
DNA Sequence Assembly and Multiple
Sequence Alignment by an Eulerian Path

Approach

Yu Zhang∗

Department of Mathematics
University of Southern California

Los Angeles, CA 90089-1113
Phone: 213-821-2231

yuzhang@usc.edu

Michael S.Waterman

Department of Biological Sciences
University of Southern California

Los Angeles, CA 90089-1340
Phone: 213-740-2409
Fax: 213-740-2437

msw@usc.edu

22 May 2003

1



Running Head:
Eulerian Assembly and Multiple Alignment

Corresponding Author:

Yu Zhang

Mailing Address:

USC, Department of Mathematics
1042 W. 36th Place, DRB289
Los Angeles, CA 90089-1113

Phone: 213-821-2231

Fax: 213-740-2437

E-mail: yuzhang@usc.edu

1



Abstract

We describe an Eulerian path approach to the DNA fragment as-

sembly that was originated by Idury and Waterman 1995, and then

advanced by Pevzner et al. 2001b. This combinatorial approach by-

passes the traditional “overlap-layout-consensus” approach and suc-

cessfully resolved some of the troublesome repeats in practical assem-

bly projects. The assembly results by the Eulerian path approach are

accurate, and its computation is significantly more efficient than other

assembly programs.

As an extension, we use the Eulerian path idea to address the multiple

sequence alignment problem. In particular, we have as a goal align-

ing thousands of sequences simultaneously, which is computationally

exorbitant for all existing alignment algorithms. As a beginning, we

focus on DNA sequence alignment. Our method can align hundreds

of DNA sequences within minutes with high accuracy, and its compu-

tational time is linear to the number of sequences. We demonstrate

its performance by alignments of simulated sequences and by an ap-

plication in a resequencing project of Arabidopsis thaliana.

Although having some weaknesses including aligning gap-rich regions,

the Eulerian path approach is distinguished from other existing al-

gorithms in solving either fragment assembly or multiple alignment

2



problems, and hence provides a new perspective in solving these prob-

lems.

1 DNA Sequence Assembly

Assembly of short DNA fragments (500-1000bp) generated by shotgun

sequencing is a widely used technique for sequencing large genomes,

including the human genome. The most popular framework of DNA

fragment assembly algorithms in the past 25 years is the “overlap-

layout-consensus” approach. All high quality DNA fragments are first

compared to each other for possible overlaps; then a layout is made by

arranging all DNA fragments into relative positions and orientations

according to the overlap information; finally a multiple alignment is

computed to obtain a consensus sequence that will be used as the

genomic sequence. The main difficulty with this framework in addi-

tion to the computation required, comes from the fact that genomic

sequences always contain large amount of repeat regions accumulated

along their evolutionary history. In particular, repeats that are longer

than the fragment length and have > 98% identity are hard to dis-

tinguish from true overlaps, and hence finding a correct path in the

layout step is difficult.

Surprisingly, a 15-year-old computational model from DNA arrays

provides the basis for a novel approach to assembly. Sequencing by

3



Hybridization (SBH) is conceptually analogous to DNA fragment as-

sembly by regarding each DNA fragment as a k-tuple. Idury and

Waterman (Idury and Waterman 1995) mimicked SBH procedure by

breaking each DNA fragment of length n into n-k+1 overlapping k-

tuples and hybridized all k-tuples in silicon such that a DNA fragment

assembly problem is mapped into a SBH problem. A de Bruijn Graph

is constructed in their SBH approach where each edge represents a k-

tuple from fragments; two edges share a common vertex if they share a

common (k-1)-tuple; identical k-tuples share the same edge. Repeats

and sequencing errors make the simple de Bruijn graph extremely

tangled and the solution of DNA fragment assembly from such a com-

plex graph remains challenging. Pevzner et al. took the SBH idea

and provided some additional features (Pevzner et al. 2001b). In-

stead of building an overlap graph in the traditional “overlap-layout-

consensus” framework, the Eulerian path approach builds a de Bruijn

graph that represent all fragments and their relationships in a much

simpler way. In addition, the difficulty resulting from the repeats and

sequencing errors often are much easier to conquer in the de Bruijn

graph structure.

Assume a DNA sequence consists of four unique subsequences that

are separated by one triple repeat, as shown in figure 1a. The tradi-

tional “overlap-layout-consensus” approach builds an overlap graph by

4



regarding every fragment as a vertex, and two vertices are connected

if two corresponding fragments overlap. Figure 1b shows the overlap

graph in our example. The assembly problem is thus finding a path

in the overlap graph that visits every vertex exactly once, a Hamilton

path problem that is well known NP-complete. On the contrary, the

Eulerian path approach breaks all fragments into k-tuples and builds

a de Bruijn graph as described above (figure 1c). A conceptually ideal

de Bruijn graph is shown in figure 1d, a much simpler representation

of repeats than the overlap graph. The most important advantage of

this representation is that the assembly problem is now finding a path

that visits every edge exactly once, an Eulerian path problem that has

linear-time solutions (Fleischner 1990).

The implementation of the Eulerian path approach to DNA fragment

assembly problems is called EULER. Traditional algorithms postpone

the error correction until the last consensus step, while EULER applies

error correction at the beginning of assembly (this is the innovation

of Pevzner et al.). Without knowing the finished genomic sequence

or even the layout of fragments, error correction is still possible by

approximating the k-tuple spectrum and the result is usually accurate

enough. After error correction, EULER constructs a de Bruijn graph,

and stores the fragment information in corresponding edges. This

fragment information is the fundamental difference between EULER

5



and SBH where such information is unavailable. EULER’s superpath

idea can successfully solve many repeats by using fragment informa-

tion. Finally, EULER outputs an Eulerian path from the de Bruijn

graph that represents the finished genomic sequence.

1.1 Error Correction

Sequencing errors make the de Bruijn graph a tangle of erroneous

edges, thus very difficult to solve. EULER’s error correction proce-

dure reduces 97% errors from the original DNA fragments and makes

the data almost error-free. The idea is based on an approximation

to the spectrum of real genomic sequence, i.e. to find a collection

of k-tuples all of which are from the genomic sequence instead of se-

quencing errors. With sequencing errors, many k-tuples are erroneous

and many “true” k-tuples are missing. EULER calls a k-tuple solid if

it appears in more than M fragments, otherwise it is a weak k-tuple.

The error correction problem is thus to transform the spectrum of the

original DNA fragments into the spectrum of a genomic sequence by

changing weak k-tuples to solid k-tuples. Without knowing the real

genomic sequence, one natural criteria of error correction is to mini-

mize the total number of distinct k-tuples in the spectrum. One error

in a fragment will create at most 2k (including the reverse complement

part) erroneous k-tuples in the spectrum, or 2d (d<k) if the error ap-

pears near either end of a fragment so that at most 2d k-tuples can be

6



affected. EULER uses a greedy approach to look for error corrections

that reduce the number of weak k-tuples by 2k or 2d.

The Neisseria meningitidis (NM) sequencing project (Parkhill 2000),

one of the most “difficult-to-assemble” and “repeat-rich” bacterial

genome completed so far, was used to demonstrate the efficiency of

EULER’s error correction method. The NM genome contains 2,184,406

nucleotides, with 126 long nearly perfect repeats up to 3,832 bp in

length. The sequencing project resulted in 53,263 fragments (cover-

age 9.7), with 255,631 sequencing errors in total. EULER corrected

97.7% errors and made the original sequencing data almost error-free

with 0.11 errors per fragment (Pevzner et al. 2001a).

1.2 Construction of De Bruijn Graph

EULER constructs a de Bruijn graph from the corrected DNA frag-

ments in the following way: given a set of DNA fragments, EULER

breaks each fragment and its reverse complement into overlapping k-

tuples; each k-tuple represents a directed edge in the graph and the

direction of an edge is the direction of reading a k-tuple; tuple posi-

tions and fragment indices are stored in the corresponding edges; each

k-tuple contains two (k-1)-tuples that will represent vertices connected

at two ends of an edge; all edges and vertices are “glued” together if

they corresponds to identical k-tuples and (k-1)-tuples. An example

7



of the de Bruijn graph of two fragments {ATGC, ATGT} is shown in

figure 2.

An edge is called single if the edge represents a single k-tuple in the

genomic sequence (but this k-tuple may appear in many fragments

that cover it), otherwise the edge is called multiple. By regarding

each multiple-edge as m parallel single-edges if the edge represents m

occurrences of the k-tuple in the genomic sequence, a fragment as-

sembly problem is then to find an Eulerian path that visits each edge

exactly once. The algorithm for finding an Eulerian path costs linear

time and can detect erroneous edges that will then be discarded. In

addition, without knowing orientations, EULER builds all fragments

and their reverse complements into the de Bruijn graph, and expects

that the graph can be partitioned into two complementary subgraphs,

corresponding to reading the sequence in each direction.

1.3 Superpath Transformation

A vertex v is called a source if indegree(v) = 0, or a sink if outdegree(v) =

0. A branching vertex is a vertex that has indegree(v)×outdegree(v) >

1. The de Bruijn graph corresponding to the original fragments of the

NM genome has 502,843 branching vertices (k=20), and this number

is reduced to 12,175 after error correction. Even with error free data,

however, the de Bruijn graph is still very complicated for shotgun se-

8



quencing projects. EULER uses the fragment information stored in

edges to handle this difficulty.

Define a repeat structure a path Pv1→vn = v1 · · · vn in the graph, where

indegree(v1) > 1, outdegree(vn) > 1, indegree(vi)=outdegree(vi) = 1,

for 1 < i < n, and outdegree(v1)=indegree(vn) = 1 if n > 1. A repeat

structure represents a possible repeat in the assembled sequence. If

indegree(v1) = p and outdegree(vn) = q, then there will be p×q possi-

ble pairings of edges that a path enters the repeat structure from one

edge and exits from the other, while the correct pairings correspond-

ing to the assembled sequence are unknown. If a fragment covers the

entire repeat, the correct pairings can be detected by following the

fragment path. If no fragments covered the entire repeat, the correct

pairings will remain unclear and the repeat structure will form a tan-

gle.

A superpath transformation of the de Bruijn graph is then introduced

to solve repeat structures. The goal of superpath transformations is

to do a series of transformations to the graph so that the final graph

contains no multiple-edges. Transformations on multiple-edges should

be performed with caution, because fragment information stored in

multiple-edges must be partitioned and stored separately into super-

paths. For a detailed discussion, please refer to the original paper by

9



Pevzner et al. 2001.

One feature of the Eulerian superpath approach to the DNA sequence

assembly problem is that it uses rather than struggles with the im-

perfect repeats. By superpath transformation, most imperfect repeats

will eventually be separated into different paths. By using the linear-

time Eulerian path algorithm, the Eulerian approach has the potential

to assemble larger eukaryotic genomes in the future.

2 Multiple DNA Sequence Alignment

The linear-time Eulerian path algorithm has the potential of assem-

bling a large eukaryotic genome of length up to gigabases. A closely

related but complementary question is now asked: can the Eulerian

path idea be applied to the multiple sequence alignment problem?

That is, instead of assembling a long genomic sequence, can we use

this idea in aligning a large number of short specific sequences?

Many MSA algorithms have been developed in the past decades. One

bottleneck for all of them is the expensive computational cost when

aligning extremely long sequences or a huge number of sequences si-

multaneously. We will demonstrate that the Eulerian path idea can

provide almost linear time MSA with accurate solution of this prob-

lem. In particular, we present a program called EulerAlign (Zhang

10



and Waterman, 2003) that uses the Eulerian path method to solve

the global MSA of a large number of DNA sequences. An application

on a genome resequencing project is then presented to demonstrate

its performance.

2.1 Motivation

EulerAlign takes the Eulerian path idea that builds all sequences into

a de Bruijn graph, and then extracts the graph information to do the

multiple sequence alignment. Recall the process of a sequence assem-

bly project, where genomic sequences are broken into short pieces and

these pieces are then randomly cloned to build a library of short DNA

fragments. All fragments are sequenced and input into a DNA frag-

ment assembly program to reconstruct the original genomic sequence.

A global MSA problem is a special DNA sequencing project (figure

3), where the “genome” is short enough to be sequenced directly, but

the “sequencing machine” makes a very high rate of errors.

The Eulerian path approach for the DNA assembly problem requires

the input fragment to be “error-free”, where EULER did this by an

error-correction procedure. In a MSA problem, however, there could

be thousands of sequences to be aligned, and the genetic differences

among the sequences result in many “errors” compared with sequenc-

ing errors. Thus, the error-correction as used in EULER will be help-

11



ful but not likely to succeed in “correcting” most of them. A MSA

problem is to recover the underlying consensus sequence from a large

number of divergent sequences, where mutations do not pose a barrier

because each sequence covers (almost) the entire consensus sequence.

This difference allows us to construct an accurate alignment even with

the presence of many mutations.

A consensus sequence is typically obtained from a given alignment by

extracting the majority letters (in the simplest case) in each column

of the alignment. EulerAlign reverses this procedure by first obtaining

a consensus sequence from the graph and then builds the alignment

from the consensus. In the de Bruijn graph, each sequence represents

a sequence path, and each multiple-edge represents a k-tuple shared

by many sequence paths. The letters that are common to a majority

of sequences are thus determined by multiple-edges visited by many

sequence paths. The multiplicity for an edge is the number of sequence

paths visiting the edge. The higher the multiplicity is, the larger the

chance that the edge represents a k-tuple in the consensus sequence.

Based on this idea, EulerAlign assigns weight to each edge as a func-

tion of the edge’s multiplicity and length, then uses a heaviest-path

algorithm to extract a path with the largest sum of weights. The heavi-

est path problem (identical to the shortest path problem with negative

weights) has linear time solutions for a directed acyclic graph (DAG)

12



and EulerAlign uses this heaviest path as the consensus to construct

the final alignment. The pipeline for EulerAlign is as follows: 1)con-

struct a de Bruijn graph; 2) transform the graph to a DAG; 3) extract

a heaviest path as the consensus sequence; 4) do consensus alignment.

2.2 Graph Transformation and Consensus Align-
ment

The initially constructed graph contains cycles due to repeats and

random matches, but an optimal heaviest path is acyclic in the graph.

If the true consensus includes repeat regions, an acyclic heaviest path

will not accurately represent the true consensus unless the cycles (re-

peats) are solved. EulerAlign uses superpath transformations defined

in EULER to solve these cycles. A superpath transformation cap-

tures the sequence path information, and hence can minimize the loss

of similarity information stored in edges (multiplicities). When the

number of sequences is large, however, it could be very time consum-

ing to remove all cycles by superpath transformations. In addition, an

equivalent superpath transformation may not exist in some situations,

and thus removing all cycles may cause significant information loss.

EulerAlign compromises by applying superpath transformations only

on a particular subset of cycles. A cycle is easily detected when a se-

quence path visits a vertex more than once, and such cycles are called

self-cycles because they are entirely involved in one sequence path. Eu-

13



lerAlign uses the superpath transformation to remove a cycle if and

only if the cycle is a self-cycle, and all sequence paths will be individ-

ually acyclic after removing all self-cycles. Because the heaviest path

itself is acyclic, this procedure is designed to allow the heaviest path

to capture most similarity information. A depth-first search in the

graph is then performed to eliminate all remaining cycles. Although

losing all information stored in the removed cycles, this procedure

enables a rigorous heaviest path algorithm to be applied. The time

cost for removing all remaining cycles is linear in the size of the graph.

After obtaining an acyclic graph, EulerAlign extracts the heaviest

path according to the weight function defined for edges. The algo-

rithm for finding the heaviest path costs linear time proportional to

the size of the graph. Finally, EulerAlign applies the classical banded

dynamic programming algorithm to align each sequence with the con-

sensus, and builds the final multiple sequence alignment. Positional

specific scoring functions derived from “heavy” edges and large po-

tential indels indicated by the position shifts of k-tuples can be used

during this process.

2.3 Performance

We have tested EulerAlign on both simulated and real DNA sequences.

For simulated sequences, we randomly add substitutions and indels ac-

14



cording to two models: the equidistance model and the evolutionary

model. In the equidistance model, each sequence is independently

mutated with a common mutation distribution, and hence on average

all sequences are equally similar to each other. In the evolutionary

model, all sequences are related to a common ancestral sequence along

an evolutionary tree. Mutations in each sequence are generated along

the tree and hence are correlated among sequences. The equidistance

model perfectly fits the requirement of a consensus alignment, but the

evolutionary model reflects a more realistic situation.

Two scoring systems are used to evaluate the performance of Euler-

Align: 1) Sum of pairs (SP) score, a popular and simple measure. 2)

Aligning alignment (AA) score, comparison of an alignment to the true

alignment; by simulating sequences, the true alignment (rather than

the mathematically optimal alignment) is known. We used ClustalW

(Higgins and Sharp 1989; Thompson et al. 1994), a well-studied and

popular MSA software, as the reference. Figure 5 shows the compari-

son between EulerAlian and ClustalW on sequence sets generated by

the evolutionary model with different mutation rates: 5.2% and 16.4%,

respectively corresponding to 90% and 70% pairwise sequence similar-

ities. The comparison on the equidistance model is not shown, simply

because EulerAlign is designed for that model and hence achieves a

better result. The linear growth of the computational time with re-

15



spect to the number of aligned sequences by EulerAlign is shown in

figure 6a, and a significant comparison to the quadratic growth by

ClustalW is shown in figure 6b. We used distance scores, and hence

the smaller the score the better the result. All tests are done on a

SUN UltraSPARC 750MHz workstation.

2.4 Application on Arabidopsis Sequences

Arabidopsis thaliana is widely used as a model organism for genetic

study in plant biology. As an application on real genomic sequences,

we used EulerAlign to construct alignments for several sets of short

specific sequences sampled from 96 Arabidopsis individuals by PCR

experiments with certain primers. These alignments are then used

to study the genetic variations and hence evolutionary relationships

in the Arabidopsis population. Sequence data are kindly provided by

M. Nordborg at USC. Presented with base-calling errors, an accu-

rate multiple alignment is crucial for efficiently detecting real genetic

variations other than sequencing errors. The main difference between

genetic variations and sequencing errors is that sequencing errors are

more independently and randomly distributed (although of course a

function of position in the sequence fragment).

To reduce base-calling errors, each individual is sequenced from both

forward and backward strands, and each base-call has a quality value

16



assigned by Phred (Ewing and Green 1998). Because the forward and

backward pairs represents the same genome region, any discrepancy

between them indicates that at least one of two base-calls is wrong.

Our experience shows that the base-calls in two strands are asymmet-

ric, that is, base-calls in one strand tends to make certain errors more

frequently than in the other strand. All sequence pairs (forward and

backward strands) are combined together by Phrap (Green 1994) ac-

cording to their quality values before doing multiple alignment.

Poor quality values are often assigned as the base-call approaches the

end of sequences, and occasionally outlier sequences are generated by

wrong PCR-amplification. Regions with low quality values in each

sequence are not trimmed or discarded before doing alignment, and

hence informative segments can be found even they have low qualities.

Since the quality values within and among sequences are highly vari-

ant even after the combination of two strands, we must incorporate

the quality values into the computation to avoid misalignments due

to low quality regions.

We use ClustalW version 1.83 as the reference program. For methods

of how quality values are used in EulerAlign and ClustalW, please

refer to our previous paper (Zhang and Waterman, 2003). We tested

20 sequence sets, including both good sequence sets and bad sequence

17



sets where up to 18% sequences are either in very poor quality (< 20

in average after combining both strands) or outliers. The parameters

for both EulerAlign and ClustalW are tuned “optimal” by human ef-

fort. By optimal we mean the best scoring functions and utilization of

quality values for all 20 sequence sets, not individually. All alignments

using ClustalW with quality values are done by Tina Hu, at USC.

We used a modified version of sum of pair scores to evaluate align-

ments from both programs. The scores are adjusted according to the

quality value of each letter. For example, the mismatch penalty of

two low quality letters is smaller than the penalty of two high qual-

ity letters. To test the robustness of EulerAlign, we also computed

the alignments by both programs without using quality values, i.e.,

poor quality sequences and outliers are equally considered with high

quality sequences. The sum of pair scores for these alignments are, of

course, not adjusted by quality values. Table 1 shows the comparison.

We use similarity scores so that the level of pairwise identities of each

sequence set can be inferred from the relationship between sequence

lengths and scores.

We found that the performance of both programs are comparable after

tuning the alignment parameters and using quality values when doing

alignment. ClustalW wins in 11 sequences sets whereas EulerAlign

18



wins in 9. By checking the alignments, we found the major alignment

difference by two programs are for the outliers and at either end of

sequences which have low quality and less identities. This result is pos-

sibly due to the different utilizations of quality values by EulerAlign

and ClustalW when doing multiple alignment. On the other hand,

without using quality values, both program computed alignments by

their default parameters, and EulerAlign outperforms ClustalW in all

20 sequence sets.

It is known that the sum of pair scores or other scoring schema can not

always reflect the correctness of a biologically meaningful alignment.

An example of mis-alignments, one by ClustalW and one by Euler-

Align, are shown in figure 7. We argue that these mis-alignments are

due to the improper scoring functions used by each program. Since the

alignment parameters have been tuned optimal in both programs (for

all 20 sequence sets instead of for each set individually), we conclude

that EulerAlign made a more reasonable alignment than ClustalW

in this case. Because the real alignments for DNA sequences are un-

known, we hope the sum of pair scoring scheme demonstrates, to some

extent, the robustness and high performance of EulerAlign. More sig-

nificantly, EulerAlign computed each alignment of the test sets within

20 seconds and obtained a comparable result to ClustalW, which used

10 minutes on the same machine.

19



EulerAlign is an efficient alignment tool for mutiple DNA sequence

alignment. By incorporating additional information, such as quality

values, EulerAlign is able to provide a fast and sensitive way for au-

tomated re-sequencing analysis in many biological applications.

3 Discussion

The Eulerian path approach is an efficient and accurate solution to

both the DNA fragment assembly problem and the multiple sequence

alignment problem. It applies the de Bruijn graph structure that

stores the sequence and similarity information simultaneously with

economic memory requirements. By breaking sequences into over-

lapping k-tuples and tracing sequence paths in the corresponding de

Bruijn graph, similarity among sequences or even a rough multiple

sequence alignment is readily available in a resolution of k consecutive

matches. All repeat regions shorter than sequence length are easily

detectable by following sequence paths, and the superpath transforma-

tion effectively solves these repeat structures. In an assembly problem,

an Eulerian path visiting each edge exactly once is extracted in a lin-

ear time with respect to the size of fragment sets. In a MSA problem,

a heaviest path representing the consensus sequence is obtained in a

linear time with respect to the size of aligned sequences. This linear-

ity makes the Eulerian path approach extremely efficient in dealing

20



with large datasets. Although ad hoc in nature, the Eulerian path

approach to the DNA fragment assembly outperforms many other as-

sembly algorithms in the perspective of accuracy. As for the multiple

sequence alignment, the Eulerian path approach is at least as good

as ClustalW in both simulated and real DNA sequence sets but re-

quires very much less time in computation. Although best fitted to

the alignment of sequences within one family, EulerAlign can be ex-

tended to align sequences from different families (the algorithm is in

progress). In conclusion, we believe that the Eulerian path idea and

its combinitorial framework can be fit into many practical problems

in computational biology.

4 Acknowledgements

We thank Professor Magnus Nordborg at USC for kindly providing

the Arabidopsis sequencing data, and are grateful to Professor Lei Li

at USC, Professor Pavel Pevzner, Doctor Haixu Tang at UCSD for

many helpful discussions. This research was supported by NIH grant

R01 HG02360-01.

21



References

[1] Ewing B. and Green P. 1998. Base-calling of automated sequencer

traces using phred. II. error probabilities. Genome Research. 8:

186-194.

[2] Fleischner H. 1990. Eulerian Graphs and Related Topics, Elsevier

Science, London.

[3] Green P. 1994. Documentation for Phrap.

http://bozeman.mbt.washington.edu/phrap.docs/phrap.html.

[4] Higgins D.G. and Sharp P.M. 1989. Fast and sensitive multiple

sequence alignments on a microcomputer. CABIOS. 5: 151-153.

[5] Idury R. and Waterman M.S. 1995. A new algorithm for DNA

sequence assembly. J. Comp. Biol. 2: 291-306.

[6] Parkhill J., Achtman M., James K.D., Bentley S.D., Churcher C.,

Klee S.R., Morelli G., Basham D., Brown D., Chillingworth T.,

Davies R.M., Davis P., Devlin K., Feltwell T., Hamlin N., Holroyd

S., Jagels K., Leather S., Moule S., Mungall K., Quail M.A.,

Rajandream M.A., Rutherford K.M., Simmonds M., Skelton J.,

Whitehead S., Spratt B.G. and Barrell B.G. 2000. Complete DNA

sequence of a serogroup A strain of Neisseria meningitidis Z2491.

Nature (London), 404: 502-506.

[7] Pevzner P.A., Tang H. and Waterman M.S. 2001a. A new ap-

proach to fragment assembly in DNA sequencing. In Proceedings

22



of the Fifth International Conference on Computational Biology

(RECOMB 2001, Montreal), 256-267.

[8] Pevzner P.A., Tang H. and Waterman M.S. 2001b. An eulerian

path approach to DNA fragment assembly. Proc. Natl. Acad. Sci.

USA. 98: 9748-9753.

[9] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. and

Higgins D.G. 1997. The ClustalX windows interface: flexible

strategies for multiple sequence alignment aided by quality anal-

ysis tools. Nucleic Acids Res. 24: 4876-4882.

[10] Thompson J.D., Higgins D.G., and Gibson T.J. 1994. CLUSTAL

W: improving the sensitivity of progressive multiple sequence

alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-

4680.

[11] Zhang Y. and Waterman M.S. 2003. An Eulerian path approach

to global multiple alignment for DNA sequences. J. Comp. Biol.,

in press.

23



Figure 1: (a) DNA sequence with a triple repeat R; (b) the overlap

graph; (c) construction of the de Bruijn graph by gluing repeats; (d)

de Bruijn graph. Reprinted from Pevzner et al. 2001b.

Figure 2: (a) Two DNA fragments and their 3-tuples (for simplic-

ity, their reverse complements are not included); (b) edge and vertex

presentation of those 3-tuples; (c) a de Bruijn graph by “gluing” iden-

tical edges and vertices.

Figure 3: Analogy between (a) DNA fragment assembly problem and

(b) multiple sequence alignment problem. (a) and (b) are similar ex-

cept the positional distribution of fragments.

Figure 4An example of de Bruijn graph constructed from 6 sequences

of 100 bp each. (a) the initially constructed graph has many cycles.

(b) After removing self-cycles, the heaviest acyclic path appears as

thick edges that are visited by many sequence paths. Diamond ver-

tices correspond to the sequence ends.

Figure 5: SP and AA scores (distance score) with respect to the num-

ber of sequences. The squares and triangles indicate different pairwise

similarities (square-90%, triangle-70%). Both SP and AA scores are

computed from a single alignment test. Solid lines connect points from

24



EulerAlign, where dashed lines connect points from ClustalW.

Figure 6: Left: Linear time cost (in seconds) by EulerAlign with re-

spect to the number of sequences; three lines correspond to 90%,80%

and 70% pairwise similarities. Right: Comparison to the quadratic

time cost by ClustalW (dashed lines). The tested numbers of se-

quences are 10, 15, 50, 100, 250, 500.

Figure 7: Part alignments of sequence set At 000000541 by (a) Euler-

Align and (b) ClustalW. In the first part, EulerAlign made a correct

alignment whereas ClustalW did not. Alignments by two programs

look very different but they are indeed the same region. In the second

part, ClustalW made a correct alignment whereas EulerAlign didn’t.

Sequence order in (a) is adjusted to the same order in (b). The bottom

sequence is an outlier. The visualization tool is ClustalX (Thompson

et al. 1997).

25



Table 1: Comparison of alignments by EulerAlign and ClustalW on Ara-
bidopsis sequences.

With Quality Without Quality
Set N L EulerAlign ClustalW EulerAlign ClustalW

At 000000166 96 665 355.8 356.4 396.7 390.5
At 000000244 96 677 588.4 588.5 598.6 597.9
At 000000245 84 677 263.6 262.6 322.2 301.1
At 000000296 94 687 480.2 480.1 508.0 504.1
At 000000300 96 541 478.7 477.2 483.6 481.0
At 000000308 95 623 502.9 503.5 524.4 520.4
At 000000325 87 676 262.4 264.6 348.6 330.5
At 000000331 96 716 455.8 455.2 480.2 461.8
At 000000383 93 639 364.6 368.5 410.2 398.7
At 000000397 92 680 277.3 279.2 353.9 327.0
At 000000403 69 644 384.7 381.9 440.7 416.2
At 000000454 95 556 499.3 500.0 504.0 502.7
At 000000459 95 731 630.5 632.7 648.3 643.7
At 000000466 87 719 586.3 585.6 621.8 614.4
At 000000504 95 575 530.8 532.2 536.5 535.3
At 000000541 95 760 413.9 414.8 456.4 447.3
At 000000550 95 760 358.1 358.3 391.8 375.0
At 000000584 87 715 259.7 250.5 344.7 313.6
At 000000603 83 695 338.6 337.7 410.5 405.4
At 000000689 92 724 564.6 560.9 592.6 588.0

N is the number of sequences. L is the average sequence length. Scoring
functions are (match, mismatch, gapopen, gapextention) = (1, 0, -4, -1).

All scores are normalized by N(N−1)
2

.

26



Figure 1:

27



Figure 2:

28



Figure 3:

29



Figure 4:

30



Figure 5:

31



0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

90% 

80% 

70% 

0 50 100 150 200 250 300 350 400 450 500
0

5000

10000

15000

90% 

80% 

70% 

Ours 

Figure 6:

32



Figure 7:

33


