

estimation. The refined consensus map was calculated based on 174

optical maps with accurate alignments. Site quality scores after the

refinement are shown in Figure 5.

To evaluate the accuracy of our method for larger genomic

assemblies with significant sizing inaccuracies, we performed a

simulation. We took a 16 Mb reference map from human chromo-

some 1 and generated 500 optical maps using the statistical models

associated with errors in optical maps. In particular, for those simu-

lated optical maps, some cuts were deleted (20%), some random

breaks were added (5 per 1 Mb) and sizing errors were introduced to

all optical map fragments according to our size error model. These

500 optical maps contributed to an average coverage of 12 maps at

each locus of the reference map. Draft consensus map of this 16 Mb

region was produced by adding a large number of false cuts, missing

cuts and size fragment differences. The initial map contained about

1200 restriction sites. Of these, we removed 87 sites, added 75 extra

sites and changed sizes of 39 fragments in a random fashion. We

then applied our refinement method to correct the errors we intro-

duced. After the refinement, only two false cuts and six missing cuts

were present in the refined consensus. Further, sizing errors were

improved significantly (Fig. 6). Further analysis indicates that the

method is most sensitive to significant changes of fragment sizes. In

another simulation when a significant portions of fragments were

removed or added (>30 Kb indel sizes), two regions failed to

recover and were therefore considered to be breakdown regions.

Although breakdown regions were never observed for any actual

optical assemblies that we have refined, the scenario is still plausible

during assemblies of large mammalian-sized genomes. The reason

the refinement failed for two regions during our simulation is that

those regions were so inaccurate that optical maps were impossible

to confidently align. Hence the necessary data that we needed to

refine were simply missing. To overcome this limitation and recover

regions with significant size inaccuracies (>30 Kb), the method can

be further improved by employing alignment methods specifically

designed to account for indels, or simply by recomputing break-

down regions using local map re-assembly.

We included the evaluation of run times for our refinement

method using several synthetic datasets (Table 1). In particular,

for three different human genomic contigs (1.9, 12.3 and

30.1Mb), we have synthetically generated optical map coverage

datasets to represent 20·, 100· and 500· copies of those regions.

Inaccuracies were added to contigs to simulate draft maps and

15 iterations of refinement were applied. The running times are

summarized in Table 1. Another question is how to choose a con-

vergence criteria for stopping the refinement. Here we can select

among the following possibilities: equilibrium for the number of

accurately aligned maps, equilibrium for the alignment score per

unit amount of consensus map and equilibrium state for the number

of sites in the consensus map (Table 2). Our experience shows that

all of these measures reach an equilibrium state at 13–15 iterations,

so that can be chosen as a stopping criteria if desired.

8 CONCLUSION

The surface modalities used in optical mapping do not reliably

retain restriction fragments below 1 Kb, consequently reducing
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their presence in any map dataset and attenuating overall map

quality. Generally speaking, the quality of the consensus map at

any given region depends the number of optical maps representing

this region. More precisely, deep regions (represented by many

optical maps) can be accurately corrected by reducing the overall

number of false cuts and missing cuts, and increasing precision of

restriction fragment size estimates. Shallow regions (covered by

less than four optical maps), on the other hand, cannot be corrected

unambiguously and hence are never modified.
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finement, circles mark size discrepancies (compared with reference map)

after the refinement.

Table 1. Refinement running time for three datasets at 20·, 100· and

500· optical map coverage

Reference region

size (Mb)

Opt. maps Coverage Runing time on

3.4 Ghz CPU (s)

1.94 66 20· 67

1.94 316 100· 344

1.94 1577 500· 1894

12.33 387 20· 3431

12.33 1964 100· 17052

12.33 9787 500· 72949

30.11 953 20· 28993

30.11 4746 100· 124194

30.11 23819 500· 607389
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To summarize, our refinement method enables the accurate

approximation of genomic restriction map through analysis of

multiple optical maps representing this genome. In this

context, consensus map quality scores can be used to evaluate

the accuracy of the finished map and target low quality regions

for reassembly.

There are other important applications of our method that go

beyond the realm of de novomap construction. Structural alterations

in the human genome are now being appreciated as forms of vari-

ation that complement SNPs. These events can be characterized at

the map level using the method we have presented. More precisely,

if a reference map, such as human Build 35, is taken as an approx-

imation of the tested genome, refinement would create consensus

maps by accurately mapping structural differences as apparent

missing cuts, extra cuts or indels. Such developments would

advance discovery of additional human structural differences and

extend this analysis to populations.

The code of our refinement software is available for

non-commercial purposes only from www.cmb.usc.edu/people/

valouev.
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