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Alignment of Optical Maps
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ABSTRACT

We introduce a new scoring method for calculation of alignments of optical maps. Missing
cuts, false cuts, and sizing errors present in optical maps are addressed by our alignment
score through calculation of corresponding likelihoods. The size error model is derived
through the application of Central Limit Theorem and validated by residual plots col-
lected from real data. Missing cuts and false cuts are modeled as Bernoulli and Poisson
events, respectively, as suggested by previous studies. Likelihoods are used to derive an
alignment score through calculation of likelihood ratios for a certain hypothesis test. This
allows us to achieve maximal descriminative power for the alignment score. Our scoring
method is naturally embedded within a well known DP framework for finding optimal
alignments.

Key words: optical mapping, alignment score, restriction mapping, dynamic programming, like-
lihood ratio.

1. INTRODUCTION

Optical mapping is a powerful technology that allows construction of ordered restriction maps.
Each optical map is a single DNA molecule digested by the restriction enzyme and imaged by the

optical system. The map is comprised of estimates of fragment sizes in the order they appear on the imaged
molecule. Hence, there are two types of information associated with each optical map: sizes of restriction
fragments on the molecule and their relative order.

A broad spectrum of problems can be effectively addressed by means of optical mapping. Among the
most important are analysis of genomic variation (deletions, insertions, and rearrangements on a scale of
thousands of base pairs), construction of genomewide restriction maps without knowledge of the original
DNA sequence, validation and finishing of sequence contigs, and genomic placement during sequencing
projects. Despite the fact that optical mapping lacks single nucleotide resolution, it is capable of quickly
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assessing genomic differences as well as genotyping a human in a matter of a few hours, which is presently
not achievable by means of sequencing. The domain of application of optical mapping is somewhat
complementary to that of sequencing: quick genomewide analysis with resolution of several hundreds of
base pairs is now routinely done for human-sized genomes.

To address these problems by means of optical mapping, tools for revealing homologies between optical
maps need to be developed. More generally, such tools should include genomic placement of individual
optical maps and potentially be capable of genomewide restriction mapping while remaining computation-
ally feasible. Similar problems have been solved for DNA sequences. Development of sequence alignment
dynamic programming (DP) algorithms (Waterman et al., 1984; Huang and Miller, 1991) for accurate
comparison of DNA and protein sequences provided tools for genomewide shotgun sequencing which was
successfully implemented and applied to a variety of organisms (Myers, 1999; Huang and Madan, 1999).

It is therefore natural to explore the possibility of applying similar ideas to optical maps and study
the feasibility of such methods. A significant amount of work has already been done in this direction.
DP algorithms have been successfully used for restriction map alignments (Waterman et al., 1984; Huang
and Waterman, 1992; Myers and Huang, 1992). With the development of the Optical Mapping System
(Dimalanta et al., 2004; Zhou et al., 2004; Ambrust et al., 2004), much effort has been made to develop
methods for genome wide restriction mapping. Ananthraman et al. (Ananthraman et al., 1997, 1999, 2001;
Ananthraman and Mishra, 2001) have designed an extensive Bayesian framework for optical mapping with
potential for global map assembly. Its use, however, remained limited as laboratories now confront large
genomes such as human or mouse.

In this paper, we present a complete statistical model that enables us to design a likelihood ratio based
alignment score with the optimal discriminant power for distinguishing correct alignments from spurious
ones. Statistical models corresponding to different error types in optical maps allow us to calculate the
likelihoods of data observed in optical maps. Overall, the exact form of the alignment score follows from a
probabilistic model associated with the way optical maps are generated. Appropriate conditioning allows a
natural decomposition of scores into a sum of two components, first to account for sizing errors, and second
to account for the presence of false cuts and missing cuts. The designed alignment score is implemented
within a standard DP alignment framework similar to that used for sequences (Smith and Waterman, 1981)
and restriction maps (Waterman et al., 1984). Complexity of finding an optimal alignment for two maps
with m and n fragments is O(m2n2), but can be accurately approximated by a restricted O(δ2mn) version
(for all practical purposes δ ≤ 5).

2. MODELS

The errors associated with optical maps include missing cuts and false cuts, missing fragments, sizing
errors, and chimeric reads. We will explore each in more detail.

Missing cuts and false cuts. The efficiency of DNA digestion by the restriction endonuclease is never
perfect. As a result, some restriction sites on DNA remain uncut by endonuclease even after the DNA is
subjected to digestion. After the molecule is imaged, corresponding restriction fragments remain concate-
nated in the output data, appearing as if they came from a single restriction fragment of the combined
size. Digestion rate is monitored after the digestion has taken place. Many copies of a λ−phage of known
size and number of restriction sites are comounted in the solution together with the target DNA, so that
digestion rate in the solution can be screened. False cuts result from random DNA breaks or nonspecific
action of endonuclease. Under our model assumptions, random breaks show no preference to particular
regions of DNA and thus occur equally likely in all regions.

Missing fragments. After being extracted from cells, genomic DNA is deposited inside microfluidic
channels and attached to the glass surface by means of capillary action. Digestion creates restriction
fragments of different sizes, some of which are too small to firmly hold to the glass surface. These
fragments are carried away by the flow of the buffer through the microfluidic channel and therefore are
not captured by the imaging system. Many fragments shorter than 2 kb are often missing in the data. To
simplify the calculations, we do not address missing fragments in our likelihoods. However, when actual
alignments are calculated, short fragments are removed from both optical maps and reference maps to
avoid unnecessary penalties.
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Sizing errors. During the fluorescent marking of DNA, the dye is attached along the span of the molecule
in a random fashion. The size of each restriction fragment within the optical map is detected by measuring
the fluorescence intensity emitted by the fluors attached to the corresponding piece of DNA. To determine
the size of the fragment, its intensity is compared to the measurement standard that corresponds to the
amount of intensity associated with the DNA of a known size.

Consider a fragment y bps long. Suppose that Wi is the amount of intensity per i-th nucleotide of the
fragment and EW i = µ, Var(Wi) = γ 2 . The total amount of intensity accumulated along the length of
the fragment is given by W =∑y

i=1 Wi . The estimated fragment size is given by X = ŷ = W/µ. Hence,
after applying the central limit theorem, we conclude that X ∼ N(y, σ 2y), where σ 2 = (γ /µ)2.

Further, suppose that ε, defined as ε = X − y, is the measurement error. Of course, ε → N(0, σ 2y) in
distribution as n increases. To show the validity of our size error model, we have collected pairs (X, y)

from accurate alignments of optical maps of Y. pestis and reference genome, where X represents estimated
fragment sizes on optical maps and y represents their underlying reference sizes. Since, according to our
model, X ∼ N(y, σ 2y), then for e = X−y√

y
we have e ∼ N(0, σ 2). Thus e should be homoscedastic across

y and marginally normal. Figure 1 illustrates that the variance of e is homogenous across y and e is close
to a normal variable.

The described error model agrees well with the data from relatively long fragments (≥ 4 kb) observed
in the optical maps (Fig. 1). However, for small fragments, the normality assumption fails due to lack of
convergence to normal density. Other physical effects contribute as well. Balling of DNA at the ends of
fragments reduces the accuracy of size estimation for short fragments. To take this effect into account, the
sizing error for short fragments is modeled as ε ∼ N(0, η2), for an appropriate choice of η2.

Chimeric reads. When two molecules cross, there is no way to confidently disambiguate the strands
at the resolution of light microscopy. Consequently, some reads are chimeric, meaning that their portions
represent multiple unrelated genomic regions. In this paper, chimeric maps are not addressed statistically.
In other problems, when chimeras need to be identified, we use the alignment score to distinguish them
from correct optical maps.

Restriction fragment size distribution. If we assume that DNA sequences are generated by independent
sampling from a four-letter alphabet, then it can be shown that distribution of restriction fragment sizes
can be approximated by an exponential curve. However, it is known that sequences are nonrandom and
therefore some care is needed to address the issue. Churchill et al. (1989) studied the distribution of
E. coli restriction fragment sizes and found that exponential density fits best for this distribution compared
to several other densities they looked at. Our experience confirms that this assumption remains valid for
other genomes. The average restriction fragment size needs to be estimated from the reference genome or
optical maps themselves, since it depends on the nucleotide content as well as the restriction sequence. In
our approach, we estimate this number for an organism and a restriction enzyme of interest.

FIG. 1. Sizing error model. Left graph shows relative error e = X−y√
y

across different values of y, where X are

sizes of fragments on optical maps and y are their true underlying sizes. It can be seen that e is homoscedastic.
Right graph shows that the marginal density of e is close to normal.
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Model assumptions and parameters. To summarize, we use the following set of assumptions hereafter
in our analysis:

1. Sizes of genomic restriction fragments Y have exponential density with mean EY = λ, with λ depending
on a particular endonuclease. Consequently, the number of restriction sites in s kb of linear DNA is a
Poisson process with intensity s/λ.

2. Observation of a restriction site on the optical map is a Bernoulli event with probability p, which we also
refer to as the digestion rate. Further, we assume that restriction sites are being digested independently,
and hence observed restriction sites are explained by a thinned Poisson process with intensity p/λ. In
most reported maps, digestion rate is high, i.e., 0.5 ≤ p ≤ 1.

3. The number of false cuts per s kb of linear DNA is a Poisson process with intensity ζ s.
4. The length discrepancy between the optical fragment of size X and its underlying true size Y , given by

ε = X−Y , has a normal density N(0, σ 2Y ) for X ≥ �. Further, ε ∼ N(0, η2) for 0 < X < �. For all
practical situations, � = 4 kb is a reasonable threshold separating the two error models. Also, both X

and Y always assume nonnegative values, because negative fragment sizes are never observed in maps.
5. For the purpose of approximations, we require λ� σ 2, which indeed holds in all practical situations.

3. LIKELIHOOD RATIOS FOR DIFFERENT MATCH TYPES

The purpose of designing a score for matching regions of the compared restriction maps is to utilize
it in the alignment calculation. The general idea behind this method is to find an optimal alignment
configuration between compared maps that will maximize the alignment score. In our approach, alignment
score is designed as the log of ratios of likelihoods calculated under two hypothesis. The null hypothesis H0
corresponds to the situation when compared maps are completely independent. Alternative hypothesis Ha

corresponds to the situation when maps are related and represent the same genomic regions. As such, the
optimal alignment will correspond to a configuration with maximum distance between compared hypothesis
H0 and Ha .

Our alignment will be given by the minimum partition of the alignment into blocks corresponding to the
minimal matching regions between compared maps. Finding the minimal partition is accomplished through
maximization of the alignment score, since mismatching sites are penalized by the alignment scores. Here,
we define the alignment block as the two matching regions of maps that are flanked by matching restriction
sites and do not contain any internal matching sites.

In this paper, we consider two situations. The first situation corresponds to comparison between the
optical map and reference map. Reference map is usually derived from the known DNA sequence and
hence can be thought to be free of inaccuracies. In this case, only one of compared maps contains
randomness in the form of errors (missing cuts, false cuts, sizing inaccuracies). We refer to this situation
as reference match. The second situation arises when two optical maps are compared to yield a common
region. In this case, both maps will contain randomness in the form of errors. This situation is referred to
as optical match.

We first present some probabilistic results that we use to derive the likelihoods under specified hy-
potheses. In the second part of this section, we will present theorems that give expressions for alignment
scores. Our likelihood ratios are derived under certain conditioning of probabilities. The details of this
are not important for understanding the idea behind the method; interested readers can find details of our
derivations in the appendix.

3.1. Likelihoods associated with matching regions of optical maps

In this section, we present some preliminary results we use to simplify calculation of the alignment
score. Most of the facts are trivial, and therefore proofs are placed in the appendix.

Lemma 1. Distribution of number of cut sites on optical maps. Under the model assumptions, the
number X of cut sites per s kb of linear DNA on an optical map is comprised of restriction cuts and

random breaks. It has Poisson distribution with intensity s/τ , where τ = (ζ + p
λ

)−1
.
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Lemma 2. Distribution of fragment sizes on optical maps. Under the model assumptions, measured

sizes X of fragments on optical maps have exponential density with the mean θ =
[

1
σ

√
2
τ
+ 1

σ 2 − 1
σ 2

]−1

for X ≥ �.

Proposition 1. Size distribution of matching regions between optical and reference maps. Under
the model assumptions, reference sizes of matching regions between optical and reference maps have
exponential density with the mean υ = λ/p.

Proposition 2. Size distribution of matching regions between optical maps. Under the model as-
sumptions, reference sizes underlying matching regions between two optical maps have exponential density
with the mean φ = λ/p2.

Proposition 3. Size distribution for sum of multiple optical map fragments. Consider X =∑m
i=1 Xi

to be the total size of a region of an optical map comprised of m fragments. Then, under normality as-
sumptions of the sizing error model, X ∼ N(Y, σ 2Y ), where Y is the underlying size of reference region
from where X1, X2, . . . , Xm originate. This implies that the sizing error is independent of occurrences of
false cuts and missing cuts.

3.2. Likelihood ratios for optical-reference map match

In this section, we provide the formulas for likelihood ratios that we use for the calculation of the
alignment score. The likelihood ratios are given for the minimal decomposition of the alignment into the
blocks. In other words, since the decomposition is minimal, there are no matching sites contained within
the blocks (i.e., between minimally decomposed regions of the compared maps). This implies that all sites
within the block can be treated as false cuts and missing cuts, and hence double counting of matches
inside the block is not necessary. The maximization of the alignment score implemented by the algorithm
is given later in this paper. This algorithm accomplishes minimal decomposition into alignment blocks;
hence, the use of the alignment scores in this form is appropriate.

Consider the situation of comparing the optical map to the reference map. Suppose that a region of
an optical map of size X is comprised of m consecutive fragments X1, . . . , Xm so that X = ∑m

i=1 Xi .
Likewise, suppose Y is the size of the reference region comprised of n consecutive fragments on the
reference map (Y = ∑n

j=1 Yj ). The likelihood ratio for comparing sizes of two regions is given by the
following theorem.

Theorem 1. Reference size match LR. The likelihood ratio for matching the region of size x com-
prised of m of optical map fragments to the region of size y comprised of n reference map fragments is
given by

LR(x|y, n, m) =
√

2πyσxm−1

�(m)θm
exp

[
(x − y)2

2σ 2y
− x

θ

]

for x > �. Furthermore, for 0 < x ≤ �, the likelihood ratio has the form

LR(x|y, n, m) =
√

2πηxm−1

�(m)θm
exp

[
(x − y)2

2η2
− x

θ

]
.

Note that formulas for likelihood ratios do not involve the reference fragment number n because the
sizing error is independent of n. The last theorem gives the expression for comparing sizes conditioned
on the number of fragments within each region. The next theorem will present a comparison of marginal
likelihoods for the number of fragments for matching regions of compared maps. This allows one to
account for optical map errors in the form of missing cuts and false cuts that will appear in our alignments
in the form of nonmatching sites.

Theorem 2. Reference site LR. The likelihood ratio for the matching region comprised of m optical
map fragments and the reference region comprised of n reference map fragments given the reference region
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of size y has the form

LR(m|y, n) = eζy(m− 1)!fM(m)

(1− p)n−1(ζy)m−1
,

where fM(m) is the marginal density of m (the exact form of fM(m) is discussed in the proof).

3.3. Likelihood ratios for optical map match

Consider now a situation when two optical maps are compared to identify common genomic regions.
Let x1 and x2 be the sizes of two regions of such maps. Suppose these regions are comprised of m1 and m2
consecutive optical map fragments, respectively. We want to design a test for identifying whether regions
(x1, m1) and (x2, m2) of two maps represent the same genomic regions.

Theorem 3. Optical map size match LR. The likelihood ratio for matching the region of size x1
comprised of m1 consecutive optical map fragments and the region of size x2 comprised of m2 consecutive
optical map fragments from another map has the form

LR(x1, x2|m1, m2) = πφσ 2x
m1−1
1 x

m2−1
2

�(m1)�(m2)θm1+m2
×

exp

[
−
(

1

θ
+ 1

σ 2

)
(x1 + x2)

]

K0

⎛
⎝2

√
1

φ
+ 1

σ 2

√
x2

1 + x2
2

2σ 2

⎞
⎠

,

where Kν(z) is a modified Bessel function of the second kind.

The previous theorem gives the likelihood ratio conditioned on the number of fragments in each of the
regions. Next, we give an expression for the likelihood ratio of marginal densities of fragment numbers
within two regions of optical maps. This expression accounts for false cuts and missing cuts contained
within such maps. Such cuts will not be matched when regions are compared.

Theorem 4. Optical map site LR. Consider two regions of optical maps comprised of m1 and m2
fragments, respectively. The likelihood ratio for matching m1 and m2 has the form LR(m1, m2) = C

B
,

where C = Pr(m1, m2)H0 = fM1,M2(m1, m2) and

B = 1

φ

∞∑
n=0

1

λnn!
m1−1∧n∑

k1=0

m2−1∧n−k1∑
k2=0

A(k1, k2|n)× ζ (m1+m2)−(k1+k2)−2[
1

φ
+ 1

λ
+ 2ζ

]n+(m1+m2)−(k1+k2)−1

× �(n+ (m1 +m2)− (k1 + k2)− 1)

�(m1 − k1)�(m2 − k2)
,

where

A(k1, k2|n) =

(
n

k1 k2

)
pk1+k2(1− p)2n−(k1+k2)

n∑
i1=0

n−i1∑
i2=0

(
n

i1 i2

)
pi1+i2(1− p)2n−(i1+i2)

.

The exact form of fM1,M2(m1, m2) is discussed in the proof.
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4. CALCULATION OF THE ALIGNMENTS

Two types of alignments are discussed in this paper: fit and overlap alignment. Other types of alignments
are computed similarly with a slight modifications to initialization (see Waterman [1995]). Fit alignment
is used to calculate a proper fit of the the optical map into the reference. Indeed, if the whole restriction
map of the organism is known, any of its genomic optical maps should properly fit into the reference.
Therefore, the fit alignment is used for the purpose of finding the best fit of the optical map against the
reference to locate the genomic region represented by that optical map. Overlap alignment allows detection
of shared genomic regions represented by two optical maps. This corresponds to the situation when two
maps can be aligned only partially and one of the tails of each map may remain unaligned.

In this section, we outline an alignment algorithm that utilizes an alignment score that we have derived.
For the fit alignment, suppose that maps R and O correspond to the reference restriction map with n sites
and the optical map with m sites. As before, we count both the start and end positions as first and last sites.
Additionally, suppose that numbers 0 = q0 < q1 < · · · < qm = sO and 0 = r0 < r1 < · · · < rn = sR mark
the positions corresponding to the sites on optical and reference maps, respectively (here sO and sR are sizes
of optical and reference maps, respectively). The fit alignment � is defined as the ordered set of aligned
sites (i0, j0) (i1, j1) . . . (id , jd), where 0 ≤ i0 < i1 < · · · < id ≤ m and 0 = j0 < j1 < · · · < jd = m

corresponding to the indices of the restriction sites on the reference and optical maps, respectively.
For overlap alignment, consider optical maps O1 and O2 with m1 and m2 restriction sites, respectively.

Also, suppose that numbers 0 = q0 < q1 < · · · < qm1 = sO1 and 0 = r0 < r1 < · · · < rm2 = sO2

mark the positions corresponding to the sites on both maps (here sO1 and sO2 are sizes of two optical
maps). The overlap � is defined as the ordered set of aligned sites (i0, j0) (i1, j1) . . . (id , jd), where
either 0 ≤ i0 < i1 < · · · < id = m1 and 0 = j0 < j1 < · · · < jd ≤ m2, or 0 = i0 < i1 < · · · < id ≤ m1
and 0 ≤ j0 < j1 < · · · < jd = m2 corresponding to the indices of matching sites on maps O1 and O2,
respectively.

Alignment algorithm. Let X(i, j) be the score of the largest scoring alignment with the right-most
aligned pair of sites (i, j). The alignment score is calculated according to the Algorithm 1 of Huang and
Waterman (1992).

Algorithm 1. Dynamic programming for calculation of alignments of optical maps.

Initialization:
Fit: X(i, 0)←−∞, i = 1, . . . , m; X(0, j)← 0, j = 0, . . . , n

Overlap: X(i, 0)← 0, i = 1, . . . , m; X(0, j)← 0, j = 0, . . . , n

Recursion:
for i ← 1 to m do

for j ← 1 to n do
y ←−∞;
for g← max(0, i − δ) to i − 1 do

for h← max(0, j − δ) to j − 1 do
y ← max{y, X(g, h)+ S

(
qi − qg, rj − rh, i − g, j − h

)};
end

end
X(i, j)← y;

end
end

Score. The exact form of the score S
(
qi − qg, rj − rh, i − g, j − h

)
is computed according to likelihood

ratios presented above. For the fit alignment, it has the form

S
(
qi − qg, rj − rh, i − g, j − h

) = −log(LR(qi − qg; rj − rh, i − g, j − h))

− log(LR(i − g; rj − rh, j − h)),
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where the first ratio is given by Theorem 1 and the second is given by Theorem 2. Similarly, for the
overlap alignment, the score has the form

S
(
qi − qg, rj − rh, i − g, j − h

) = −log(LR(qi − qg, rj − rh; i − g, j − h))− log(LR(i − g, j − h)),

where the first ratio is given by Theorem 3 and the second is given by Theorem 4.
Complexity. Computational complexity of both fit and overlap alignments is O(δ2mn). In practice, δ is

taken to be small (δ ≤ 5), and this both improves the alignments and reduces computation complexity to
O(mn), where m and n are numbers of fragments in the compared maps.

5. PRACTICAL ISSUES

The models in Section 2 assume a set of distribution parameters. In this section, we describe these
parameters with respect to the specific experimental setup.

Sizing error σ 2. We can estimate σ 2 using several different methods. For the first method, a sample
of prepared and imaged lambda DNA of known size s can be used to estimate the average intensity sµ̂

and intensity variance sγ̂ 2. Then σ 2 is estimated as σ̂ 2 = sγ̂ 2

sµ̂2 = γ̂ 2

µ̂2 . Alternatively, σ 2 can be estimated
by empirical means, and then the fits of the optical maps into the reference are calculated. High scoring
(or confident) alignments are chosen. From these alignments, we can infer the pairs (X, Y ) where X is
the size of the fragment on the optical map and Y is its true underlying size (matching fragment on the
reference). From this data, we can estimate distribution parameters of E = X−Y√

Y
(mean, variance, based on

the fact that E ∼ N(0, σ 2)). For the Y. Pestis optical mapping project, the value of σ 2 was chosen to be
0.306. Generally speaking, although σ 2 may vary from experiment to experiment, this variation is small
and σ 2 may be assumed the same for different mapping projects, once it has been confidently estimated.

Sizing error for small fragments. Another important parameter for the error model is η, which corre-
sponds to the standard deviation of the error ε when the underlying size X is small (X ≤ �). The choice
of η2 depends on the amount of confidence assigned to matching of short fragments. For the Y. Pestis
mapping project, we have set η2 = 5.

Average size λ of restriction fragments. As has been discussed above, the distribution of sizes for
reference restriction fragments is taken to be exponential with the mean λ. The value of λ depends
on the frequency of cut sites as they appear along the DNA chains digested by restriction endonuclease.
Endonuclease is site specific and recognizes a specific palindromic sequence of nucleotides. In the Y. Pestis
optical mapping project, a 6-cutter Xho − I was used to perform a digestion. This enzyme is specific to
a sequence of six consecutive nucleotides 5′ − CT CGAG − 3′. It performs a cleavage after the second
nucleotide leaving sticky ends. If the DNA sequence was to assume a uniform distribution of nucleotides,
then the average size of the restriction fragment would be 46 ≈ 4,000 bp. However, it is well-known that
the sequences are nonrandom. From the reference sequence of Y. Pestis, obtained from the NCBI sequence
database, the average size of the restriction fragment was estimated to be about 17 kb.

Digestion rate p. The digestion rate p can be estimated both from the alignments and λ-DNA. Here,
λ-DNA is certainly more preferable since it has no missing fragments, which can affect the estimation
of p. However, we should also mention that partially digested λ-DNA is much harder to identify during
imaging, so that a bias in estimation of p may become a problem.

DNA breakage rate ζ . Another important parameter is the rate of random breakage ζ . Its estimate
comes from the alignments. We have assumed ζ = 0.005 for our calculations.

Size of maximum matching region δ. Finally, we should discuss the choice of δ. This parameter defines
how far back we look in the alignment matrix for finding the optimal score for each entry. Thus, δ defines
an upper bound on the number of fragments allowed within the matching region. For the regions of the
reference map, this number rarely exceeds three since P(more than 3 sites in a row are undigested) ≤
p3 ≈ 0.008. Similarly, the probability of having more than three false cuts per average-sized matching
region is less than 0.002. If more accurate alignments are needed, δ can be chosen appropriately. It is
therefore reasonable to set δ = 5 to capture most alignments. Restricting the value of δ to a small integer
also significantly reduces the speed of the alignment computation.
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Due to the nature of the likelihood ratio based score, rare matching fragments score higher than frequent
ones. Consequently, longer fragments will score higher than short ones. As a result, unusually high scores
can appear in regions containing large fragments. Such high scores may result in spurious matches of
regions and ruin calculation of score based p-values. To address this issue, we use a score truncation where
this becomes a problem. In other words, an upper score threshold is chosen, above which the returned score
is that threshold. This helps to eliminate situations where many maps spuriously align to some genomic
position due to an unusual restriction pattern at that genomic location.

Short fragments also present a challenge in calculation of alignment scores. A large number of short
fragments is missing in optical map data. As a result, when optical maps are aligned to a reference region
with an abundance of short fragments, alignments receive score penalties due to these missing fragments.
To overcome this limitation, short fragments are removed from the reference, thus allowing for a better
alignment of optical maps.

It is worth mentioning that a more accurate size error model may be utilized to describe measured
fragment sizes as the ratio of two normal random variables. Although perhaps more accurate, this
model will drastically increase the complexity of score computation with little improvement in terms of
score quality.

6. RESULTS

We have tested our likelihood ratio based score on a variety of organisms and sets of optical maps. Our
scoring method is highly capable of producing accurate alignments.1 Figure 2 illustrates one such alignment
along with the scoring pattern. Overall, spurious alignments have low scores, usually close to or less than
zero (natural logs), while correct ones usually produce very high scores, usually in the neighborhood of
100 (natural logs) depending on the map size. Naturally, longer maps are easier to align correctly because
they contain more information in the form of fragment sizes.

Next we demonstrate the advantage of our new likelihood based alignment score over the heuristic
alignment score for restriction maps proposed by Waterman et al. (1984). Hereafter, “likelihood score”
refers to the score described in this paper, and “heuristic score” refers to the heuristic alignment score due
to Waterman et al. (1984). Table 1 demonstrates some comparative results between these two alignment
scores. We have synthetically generated 1,000 maps from a region of human chromosome 13. For generation
of maps, we have used our model assumptions for sizing errors, missing cuts, and false cuts. This made it
possible to infer exact positions from where maps were generated, as well as the exact positions of all true
cut sites, together with information concerning which cuts are spurious. We then aligned these maps to the
reference genomic restriction map of the human chromosome 13. By comparing original and fit positions,
we were able to infer whether the fits were correct. For correct fits, we have collected information about
correctly and incorrectly aligned sites and summarized them in Table 1.

As is evident, both alignment methods produce similar results for synthetic maps with our new method,
likelihood having a slight advantage. However, the most important feature of the score is its discriminative
power for distinguishing true and spurious alignments. It turns out to be significantly different for the two
scoring schemes (refer to Table 2). For each synthetic map that fits into the correct reference location
(using both likelihood and heuristic scores), we have collected its 20 best alignment scores (10 in each
orientation, including the score for the true fit) by declumping dependent alignments. The idea is that if
the discriminative power of the score is high, no other independent alignments will have scores in the
proximity of the score of the true alignment (corresponding to the correct fit). To measure this, we counted
the number of other alignment scores (from the 19) within k standard deviations of the true alignment
score. Standard deviation of that score was estimated based on fit scores from 10,000 random maps with the
same number of fragments as the map of interest. The results for both methods are summarized in Table 2.

As now becomes apparent, the likelihood score possesses significantly more discriminative power since
even within three standard deviations of the true fit score, on average 0.17 spurious fit scores are observed,
while the same number for the heuristic score is 6.28 (≈ 37 times more).

1The source code of the alignment program is available upon request.
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FIG. 2. Representation of alignments. Alignment of part of optical map from Y. Pestis against its reference genomic
region. Two adjacent pieces of alignment are displayed along with the map fragment sizes and alignment scores. Gaps
between fragments represent cut sites; thin lines connect matching sites. Scores are calculated directionally (from left
to right) and are displayed at the matching sites. Score for each alignment block is obtained by taking the difference
of the scores at the two flanking matching sites. Fragment sizes are displayed in kb.

Not surprisingly, our likelihood score, when compared to the heuristic score, shows even more discrim-
inative power for real optical maps when compared to the same result based on synthetic maps. Hence,
our alignment score produces significantly more confident alignments for real optical map data compared
to the heuristic score.

We used a Kim strain of Y. Pestis commonly known as plague to study the performance of the alignment
score on real data. The data set was comprised of 251 optical maps. The reference restriction map was
inferred from the NCBI sequence database. This bacterial genome consists of 4.6 Mb and 267 restriction

Table 1. Comparative Fitting for Two Scoring Schemes (Based on 1,000
Synthetically Generated Maps from a 40 Mb Region of Human Chromosome 13)

% of maps fitted into % of false positive % of false negative
correct reference locations cut sites cut sites

lik. sc. 95.1 7.9 10.1
heur. sc. 92.6 10.5 15.3

aMaps are being fitted into the reference. False positives and false negatives rates are calculated for the
maps fitted into correct reference location using both methods. False positives represent the percentage
of false cuts incorrectly matched to the reference, false negatives represent percentages of unmatched
true restriction sites. The corresponding alignment parameters are chosen to be µ = 0.2, ν = 1, λ = 2
for the heuristic score and σ 2 = 0.306, λ = 32, p = 0.8, ζ = 0.005, η2 = 5 for likelihood score.

Table 2. Optimal Score Discriminative Power for Two Scoring Schemes
(Based on 1,000 Artificially Generated Maps from a 40 Mb Region of Human Chromosome 13)

Stdev Num 1 SD 2 SD 3 SD 4 SD 5 SD 6 SD 7 SD 8 SD 9 SD

Av. number of lik. scores 0.006 0.036 0.17 0.494 1.413 3.206 5.983 8.89 11.82
Av. number of heur. scores 0.281 2.157 6.275 11.471 15.334 17.546 18.566 18.91 18.99

aScoring parameters for likelihood and heuristic scores are taken to be the same as in Table 1. Of the 20 top scores of independent
alignments (10 in each orientation), the table gives the average number of scores (other than optimal) within k standard deviations
(k = 1, 2, . . . , 9) of the optimal score. Hence, table entries never exceed 19.
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Table 3. Comparative Fitting for Two Scoring Schemes
(Based on Optical Maps from a 4.6 Mb Genome of Y. Pestis)

Map id 0499 1661 0387 0344 0517 0920 0944 1634 1659

Fragments 70 34 77 27 85 37 71 23 79
Lik. sc.: optimal 80.56 45.24 62.32 31.79 113.61 51.11 47.54 33.60 90.24
Lik. sc.: optimal < 10−4 < 10−4 < 10−4 0.0018 < 10−4 < 10−4 0.0003 0.00065 < 10−4

p-value
Heur. sc.: optimal −31.76 −13.13 −35.59 −1.53 −39.50 −15.86 −51.22 −1.25 −34.68

score
Heur. sc.: optimal 0.0005 0.083 0.002 0.0074 0.00055 0.181 0.1603 0.006 0.00135

p-value

aLikelihood score refers to likelihood ratio scoring scheme (σ 2 = 0.306, λ = 17, p = 0.8, ζ = 0.005, η2 = 5) and heuristic score
refers to a score suggested by Waterman et al. (1984) (µ = 0.2, λ = 2, ν = 1). Optimal score corresponds to the top alignment
score for the given map. Optimal p-value corresponds to the p-value of the optimal score. Total of 251 different maps were fitted.
For likelihood, 174 passed 0.002 p-value threshold; for heuristic, 119 passed 0.002 p-value threshold.

sites specific to the XhoI endonuclease that was used for digestion of its DNA during collection of
optical maps.

For real optical maps, we have calculated alignments using both likelihood and heuristic scores. Fur-
thermore, a p-value threshold of 0.002 was used to select confident fits. As a result, the likelihood score
allowed 174 maps to pass the p-value threshold, while only 119 maps passed the same threshold using the
heuristic score. Notably, our alignment score allowed us to confidently align 47% more maps than did the
heuristic score, which is significantly larger than the result for synthetic maps. Selected comparisons are
shown in the Table 3.

P-values were computed based on simulation. For an optical map of n fragments, 10,000 random maps
(each composed of n fragments) are generated by sampling from the fragment size distribution for optical
maps in the current mapping project. Then, each random map is fitted into the reference, and its optimal
score is stored. For the optimal alignment score of an optical map, the p-value is based on the number of
optimal scores in simulation (out of 10,000) exceeding the given alignment score. It took 10,000 random
maps in order to achieve the p-value accuracy of 10−4 in Table 3. Thus, we need to show results only for
optical maps with one p-value larger than 10−4 and at least one significant score (p − value < 0.002).
Nine maps satisfying these conditions were selected to illustrate the significance of the results.

7. CONCLUSION

In this paper, we formulated a novel statistical model for the measurements of fragment sizes that
arise in optical maps. We also proposed a novel model to address false cuts in optical maps. These two
models, along with previously known models, such as distribution of restriction sites and observation of
cuts in optical maps, are combined to derive a likelihood ratio based alignment score that we report in
this paper. We also show how this score can be used within an existing DP framework for finding optimal
alignments. Our alignment score improves existing methods because it (1) does not require guessing of
alignment parameters as is the case for heuristic scores (all distribution parameters are derived once from the
mapping system) and (2) provides maximum discrimination power for scores of true alignments compared
to spurious ones.

APPENDIX

A. Probabilistic framework

Alignments are calculated in order to find matching regions between maps. Calculation of optimal
alignments depends profoundly on the alignment score. The utility of the alignment score is in finding the
optimal configuration across all possible alignments.
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Alignments of restriction maps are represented by pairs of matching sites between compared maps.
Sites on maps represent loci of maps flanked by two adjacent fragments. According to our model, sites
on optical maps can result either from a restriction enzyme cutting DNA at that position or from random
DNA breakage.

Consider two maps D1 and D2 that are produced using a single restriction enzyme. In our notation, a
pair of matching sites is denoted by 〈i, j〉; i.e., the site i located on map D1 and site j located on map
D2 correspond to the same genomic locus. An alignment between D1 and D2 is represented by a set of
pairs of matching sites 〈i, j〉 of maps D1 and D2. Matching regions are defined as regions of maps flanked
by adjacent pairs of matching sites. Therefore, matching regions contain no matching sites other than the
flanking ones. Naturally, alignment is represented by a set of ordered pairs of matching sites 〈i0, j0〉,
〈i1, j1〉, . . . , 〈id , jd〉, where order is given in the sense that i0 < i1 < · · · < id and j0 < j1 < · · · < jd .
Consequently, regions It = [it−1, it ) and Jt = [jt−1, jt ) are matching regions since they are flanked by
matching sites 〈it−1, jt−1〉 and 〈it , jt 〉. Matching of regions is denoted by 〈It , Jt 〉.

For simplicity, we assume that errors in different regions are independent of each other and hence their
likelihoods can be written as product of likelihoods taken over matching regions. In other words, for
〈Im, Jm〉 and 〈In, Jn〉 we have

Pr(〈Im, Jm〉, 〈In, Jn〉) = Pr(〈Im, Jm〉)Pr(〈In, Jn〉),
if m �= n. Here, Pr(〈Im, Jm〉) is understood as the likelihood of the observed region size and fragment
number under a specified hypothesis (H0 or Ha). To define the alignment score, consider an alignment
defined by matching sites 〈i0, j0〉, 〈i1, j1〉, . . . , 〈id , jd〉 of maps D1 and D2.

Here, we define two competing hypotheses: H0 and Ha . Hypothesis H0 corresponds to no dependence
between compared regions of maps; i.e., the likelihoods can be calculated by taking a product of likelihoods
of each region. As we specified before, under Ha , compared map regions represent the same genomic
regions. The comparison score S is taken as a log of the likelihood ratio under H0 and Ha . Hence, for two
compared maps D1 and D2, we can define a score as follows:

S(D1, D2) = −log(LR(〈D1, D2〉)),
where LR is the likelihood ratio calculated under competing hypotheses H0 and Ha . Hence,

LR(〈D1, D2〉) = f (D1, D2)H0

f (D1, D2)Ha

=
d∏

k=1

f (Ik, Jk)H0

f (Ik, Jk)Ha

=
d∏

k=1

LR(〈Ik, Jk〉)

with the product taken over d matching regions. It therefore follows that for the total score

S(D1, D2) =
d∑

k=1

S(Ik, Jk) =
d∑

k=1

[
−log

(
f (Ik, Jk)H0

f (Ik, Jk)Ha

)]
.

As we will see later, score S(Ik, Jk) for the matching region 〈Ik, Jk〉 is calculated based on two pieces of
information: total amount of DNA within Ik and Jk and the number of fragments contained in Ik and Jk ,
respectively.

Reference matching. To make things easier to follow, define O := D1 and R := D2 to represent optical
(O) and reference (R) maps, respectively. Also, we define Ok := Ik and Rk := Jk to denote matching
regions of optical and reference maps. Further, let ok := ik and rk := jk denote the matching sites of the
optical map and reference map, respectively.

Denote sO
k and sR

k to be the total amount of DNA contained within matching regions Ok and Rk . Also,
define f O

k and f R
k to be the number of fragments within Ok and Rk , respectively.

We can write the likelihood of the observed data as

f (Ok, Rk) = f (Ok|Rk)× f (Rk) = f (sO
k , f O

k |sR
k , f R

k )× f (Rk)

= f (sO
k |sR

k , f R
k , f O

k )× f (f O
k |sR

k , f R
k )× f (Rk).
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Now the likelihood ratio can be written as

LR(〈Ok, Rk〉) = f (Ok, Rk)H0

f (Ok, Rk)Ha

= [f (Ok|Rk)× f (Rk)]H0

[f (Ok|Rk)× f (Rk)]Ha

= f (Ok|Rk)H0 × f (Rk)

f (Ok|Rk)Ha × f (Rk)
= f (Ok|Rk)H0

f (Ok|Rk)Ha

.

Therefore, we can write

LR〈Ok, Rk〉 = f (sO
k |sR

k , f R
k , f O

k )H0

f (sO
k |sR

k , f R
k , f O

k )Ha

× f (f O
k |sR

k , f R
k )H0

f (f O
k |sR

k , f R
k )Ha

= LR(sO
k |sR

k , f R
k , f O

k )× LR(f O
k |sR

k , f R
k ),

Thus, for the total score we have

S(O, R) =
d∑

k=1

[αk + βk] =
d∑

k=1

[
S(sO

k |sR
k , f R

k , f O
k )+ S(f O

k |sR
k , f R

k )
]
,

with the sum taken over d matching regions.
Here,

αk = −log(LR(sO
k |sR

k , f R
k , f O

k ))

is referred to as the size match score. It accounts for size differences between sO
k and sR

k . Similarly,

βk = −log(LR(f O
k |sR

k , f R
k ))

is referred to as the site mismatch score. It accounts for missing and false cuts within a given matching
region, which appear as unaligned sites.

Optical matching. Optical matching corresponds to the situation when two optical maps D1 and D2
are aligned to each other. Recall that Ik and Jk refer to matching regions between D1 and D2. As before,
ik , jk define matching sites between aligned maps. Let sI

k and sJ
k be the total amount of DNA contained

within matching regions Ik and Jk , respectively. Also, define f I
k and f J

k to be the number of fragments
within Ik and Jk . Both maps D1 and D2 define collections of random variables for which we can write
the likelihood as

f (Ik, Jk) = f (sI
k , sJ

k , mI
k, m

J
k ) = f (sI

k , sJ
k |mI

k, m
J
k )× f (mI

k, m
J
k ),

and thus the likelihood ratio can be rewritten as

LR(〈Ik, Jk〉) = f (sI
k , sJ

k |mI
k, m

J
k )H0

f (sI
k , sJ

k |mI
k, m

J )Ha

× f (mI
k, m

J
k )H0

f (mI
k, m

J
k )Ha

= LR(sI
k , sJ

k |mI
k, m

J
k )× LR(mI

k, m
J
k ).

Hence, we infer that for the score

S(Ik, Jk) = S(sI
k , sJ

k |mI
k, m

J
k )+ S(mI

k, m
J
k ) = αk + βk,

where

αk = −log(LR(sI
k , sJ

k |mI
k, m

J
k )).
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The last expression accounts for the sizing differences between sI
k and sJ

k . Also,

βk = −log(LR(mI
k, m

J
k ))

accounts for the unaligned sites between optical maps within regions 〈Ik, Jk〉.
Therefore, the total alignment score can be rewritten as

S(D1, D2) =
d∑

k=1

(αk + βk) .

B. Calculation of the scores

Proof (Lemma 1). Suppose W is the number of true cuts within the DNA of unit size that appears
after digestion. Suppose also that V is the number of cuts that appear due to random breakage of DNA.
Then, the total number of cuts per unit amount of DNA is X = W + V .

Number W results from a p-thinning of the Poisson process for site occurrences, where p is the digestion
rate. Hence, W is Poisson with the rate p/λ.

According to model assumptions, the number of random breaks per unit of DNA has a Poisson distri-
bution with the rate parameter ζ . Thus, it follows that X is the sum of two independent Poisson random
variables and hence is Poisson with EX = EW + EV . It now follows that the total number of sites X is
a Poisson with the mean 1/τ = ζ + ωp = (ζ + p

λ
). For s amount of DNA, the number of sites therefore

follows a Poisson process with the parameter s/τ . More details on thinned processes may be found in
Grimmett and Stirzaker (1982).

Proof (Lemma 2). Consider a fragment on an optical map of size X > �. Size X is produced with
a reference genomic region of size Y and a sizing error, i.e., X = Y + ε. Lemma 1 asserts that Y has
exponential density with the mean τ = (ζ + p/λ)−1. Hence,

fY (y) = 1

τ
e−

y
τ .

Furthermore, by Proposition 3,

fX|Y (x|y) = c1(y)√
2πyσ

e
− (x−y)2

2σ2y ,

where c1(y) takes care of appropriate normalization

c1(y) =
[∫ ∞

0

1√
2πyσ

e
− (x−y)2

2σ2y dx

]−1

.

For X ≥ �, it is easy to show that 1 ≥ c1(Y ) ≥ 0.95 with high probability and c1(y) → 1 as y

increases. Thus, for all practical purposes, c1(y) ≈ 1 in our computations.
We conclude therefore that the joint density has the form

fX,Y (x, y) = 1√
2πyστ

exp

[
− (x − y)2

2σ 2y
− y

τ

]
,

The desired marginal density is obtained by integrating:

fX(x) =
∫ ∞

0

1√
2πyστ

exp

[
− (x − y)2

2σ 2y
− y

τ

]
dy.

The last integral is a special form of the Mellin integral transform for exponential functions. In fact, it is
closely related to modified Bessel functions of the second kind for semi-integer order for which an exact
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analytic form can be written. Its solution can be found in Bateman and Erdelyi (1953). Here, we just use
as a result that

∫ ∞
0

1√
y

exp

[
− (x − y)2

2σ 2y
− y

τ

]
dy =

√
2π√

1

σ 2
+ 2

τ

exp

[
−x

(
1

σ

√
1

σ 2
+ 2

τ
− 1

σ 2

)]
.

This immediately implies that

fX(x) = 1

θ
e−

x
θ

is the marginal density of X with

θ =
[

1

σ

√
2

τ
+ 1

σ 2
− 1

σ 2

]−1

since

στ

√
1

σ 2
+ 2

τ
≈ θ.

if λ� σ .

Proof (Proposition 1). In optical maps, not all sites are matched due to two factors: false cuts and
missing cuts. False cuts do not affect sizes of matching regions, since false cuts should not be matched.
Missing cuts, however, produce a thinned Poisson process from the original Poisson process of occurrence
of restriction sites along the genome. The thinned Poisson process has, therefore, a rate p

λ
, and thus the

sizes of matching regions have an exponential distribution with mean υ = λ/p.

Proof (Proposition 2). In a manner similar to the argument in the previous lemma, matching sites
between two optical maps occur only when both restriction sites on both optical maps are being digested by
endonuclease. This happens with probability p2. Thinning of restriction sites imposed by this digestion of
sites on both maps has, therefore, a Poisson distribution with rate p2/λ. Hence, the sizes have exponential
density with mean φ = λ/p2.

Proof (Proposition 3). By the normality assumption for error distribution, εi = Xi−Yi ∼ N(0, σ 2Yi).
Thus, Xi ∼ N(Yi, σ

2Yi) for i = 1, 2, . . . , m. Since X =∑m
i=0 Xi is a linear combination of m independent

normal variables, it also has a normal distribution. Finally, EX =∑m
i=0 EX i =∑m

i=0 Yi = Y and Var(X) =∑m
i=0 Var(Xi) = σ 2∑m

i=0 Yi = σ 2Y .

Lemma 3 (Bessel solution). If Re(α2z) > 0 and Re(z) > 0, then

Kν(αz) = αν

2

∫ ∞
0

t−ν−1exp

[
− z

2

(
t + α2

t

)]
dt,

where Kν(z) is a modified Bessel function of the second kind.

Proof (Lemma 3). Consider the modified Bessel differential equation

z2y′′(z)+ zy′(z)− (z2 + ν2)y(z) = 0.

The solution to this equation is given by

y(z) = a1Iν(z)+ b1Kν(z),
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where Iν(z) is defined as the modified Bessel function of the first kind and Kν(z) is defined as the modified
Bessel function of the second kind.

Finally, the integral is described by Baterman and Erdelyi (1953).

Lemma 4 (Bessel solution). If a, b ∈ R, then

∫ ∞
0

t−ν−1exp

[
−
(

a2t + b2

t

)]
dt = 2

aν

bν
Kν(2ab).

Proof (Lemma 4). Follows from Lemma 3 after substituting

z = 2a2, α2 = b2

a2
.

Proof (Theorem 1). Recall that in the calculation of the likelihood ratio for two competing hypotheses,
H0 corresponds to no match between x and y, and Ha corresponds to the match between x and y. The
likelihood ratio is of the form

LR(x|y, n, m) = fX(x|y, n, m)H0

fX(x|y, n, m)Ha

.

Consider X > �. Under H0, X is the sum of independent exponential r.v. with mean θ given by
Lemma 2. Thus, its likelihood is given by the marginal density of X:

fX(x|y, n, m)H0 = fX(x|m) = 1

�(m)θm
xm−1e−

x
θ .

Under Ha , X is the size measurement of the genomic region of size Y and thus under the error model

fX(x|y, n, m)Ha =
c1(y)√
2πyσ

e
− (x−y)2

2σ2y

where c1(y) gives appropriate normalization similar to the one discussed in Lemma 2:

c1(y) =
[∫ ∞

0

1√
2πyσ

e
− (x−y)2

2σ2y dx

]−1

.

As before, we use that c1(y) ≈ 1 for X > � to omit it from further derivations.
After substituting two likelihoods in the likelihood ratio, we obtain

LR(x|y, n, m) =
√

2πyσxm−1

�(m)θm
exp

[
(x − y)2

2σ 2y
− x

θ

]
,

which gives the desired result for long fragments (X > �).
The error model for short fragments 0 ≤ X ≤ � implies that under the match

fX(x|y, n, m)Ha =
c(y)√
2πη

exp

[
− (x − y)2

2η2

]

with appropriate normalization given by

c(y) =
[

1√
2πη

e
− (x−y)2

2η2

]−1

.

The marginal distribution of X for 0 ≤ X ≤ � is not exactly exponential as is the case for X > �. Due
to significant sizing errors, however, for 0 ≤ X ≤ � the likelihood ratio should not assume very small
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values to reflect the lack in test power. To accomplish this, we can choose any likelihood L0 under H0
such that it dominates La for small values of X. This is accomplished by appropriate choice of parameter
η. Hence, we still can assume exponential marginal density for X as long as η2 � σ 2. Also, c(y) can
be omitted.

Thus, under H0, we use exponential density for likelihood of individual fragments, so that X =∑m
i=1.

Therefore,

fX(x|y, n, m)H0 = fX(x|m) = xm−1

θm�(m)
e−

x
θ .

Hence, we obtain the likelihood ratio in the form

LR(x|y, n, m) =
√

2πηxm−1

�(m)θm
exp

[
(x − y)2

2η2
− x

θ

]
.

Proof (Theorem 2). As before, we have two competing hypotheses: H0 corresponds to no match
between two regions and Ha corresponds to the match. The likelihood ratio has the form

LR(m|y, n) = Pr(m|y, n)H0

Pr(m|y, n)Ha

.

Under H0, there is no matching (m and n are independent), and hence

Pr(m|y, n)H0 = Pr(m) = fM(m).

(Exact calculation of fm is discussed in the end of the proof.)
Under Ha , we have m − 1 and n − 1 sites observed on the optical and reference maps, respectively,

within this matching region.
By definition, matching regions contain no internal matching sites. This implies that under Ha all n− 1

sites are not digested and all m−1 sites on the optical map are random DNA breaks. Since p is the digestion
rate and ζ is the frequency of random breakage per unit of DNA, we can rewrite this probability as

Pr(m|y, n)Ha = (1− p)n−1e−ζy (ζy)m−1

(m− 1)! .

Therefore, the likelihood ratio has the form

LR(m|y, n) = eζy((m− 1)!fM(m)

(1− p)n−1(ζy)m−1
,

and this completes the proof.
Function fM(m) gives the marginal distribution of M for the choice of randomly selected regions of

optical maps. In practice, regions longer than δ are never calculated. Thus, we assume that these regions
occur with equal probability; hence, fM(m) = 1

δ
for 1 ≤ m ≤ δ or 0 otherwise.

Proof (Theorem 3). The likelihood ratio is of the following form:

LR(x1, x2|m1, m2) = fX1,X2(x1, x2|m1, m2)H0

fX1,X2(x1, x2|m1, m2)Ha

.

In this theorem, we assume only the first error model ε ∼ N(0, σ 2Y ) for the sake of simplicity. The
null hypothesis H0 corresponds to no match between X1 and X2, meaning that they come from different
genomic regions, and therefore X1 and X2 are independent. Hence, it follows that

fX1,X2(x1, x2|m1, m2)H0 = fX1(x1|m1)fX2(x2|m2),
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where densities fX1(x1|m1) and fX2(x2|m2) are given by Lemma 2. Hence,

fX1,X2(x1, x2|m1, m2)H0 =
x

m1−1
1 x

m2−1
2

θm1+m2�(m1)�(m2)
e−

x1+x2
θ .

Under the alternative hypothesis Ha , there is a match, and hence

fX1,X2(x1, x2|m1, m2)Ha =
∫ ∞

0
fX1,X2,Y (x1, x2, y)dy,

where Y = y is the true underlying size of the matching region.
Under Ha , X1 and X2 are the size measurements of Y and thus are conditionally independent:

fX1,X2,Y (x1, x2, y) = fX1|Y (x1|y)fX2|Y (x2|y)fY (y).

Furthermore, according to Proposition 2, matching regions between two optical maps occur according
to a Poisson process with rate p2/λ; hence, their sizes occur according to exponential distribution with
mean φ = λ/p2.

Hence, after combining, we deduce that

fX1,X2,Y (x1, x2, y) = c2(y)

2πσ 2yφ
× exp

[
− (x1 − y)2

2σ 2y
− (x2 − y)2

2σ 2y
− y

φ

]
,

where c2(y) guarantees appropriate normalization for the joint density to allow only positive values of X1
and X2:

1

c2(y)
=
∫ ∞

0

∫ ∞
0

exp

[
− (x1 − y)2

2σ 2y
− (x2 − y)2

2σ 2y
− y

φ

]
2πσ 2yφ

dx1dx2.

In the latter expression, c2(y) is close to 1 with high probability and hence can be replaced with 1 to
make calculations easier.

To deduce the joint density of X1 and X2, first note that by Lemma 3

∫ ∞
0

1

y
exp

[
− (x1 − y)2

2σ 2y
− (x2 − y)2

2σ 2y
− y

φ

]
dy = e

x1+x2
σ2

∫ ∞
0

exp

[
−
(

1

φ
+ 1

σ 2

)
y −

(
x2

1 + x2
2

2σ 2

)
1

y

]

y
dy

= 2× exp

[
x1 + x2

σ 2

]
K0

⎡
⎣2

√
1

φ
+ 1

σ 2

√
x2

1 + x2
2

2σ 2

⎤
⎦ .

Hence, the joint density of X1 and X2 has the form

fX1,X2(x1, x2|n)Ha =
exp

[
x1 + x2

σ 2

]
πσ 2φ

×K0

⎡
⎣2

√
1

φ
+ 1

σ 2

√
x2

1 + x2
2

2σ 2

⎤
⎦ .

We can finally calculate the desired likelihood ratio:

LR(x1, x2|m1, m2) = πφσ 2x
m1−1
1 x

m2−1
2

�(m1)�(m2)θm1+m2
×

exp

[
−
(

1

θ
+ 1

σ 2

)
(x1 + x2)

]

K0

⎡
⎣2

√
1

φ
+ 1

σ 2

√
x2

1 + x2
2

2σ 2

⎤
⎦

.
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Proof (Theorem 4). Our goal is to calculate the likelihood ratio for observing m1 and m2 within the
matching regions of two optical maps. As before, the likelihood ratio has the form

LR(m1, m2|match) = Pr(m1, m2|match)H0

Pr(m1, m2|match)Ha

.

By definition of matching regions, they contain no internal matching sites. Hence,

Pr(m1, m2|match, s)Ha =
∞∑

n=0

Pr(m1, m2, n|s, no other matches)

=
∞∑

n=0

Pr(m1, m2|s, n, no other matches)Pr(n|s),

where n is the unobserved number of restriction sites per amount s of DNA corresponding to the reference
region.

Finally, the joint density is calculated as

Pr(m1, m2|match) =
∫ ∞

0
Pr(m1, m2|match, s)fY (s)ds.

Now, if k1 and k2 denote the numbers of correctly cut restriction sites in the matching region for each
of two optical maps, then

Pr(m1, m2, k1, k2|s, n, no other matches) = Pr(m1, m2, k1, k2|s, n, no sites in common)

= Pr(k1, k2 | n, no sites in common)

× e−ω ωm1−k1−1

(m1 − k1 − 1)! × e−ω ωm2−k2−1

(m2 − k2 − 1)! ,

since it follows that m1 − k1 − 1 and m2 − k2 − 1 sites are due to random breakage. As before, ω = ζ s

corresponds to the Poisson parameter of the random DNA breakage process. Furthermore,

A(k1, k2|n) = Pr(k1, k2 | n, no sites in common) = Pr(k1, k2, no sites in common| n)

Pr(no sites in common| n)

=

(
n

k1 k2

)
pk1+k2(1− p)2n−(k1+k2)

n∑
i1=0

n−i1∑
i2=0

(
n

i1 i2

)
pi1+i2(1− p)2n−(i1+i2)

.

Hence, we can now calculate

Pr(m1, m2|s, n, no other matches) =
(m1−1)∧n∑

k1=0

(m2−1)∧(n−k1)∑
k2=0

A(k1, k2|n)

× e−2ω ωm1+m2−k1−k2−2

(m1 − k1 − 1)!(m2 − k2 − 1)! .

By Proposition 2, reference sizes underlying matching regions of two optical maps have exponential
distribution with mean φ = λ/p2. Thus,

fY (s) = 1

φ
e
− s

φ .
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Therefore,

B = Pr(m1, m2|match)Ha =
∫ ∞

0

∞∑
n=0

Pr(m1, m2, n|s, no other matches)fY (s)ds

=
∫ ∞

0

1

φ
e
− s

φ

∞∑
n=0

e−
s
λ

( s

λ

)n

n!
(m1−1)∧n∑

k1=0

(m2−1)∧(n−k1)∑
k2=0

(
A(k1, k2|n)× e−2ω ωm1+m2−k1−k2−2

(m1 − k1 − 1)!(m2 − k2 − 1)!
)

= 1

φ

∞∑
n=0

1

λnn!
(m1−1)∧n∑

k1=0

(m2−1)∧(n−k1)∑
k2=0

A(k1, k2|n)
ζm1+m2−k1−k2−2

�(m2 − k2)�(m1− k1)

×
∫ ∞

0
e
−s( 1

φ
+ 1

λ
+2ζ )

sn+m1+m2−(k1+k2)−2ds

= 1

φ

∞∑
n=0

1

λnn!
(m1−1)∧n∑

k1=0

(m2−1)∧(n−k1)∑
k2=0

A(k1, k2|n)
ζ (m1+m2)−(k1+k2)−2[

1

φ
+ 1

λ
+ 2ζ

]n+(m1+m2)−(k1+k2)−1

× �(n+ (m1 +m2)− (k1 + k2)− 1)

�(m1 − k1)�(m2 − k2)
.

Note that the last expression solely depends on m1, m2, and distribution parameters (λ, p, and ζ ); hence,
a table for these probabilities can be precomputed and used for the scoring.

Finally, under H0, the regions are independent of each other, so that

C = Pr(m1, m2)H0 = fM(m1)fM(m2) = Pr(m1)× Pr(m2).

And thus finally the likelihood ratio has the desired form. Note that the marginal distribution Pr(m) is
defined by the choice of the null hypothesis H0. Here we assume that the random regions of sizes from 1
to δ occur with equal probability and hence Pr(m) = 1

δ
.
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