
An Eulerian path approach to local multiple
alignment for DNA sequences
Yu Zhang*† and Michael S. Waterman*‡§

*Department of Mathematics, University of Southern California, 1042 West 36th Place, DRB289, Los Angeles, CA 90089-1113; and ‡Department of Biological
Sciences, University of Southern California, 835 West 37th Street, SHS172, Los Angeles, CA 90089-1340

Contributed by Michael S. Waterman, December 10, 2004

Expensive computation in handling a large number of sequences
limits the application of local multiple sequence alignment. We
present an Eulerian path approach to local multiple alignment for
DNA sequences. The computational time and memory usage of this
approach is approximately linear to the total size of sequences
analyzed; hence, it can handle thousands of sequences or millions
of letters simultaneously. By constructing a De Bruijn graph, most
of the conserved segments are amplified as heavy Eulerian paths
in the graph, and the original patterns distributed in sequences are
recovered even if they do not exist in any single sequence. This
approach can accurately detect unknown conserved regions, for
both short and long, conserved and degenerate patterns. We
further present a Poisson heuristic to estimate the significance of
a local multiple alignment. The performance of our method is
demonstrated by finding Alu repeats in the human genome. We
compare the results with Alus marked by REPEATMASKER, where the
two programs are in good agreement. Our method is robust under
various conditions and superior to other methods in terms of
efficiency and accuracy.

De Bruijn graph � sequence repeats � declumping � repeat finding

As molecular sequence databases are growing rapidly, pow-
erful tools for manipulating the large data sets and extract-

ing useful information become increasingly important. Sequence
alignment is one of the commonly used methods because se-
quence homologies often provide clues to biological function.
We have developed a local multiple alignment algorithm that can
efficiently find conserved segments among a large number of
sequences and in long sequences. In each iteration of our
method, the consensus sequence pattern among the sequences is
constructed from a De Bruijn graph, and then this consensus is
used as a query to locate all instances of the pattern. The
numbers and lengths of sequences that might process such a
pattern are unknown. We regard a pattern to be an estimate of
an ancestral sequence.

The initial motivation for the method arises from the algo-
rithm for fragment assembly in DNA sequencing using the
Eulerian superpath approach (1, 2), where a De Bruijn graph of
DNA fragments is constructed and the assembled genome is an
Eulerian path in the graph. We have developed an Eulerian path
approach to global multiple alignment (3), and our approach to
local multiple alignment is a further extension. Compared with
global alignment that attempts to align the entire sequences,
local alignment is more difficult because the locations, sizes,
structures, and numbers of conserved regions are completely
unknown. By locations we are referring to the large number of
choices as to what portions of sequences to align.

Many local multiple alignment methods have been developed
in the past decades, such as PIMA (4, 5), PRALIGN (6), MACAW (7),
MATCH-BOX (8), and DIALIGN (9). One subproblem of local
alignment is motif finding, which has been widely applied in
studying noncoding regions (mostly short regions close to genes)
that may contain regulatory motifs. Regulatory motifs are often
weakly conserved, and methods developed in motif finding often
use statistical techniques that are necessary to capture the weak,

but still significant, signals hiding in sequences. The Gibbs motif
sampler (10) uses the Gibbs sampling technique to iteratively
sample motifs until convergence. MEME (11) fits a mixture model
by expectation maximization and combines motifs into a hidden
Markov model for database searching. Those methods, however,
are limited by the size of data they can analyze and the length of
motifs they can model. As a result, they are not efficient in
finding local alignments of variant lengths, particularly when the
total size of data is large.

Another specific problem of local alignment emerged recently
as entire genome sequences became available, that is, large-size
sequence comparison. Several methods have been proposed to
find conserved regions across multiple genome-sized sequences.
The methods, such as MLAGAN (12) and MAVID (13), first find
locally well conserved regions as anchors, and then chain anchors
into larger alignments. TBA (14) computes a set of local align-
ments called blockset and chains blocks according to a reference
sequence. Nevertheless, those methods are designed for whole-
genome comparison and are different from typical local multiple
alignment that seeks all possible combination of similar regions.
It is not appropriate to apply those methods for finding less
conserved regions, especially when the regions are ‘‘randomly’’
located in multiple sequences.

Few methods have been proposed to find local alignments
among a large number of sequences, both accurately and effi-
ciently. Given a large number of sequences, the computation
time often is reduced by using pairwise sequence comparison or
comparing each sequence with a database. Pairwise sequence
comparison is not accurate in multiple alignment, because the
pairwise alignment errors may accumulate and ruin the final
result when the number of sequences is large, or it may simply
miss the local conservation that is insignificant when only two
sequences are considered at a time. Similarly, comparisons of
each sequence with a database can find only conserved regions
that are similar to known sequences or consensuses, and the local
alignment result is very likely to be biased. We propose a
different approach that is more accurate and efficient when
presented with a large number of sequences or long sequences.
In addition, our method can locate both similar and degenerately
conserved regions of various sizes simultaneously, without in-
creasing computational load.

A special form of local multiple alignment is repeat finding,
which is to find repeated regions within a single sequence.
Repeat structure is abundant in eukaryote genomes, and it
provides valuable clues to molecular mechanisms. REPUTER (15,
16) was developed to efficiently find maximal repeats within
genome-sized sequences. Another interesting work (17) found
repeated structures directly from short DNA fragments of
sequence assembly, before the entire genome sequence was
assembled. ABA (18) focuses on classifying different classes of
repeats or conserved regions by using a graph structure, and the

†Present address: Department of Statistics, Harvard University, 1 Oxford Street, Cambridge,
MA 02138.

§To whom correspondence should be addressed. E-mail: msw@usc.edu.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0409240102 PNAS � February 1, 2005 � vol. 102 � no. 5 � 1285–1290

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



alignments are initially computed by using other software. We
compared our method with REPUTER in the repeat finding
problem and found that our method is more sensitive to detect-
ing degenerate repeats. REPEATMASKER, a program searching for
repeats against a repeat database [Repbase Update (19)], is used
as the reference to test the program’s accuracy. Note that repeat
finding is a special form of local multiple alignment, where
alignment of multiple sequences can be transformed to repeat
finding by concatenating all sequences into one.

Different classes of patterns often coexist in the same data at
different locations. Instances of each class are output as one local
alignment. An interesting and important idea is to evaluate the
significance of each output alignment. As an example, two local
multiple alignments of similar sizes are output by our program
(Fig. 1), and it is not obvious which one is more significant. We
use a Poisson heuristic to estimate their significance under a
random model.

Method
The pipeline of our algorithm is as follows: (i) construct a De
Bruijn graph by overlapping k-tuples; (ii) cut ‘‘thin’’ edges by
estimating the statistical significance of each edge with a Poisson
heuristic; (iii) resolve cycles in the graph; (vi) extract a heaviest
path as the consensus; (v) use fast local pairwise alignment and
the declumping algorithm to find all subsequences similar to the
consensus; (vi) construct and output a multiple alignment from
pairwise alignments; and (vii) declump the De Bruijn graph and
return to step iv to find other patterns.

Constructing a De Bruijn Graph. Given a set of DNA sequences, we
break each sequence into overlapping k-tuples. Two adjacent
k-tuples overlap at (k-1) letters. Each k-tuple is represented by
a directed edge in the graph, and identical k-tuples are repre-
sented by the same edge. Two edges are connected by a node if

they represent at least one pair of adjacent k-tuples in a
sequence, where the node represents the (k-1)-tuple overlap.
Finally, we record the position and sequence index of each
k-tuple in the corresponding edge. An example of a three-tuple
De Bruijn graph of three sequences (ATGT, ATGC, and CTGT)
is shown in Fig. 2. Under this construction, each sequence is
mapped to a path traversing the graph. If a k-tuple appears in
multiple sequences, the corresponding sequence paths will in-
tersect at the edge representing this k-tuple. Based on this
property, we define the multiplicity of an edge to be the number
of sequence paths visiting the edge, i.e., the number of sequences
containing the corresponding k-tuple. Intuitively, the larger the
multiplicity is, the more likely the edge represents a conserved
k-tuple. Vice versa, the conserved subsequences tend to be
amplified in the graph by edges with large multiplicities. By
traversing the graph, we can find the consensus of a pattern in
the resolution of k-tuple even if the original pattern does not
exist in any sequence. We demonstrate the fidelity of this idea
by both theoretical analysis and its application to simulated and
real data.

Removing Thin Edges. Significant regions of conservation have
been found among DNA�protein sequences that overall have
little similarity. Dissimilar regions are often uninteresting and
make the local alignment problem more difficult to solve. In the
De Bruijn graph, they correspond to a huge number of thin
edges, whose multiplicities are small. Thin edges therefore are
removed from the graph. Without knowing the locations of
conserved segments, we remove an edge by estimating the
probability that the edge is presented by chance under a random
model (see Significance Estimation for details). Fig. 3 shows an
example of before and after removing thin edges.

Resolving Cycles. Because of repeats and random matching, the
initial De Bruijn graph is very likely to have cycles. For

Fig. 1. An example of two local multiple alignments output by our program.
Sequence indices and positions are shown on the left. The significance of each
alignment can be estimated by a Poisson heuristic.

Fig. 2. Three DNA sequences are build into a three-tuple De Bruijn graph by
‘‘gluing’’ identical edges and vertices. Each sequence is a path traversing the
graph.

Fig. 3. De Bruijn graph before (a) and after (b) removing thin edges. Corresponding sequences contain copies of two patterns. (a) The bold edges represent the
conserved patterns. (b) Conserved patterns remain in the graph, and the bold edges represent the heaviest path (10 sequences, 100 bp each, tuple size of 10).

1286 � www.pnas.org�cgi�doi�10.1073�pnas.0409240102 Zhang and Waterman



example, if there exist a three-tandem repeat (a repeat unit
consecutively repeated three times) in some sequences, the
repeat unit (� k letters) will be represented as a cycle in the
graph since identical k-tuples are represented by the same
edge, and thus any sequence path containing the three-tandem
repeat will visit the cycle three times. It is hard and often
ambiguous to determine how many times a cycle should be
visited when reconstructing consensuses. We applied an idea
similar to the superpath solution in ref. 2 to resolve all cycles
in the graph, where the cycle representing the three-tandem
repeat were transformed to acyclically connected edges (3-fold
relative to the size of the cycle) through which we can
reconstruct the three-tandem repeat without ambiguity. The
key observation is that we know how to traverse the graph after
each single sequence, which makes resolving cycles possible.
More details can be found in refs. 2 and 3.

Consensus Alignment. After removing thin edges and resolving
cycles, we apply a heaviest path algorithm to find the consensus
sequence. The heaviest path algorithm is a shortest path algo-
rithm with negative edge weights and costs linear time when the
graph is acyclic. The weight function for edge e is defined as
W(e) � (me � c) � (le � o), where me is the edge multiplicity,
c is a constant to address the random matches, le is the edge
length, and o is a constant to avoid overweighting from k-tuple
overlaps. More sophisticated weight functions can be easily
applied when additional information is available, such as quality
scores of base calling.

For each consensus, we apply a banded version of local
pairwise alignment (20) and a declumping algorithm (21) to find
segments similar to the consensus. The declumping algorithm
allows multiple independent segments to be found within one
sequence. Segments found from all sequences then are assem-
bled into a local multiple alignment. It is worth mentioning that
our method does not require the pattern to appear in all
sequences, and�or have specified lengths, as do many statistical
and deterministic methods.

Declumping Graph. It is often the case that several different
patterns present within the same sequence set. Our program
outputs one local alignment at a time, and we ran the program
iteratively to find additional patterns. Declumping graph is a
procedure that removes information of previously output local
alignments from the graph, and thus allows additional patterns
to be found. This is done by removing the information of k-tuples
within the output alignments (instead of removing the edges of
the consensus path) from the graph. As an example, two
patterns, XYZ and PYQ, share a subpattern, Y, and their paths
intersect at Y in the graph. We first output a local alignment of
pattern XYZ and declump the graph so that the path of PYQ
appears as the next consensus. Note that we do not remove the
edge of Y but only reduce its multiplicity, because Y also appears
in PYQ. The steps of finding a consensus–consensus alignment–
declumping graph are repeated until no significant local align-
ments are left.

There arises an issue when multiple patterns are present in the
same sequence set. As in the above example, when both patterns
XYZ and PYQ exist, it is possible that our heaviest path
approach mistakenly chooses XYQ as the consensus if k-tuples
in Q are more abundant than in Z. Our current solution to this
issue is to analyze the distribution of k-tuples from the heaviest
path and choose a subset of edges that is likely to contain one
particular pattern and run the heaviest path algorithm again
within the subset. This issue, however, could be more compli-
cated where the fundamental repeat units occurring as tandem
repeats can result in a consensus of two or more fundamental
units concatenated. This situation requires further analysis.

Significance Estimation
We recall that local alignment P values are invaluable in database
searches (22, 23). The statistical nature of matchings among
random sequences has been studied (21, 24–28). In our problem,
we estimate the P value of a local multiple alignment to remove
thin edges formed by random matches, as well as to rank multiple
outputs by statistical significance. We have presented a large
deviation estimation on the minimum multiplicity of mutation-
free edges in our previous paper (3). Intuitively, edges with
multiplicity much less than the expected minimum are most
likely to consist of random matches. The large deviation esti-
mation under local alignment conditions, however, is more
complicated than in the global case. This is because now the
positions and the orders of conserved regions in each sequence
are totally random. Without additional considerations, such an
estimation will only provide a lower bound that is too small to
be useful. Aldous (29) has formulated the Poisson clumping
heuristic that is used instead in our estimation.

Significance of Local Multiple Alignments. To avoid redundant
output that essentially represents the same alignment, we define
a clump to be a set of alignments that either shares at least one
matched column with or is a subset of a reference alignment. The
reference alignment can be arbitrarily defined, and only one
alignment per clump will be output.

In the exact matching case, an alignment is a set of identical
tuples from different sequences. It has been proved that the
asymptotic distribution of the number of clumps is Poisson
(30). That is, given N sequences of L letters from a finite
alphabet set �, define the size of a clump to be (n, l) if its
reference alignment consists of n identical l-tuples from n
different sequences, where the reference alignment is inex-
tensible. Under this definition, the asymptotic distribution of
the number of clumps of size at least (n, l) is approximately
Poisson when N is bounded and L 3 �.

When allowing gaps under a wide range of penalty scoring, the
Poisson approximation is still valid but the parameters are to be
estimated by simulation. The Poisson heuristic has been suc-
cessfully applied in estimating the significance of pairwise align-
ment (23), where two parameters � and p(2) are set, such that
P�H � x� � 1 � e��L1L2p�2�

x
. H is the optimal clump score (let W

be the number of clumps that has score � x; then H � x is
equivalent to W � 0), p(2) is the probability that two letters are
identical, and L1, L2 are the adjusted lengths of two sequences.
In fact, the factor �L1L2p(2)

x is an approximation to the expected
number of clumps with score � x. For multiple alignment,
analogously, we approximate the expected number of clumps of
size at least h��(n, x) by ��n

N��	 i�1
n Li�p �n�

x , and hence P(H� � h�) �

1 � e���n
N��	i�1

n Li�p�n�
x

(30), where n is the number of rows and x is
the alignment score normalized by n. Parameters � and p(n) are
estimated by simulation. In addition, for the significance of
suboptimal alignments, the p value of the rth optimal alignment
as an example, can be easily estimated as

P�H� �r� � h�� � P�at least r clumps have size � h� �

� 1 � �
i�1

r

P�H� �i� � h� � � 1 � e���
j�0

r�1
� j

j!
,

and

� � ��n
N���

j�1

n

Lj�p�n�
x .

Zhang and Waterman PNAS � February 1, 2005 � vol. 102 � no. 5 � 1287

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



The accuracy of the Poisson approximation depends on se-
quence lengths, where long sequences are required for good
approximations. In addition, large variation among sequence
lengths reduce the accuracy (23, 29, 30).

Declump Pairwise Alignment. After obtaining a consensus path
from the graph, we use the banded pairwise alignment and
the declumping algorithm (21) to find segments similar to the
consensus. For each pairwise alignment matrix (between the
consensus and each sequence), we iteratively record the current
optimal alignment followed by declumping the matrix, until the
current optimal alignment has the p value above a significance
threshold p0. The threshold p0 is chosen in the following way:
assume the Poisson distribution of H� with distribution function
F(x), and let T � F(H� ), then T is a random variable distributed
as U(0, 1) under the random model. A larger T indicates a more
significant alignment. From N sequences, we have N random
variables Ti from each sequence (i � 1, 2, . . . , N). If we choose
p0 such that P(max(Ti) � 1 � p0) 
 1 � �, we will have (1 � �) �
100% chance to detect significant alignments. By selecting a
small �, we can solve p0 by P(max(Ti) � 1 � p0) � (1 � p0)N �
1 � �.

It is worth mentioning, however, that the significance of a hit
not only depends on the alignment score, but also on the total
number of hits found within one sequence. The highest-scoring
segment may not be significant, whereas some modest-scoring
segments could be significant when we take into account the
order statistics.

Computation Efficiency
The computational time for our method is approximately linear
with respect to the total size of data. Let k be the tuple size, l be
the pattern length found in each iteration, N be the number of
sequences, and L be the average sequence length. The compu-
tation time for graph construction and transformation is ap-
proximately O(kNL), and for pairwise alignment with declump-
ing it is O(NLl). The memory usage is O(kNL � l2), because the
graph size is proportional to the data size, and the size of
alignment matrix is O(l2).

Application in Repeat Finding
In our method, the multiplicity of an edge is defined to be the
number of sequences visiting the edge. By slightly modifying this
definition to be the number of k-tuple occurrences, our method
can be applied in finding repeats from a single sequence. Alu
repeats are the most abundant repeats in the human genome. We
thus apply our method in the human genome and expect to find
Alus, although the Alu repeat is unspecified to our program. The
Alu repeat consists of multilevels of shorter forward and palin-
dromic repeats and thus provides a good example for demon-
strating the accuracy and robustness of our method.

Five sequences from the human genome were randomly
chosen, with sequence lengths ranging from 22 kb to 1 Mb. The

data were downloaded from the National Center for Biotech-
nology Information (NCBI) (www.ncbi.nlm.nih.gov). Two
shorter sequences are complete genes (22 and 38 kb, NCBI
accession nos. AF435921 and Z15025), and two longer sequences
are bacterial artificial chromosome clones (167 and 199 kb,
NCBI accession nos. AC034110 and AC010145). The last 1-Mb
sequence (chr22) is randomly chosen from the human chromo-
some 22, the 20- to 21-Mb region from ENSEMBL (www.ensem-
bl.org). As a reference, we used REPEATMASKER to find all
repeats in the above sequences, with the only mask Alus (and
7SLRNA, SVA, and LTR5) option and slow option (which is
more sensitive) checked. Alu repeats marked by REPEATMASKER
are regarded as the reference.

Since our method considers forward and reverse complement
repeats as two different patterns, we ran our program for two
iterations in each test to recover Alus in both directions. We also
ran our programs for additional iterations and found non-Alu
repeats. One contiguous region may be marked as multiple
repeats by either program. Therefore, we use the total length of
repeats to define the sensitivity and specificity instead of using
Alu units, although the definition should depend on the purpose
of repeat finding. Let lt be the total length of repeats found by
our program, lr be the total length of repeats masked by
REPEATMASKER, and lc be the total length of letters masked
by both programs, then the sensitivity is lc�lr, and the specificity
is lc�lh.

As shown in Table 1, our program achieved high sensitivity
and specificity in all tests. Its ability to find Alus is caused by the
high abundance of Alu repeats in the human genome. The
average similarity between Alus and their closest consensus is
86%, as indicated by REPEATMASKER. If the divergence among
Alus is random, we would expect the pairwise similarity between
Alus to be 80% or lower. In addition, the specificity of our result
is in general lower than sensitivity, because our program also
found other repeats (located near some Alus and hence ‘‘ad-
hered’’ to the Alu consensus path in our graph). We manually
checked the false-positive and false-negative regions on each
sequence. Most false positives are simple repeats, such as
(CTT)n, poly(A�T), and some unknown repeats. False negatives
fall into two categories, short Alus and repeats from non-Alu
families. Two extreme cases of short Alus marked by REPEAT-
MASKER are a 12-bp Alu in AC034110 and a 13-bp Alu in chr22,
both of which are indistinguishable from random hits without
targeting Alus. The repeats from non-Alu families were missed
by our method because of their low similarity and relatively small
number of instances (six 7SLRNA, two LTR5�Hs, six LTR5B,
and four SVA in chr22; one SVA in AC034110; and one 7SLRNA
in AC010145). An example of repeats in Z15025 is shown in Fig.
4. REPEATMASKER masked 53 Alu repeats from 13 Alu subfam-
ilies, where our method found them by using only two consensus
sequences. Part of the alignment of Alu repeats is shown in Fig.
5. In addition, the 1-Mb chr22 sequence contains 32 subfamilies
of 717 Alu repeats that span in total 185 kb and provides the most

Table 1. Finding Alu repeats in five sequences

Seq Rep, kb Family Alu, bp Div, % Sn, % Sp, % T, s Sn,* % Sp,* % T,* s

22 Kb 8 10 261 (69) 15.0 (6.4) 98.4 98.9 3 96.3 99.4 1
38 Kb 13 13 245 (85) 15.7 (5.7) 98.8 96.4 8 98.6 96.7 4
167 Kb 25 18 261 (72) 12.2 (5.9) 95.2 93.0 44 93.5 95.2 14
199 Kb 33 13 277 (55) 15.0 (5.6) 99.3 92.6 62 85.2 93.7 32
1 Mb 85 32 252 (79) 15.2 (6.1) 95.3 98.9 293 72.4 99.4 85

Seq, sequence length; Rep, total length of Alus marked by REPEATMASKER; Family, no. of Alu subfamilies; Alu, average Alu size with SD
shown in parentheses; Div, average divergence from the closest subfamily’s consensus with SD shown in parentheses. All SDs were
computed by excluding repeats from LTRs, 7 SLRNA, and SVA subfamilies. Sn, sensitivity; Sp, specificity; T, computation time.
*Indicates results by a fast version of our program. The computation time was greatly reduced, but the last two cases also show reduced
sensitivities.

1288 � www.pnas.org�cgi�doi�10.1073�pnas.0409240102 Zhang and Waterman



complicated data in our tests, as shown in Fig. 6. Nevertheless,
our program performed consistently over all tested sequences
and achieved high accuracy within seconds.

As observed in Table 1, the computation time of our program
increases linearly as the size of data increases, and the time also
depends on the length of repeats. The banded local pairwise
alignment and declumping step is the most time-consuming step,
which depends on both the length of consensus and the number
of repeats. We used 13-tuples for the first four tests and 22-tuples
for the last test because of its large data size and high density of
repeats. All tests were performed on a 1.7-GHz and 512-Mb
computer.

Alternatively, we can search a region only if it is indicated by
our graph, i.e., we only search the region if it has at least one
k-tuple in our consensus path in the graph. This strategy will
greatly reduce the computation time, but also may reduce the
sensitivity. We ran our program again on the same set of
sequences by using the same tuple sizes under this strategy. As
shown in Table 1, the computation time for all tests was
significantly reduced, but the sensitivities of the last two tests
were reduced as well. The missing repeats are probably more
degenerate than the others so that they are missed when using
a large tuple size. We reduced the tuple size to 12 for AC010145
and 20 for chr22 and observed that the sensitivity for AC010145
increased from 85.2% to 98.6% and for chr22 increased from
72.4% to 86.8%. This finding indicates that our method can
directly locate a large portion of repeats only by checking the
consensus path through the graph, even when the pairwise
similarity of repeats is 80% or lower.

REPUTER (15, 16) is a program for finding maximum degen-
erate repeats in genome-sized sequences. We ran REPUTER on
the above sequence sets and compared its performance with our
method. Since REPUTER outputs pairwise relationship between
instances of repeats, we merged all repeat pairs together and
checked the sensitivity, that is, the proportion of reference Alus
covered by REPUTER’s result. REPUTER requires the user to
specify the minimum repeat length and the maximum difference
allowed between repeats. We tried several parameters and
observed that REPUTER consistently missed almost half of the
reference Alus in each test. We increased the difference allowed
between repeats because Alus may be �80% identical and
observed no significant improvement in Alu finding, but a sharp
increase in computation time. We believe it is because REPUTER

uses exact short matches as seeds and finds repeats by extending
each seed. To find degenerate repeats, the length of seeds must
be short. Therefore, real seeds will be overwhelmed by random
seeds in genome-sized sequences, which greatly increases the
computational cost and decreases the accuracy of results. Fur-
thermore, the specification of maximum difference allowed
between repeats also limits REPUTER’s accuracy, because repeats
of various lengths are restricted by the same number of differ-
ences allowed. In our test, however, REPUTER did find several
non-Alu repeats, which are well conserved. As a comparison, our
method uses a large tuple size to reduce the number of random
matches, so that only a small number of candidates remain.
Instead of finding conserved regions directly, our method first
constructs a consensus sequence from the De Bruijn graph, and
then uses a fast, but exact, version of local consensus alignment
to detect conserved regions. Although a large tuple size is often
used, our consensus sequence will be accurate with a sufficient
number of instances of a pattern in the data. More details about
the fidelity of the consensus sequence are presented in ref. 3.
Results of simulations testing our method can be found in
Supporting Text and Table 2, which are published as supporting
information on the PNAS web site.

Discussion
Our Eulerian path approach can accurately find both well
conserved and degenerate patterns in a large sequence set.
Multiple patterns of lengths in a wide range can be detected
simultaneously, and it costs approximately linear time with
respect to the size of data. Our method can be applied in
analyzing large DNA sequence sets, such as finding unknown
locally conserved patterns. As shown by our examples, this
method is accurate and robust under various settings, including
the size of data, the length of patterns, and the divergence of
patterns. The only parameter specified before running our
program is the tuple size, which is often arbitrarily chosen. In our
experience, the performance of our program is relatively stable
when the tuple size is chosen within a certain range (e.g., from
10 to 20). In cases where the tuple size is too small, we do
occasionally observe reduced performance, which is probably
caused by the graph transformation step that resolves cycles with
a local method. Furthermore, how to detect true patterns other
than concatenation of different patterns remains an open ques-

Fig. 4. A 38-kb sequence of a Homo sapiens Bat2 gene. Bars below the genome line are Alu repeats marked by REPEATMASKER (10 Alu subfamilies are indicated
in gray scale). Bars above the genome line are our result, including both forward and reverse complement repeats. One false positive and one false negative are
indicated by circles.

Fig. 5. Partial alignment of Alus (the reverse complement) found in a H. sapiens Bat2 gene. Each row is an aligned Alu.

Zhang and Waterman PNAS � February 1, 2005 � vol. 102 � no. 5 � 1289

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



tion. The software and source code are freely available for
research purposes on request to yuzhang@stat.harvard.edu.

Most available multiple alignment algorithms are designed for
specific purposes and lack the flexibility to be applied in
different situations. Few methods have addressed the accuracy
issue when presented with a large number of sequences, which
is important for multiple alignment. The Eulerian path approach
attempts to achieve both accuracy and efficiency through a
novel, but general, framework, and it can be extended for

studying many different problems. The current version of our
method focuses on DNAs only, but it can be further extended to
analyze protein sequences. For proteins, however, sequence
identity could be 30% and lower, which hinders the direct
application of this Eulerian path approach.

This work was supported by National Institutes of Health Grant R01
HG02360-01, and Y.Z. was partially supported by a Graduate Merit
Award when he was a Ph.D. student at the University of Southern
California.

1. Idury, R. & Waterman, M. S. (1995) J. Comp. Biol. 2, 291–306.
2. Pevzner, P. A., Tang, H. & Waterman, M. S. (2001) Proc. Natl. Acad. Sci. USA

98, 9748–9753.
3. Zhang, Y. & Waterman, M. S. (2003) J. Comp. Biol. 10, 803–819.
4. Smith, R. F. & Smith, T. F. (1990) Proc. Natl. Acad. Sci. USA 87, 118–122.
5. Smith, R. F. & Smith, T. F. (1992) Protein Eng. 5, 35–41.
6. Waterman, M. S. & Jones, R. (1990) Methods Enzymol. 183, 221–237.
7. Schuler, G. D., Altschul, S. F. & Lipman, D. J. (1991) Proteins 9, 180–190.
8. Depiereux, E., Baudoux, G., Briffeuil, P., Reginster, I., De Bolle, X., Vinals,

C. & Feytmans, E. (1997) Comput. Appl. Biosci. 13, 249–256.
9. Morgenstern, B. (1999) Bioinformatics 15, 211–218.

10. Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F. &
Wootton, J. C. (1993) Science 262, 208–214.

11. Bailey, T. L. & Elkan, C. (1994) in Proceedings of the Second International
Conference on Intelligent Systems for Molecular Biology, eds. Altman, R.,
Brutlag, D., Karp, P., Lathrop, R. & Searls, D. (American Association for
Artificial Intelligence, Menlo Park, CA), pp. 28–36.

12. Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D.,
Sidow, A. & Batzoglou, S. (2003) Genome Res. 13, 721–731.

13. Bray, N. & Pachter, L. (2003) Nucleic Acids Res. 31, 3525–3526.
14. Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F. A., Roskin,

K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D., et al. (2004)
Genome Res. 14, 708–715.

15. Kurtz, S. & Schleiermacher, C. (1999) Bioinformatics 15, 426–427.
16. Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J. &

Giegerich, R. (2001) Nucleic Acids Res. 29, 4633–4642.

17. Li, X. & Waterman, M. S. (2003) Genome Res. 13, 1916–1922.
18. Pevzner, P. A., Tang, H. & Tesler, G. (2004) in Proceedings of the Eighth Annual

International Conference on Computational Molecular Biology, eds. Bourne,
P. E. & Gusfield, D. (Association for Computing Machinery, New York), pp.
213–222.

19. Jurka, J. (2000) Trends Genet. 16, 418–420.
20. Smith, T. F. & Waterman, M. S. (1981) J. Mol. Biol. 147, 195–197.
21. Waterman, M. S. & Eggert, M. (1987) J. Mol. Biol. 197, 723–728.
22. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J.

Mol. Biol. 215, 403–410.
23. Waterman, M. S. & Vingron, M. (1994) Proc. Natl. Acad. Sci. USA 91,

4625–4628.
24. Smith, T. F., Waterman, M. S. & Burks, C. (1985) Nucleic Acids Res. 13,

645–656.
25. Arratia, R., Gordon, L. & Waterman, M. S. (1986) Ann. Stat. 14, 971–993.
26. Waterman, M. S., Gordon, L. & Arratia, R. (1987) Proc. Natl. Acad. Sci. USA

84, 1239–1243.
27. Karlin, S. & Altschul, S. F. (1990) Proc. Natl. Acad. Sci. USA 87, 2264–2268.
28. Lippert, R. A., Zhao, X., Florea, L., Mobarry, C. & Istrail, S. (2004) in

Proceedings of the Eighth Annual International Conference on Computational
Molecular Biology, eds. Bourne, P. E. & Gusfield, D. (Association for Com-
puting Machinery, New York), pp. 233–241.

29. Aldous, D. (1989) Probability Approximations via the Poisson Clumping Heuristic
(Springer, New York).

30. Waterman, M. S. (1995) Introduction to Computational Biology: Maps, Se-
quences, and Genomes (Chapman and Hall, London), pp. 253–304.

Fig. 6. A 1-Mb region of human chromosome 22. Bars above the line are repeats found by our method, and bars below the line are the reference Alus. Forward
and backward Alu repeats are shown in different rows. One false-negative example (belonging to the LTR5�Hs subfamily) is indicated by an arrow.

1290 � www.pnas.org�cgi�doi�10.1073�pnas.0409240102 Zhang and Waterman


