
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 10, Number 6, 2003
© Mary Ann Liebert, Inc.
Pp. 803–819
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ABSTRACT

With the rapid increase in the dataset of genome sequences, the multiple sequence alignment
problem is increasingly important and frequently involves the alignment of a large number
of sequences. Many heuristic algorithms have been proposed to improve the speed of com-
putation and the quality of alignment. We introduce a novel approach that is fundamentally
different from all currently available methods. Our motivation comes from the Eulerian
method for fragment assembly in DNA sequencing that transforms all DNA fragments into
a de Bruijn graph and then reduces sequence assembly to a Eulerian path problem. The
paper focuses on global multiple alignment of DNA sequences, where entire sequences are
aligned into one con� guration. Our main result is an algorithm with almost linear compu-
tational speed with respect to the total size (number of letters) of sequences to be aligned.
Five hundred simulated sequences (averaging 500 bases per sequence and as low as 70%
pairwise identity) have been aligned within three minutes on a personal computer, and the
quality of alignment is satisfactory. As a result, accurate and simultaneous alignment of
thousands of long sequences within a reasonable amount of time becomes possible. Data
from an Arabidopsis sequencing project is used to demonstrate the performance.
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1. INTRODUCTION

Multiple sequence alignment is routinely used to � nd conserved regions in molecular se-
quences. When a set of related sequences is aligned by multiple sequence alignment algorithms, the

hidden commonalities among sequences are revealed. Thus they provide a critical computational tool to
retrieve hidden information among huge and exponentially growing genetic data.

A mathematically optimal solution of the multiple sequence alignment problem is achieved by using a
dynamic programming algorithm (Sankoff, 1975; Waterman et al., 1976). Because the time and memory
cost of the dynamic programming algorithm is exponential to the number of sequences, i.e., 2.LN / where
L D sequence length and N D number of sequences, it is impossible to put this method into practical
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use except on a small set of sequences (see Kececioglu [1993] for extensions of this approach). Many
heuristic algorithms achieve reasonably good solutions with limited time and memory usage, and some of
them have already been popularly used in modern molecular biology research.

Most currently available algorithms are in one of two classes. The � rst class is those algorithms using
the progressive alignment strategy (Waterman and Perlwitz, 1984; Feng and Doolittle, 1987). A multiple
alignment is gradually built up by aligning the closest pair of sequences � rst and then aligning the next
closest pair of sequences, or one sequence with a set of aligned sequences or two sets of aligned sequences.
This procedure is repeated until all given sequences are aligned together. The key idea is that the pair of
sequences with minimum distance is most likely to having been obtained from the most recent evolutionary
divergence and that the pairwise alignment of these two speci� c sequences provides the most “reliable”
information that can be extracted. Many programs based on this method exist. Some of them construct an
alignment throughout the entire length of sequences, such as MULTAL (Taylor, 1988), AMULT (Barton and
Sternberg, 1987a, 1987b), MSA (Lipman et al., 1989), CLUSTALW (Higgins and Sharp, 1989; Thompson
et al., 1994). Other programs try � rst to identify an ordered series of highly conserved regions, then
proceed to align the intervening regions, such as GENALIGN (Martinez, 1988) and ASSEMBLE (Vingron
and Argos, 1991). Among these progressive alignment methods, CLUSTALW, probably the best-known
and most popular program used currently, builds a guide tree from the pairwise alignment scores and
merges subsets of sequences according to the tree. A recent algorithm T-Coffee (Notredame et al., 2000)
is similar to CLUSTALW but uses a consistency measure that may reduce the potential errors caused by
progressive alignment.

The other class of alignment algorithms uses iterative re� nement strategies to improve an initial alignment
(Sankoff et al., 1976; Sankoff and Kruskal, 1983). The basic idea for iterative methods is to re� ne the
initial alignment iteratively by local optimization. In HMMT (Eddy, 1995), e.g., the model parameters
are reestimated at each iteration. Iteration continues until convergence or reaching the maximal user-
de� ned number of iterations. Currently available programs that apply iterative strategies include DIALIGN
(Morgenstein et al., 1996), which uses a local alignment approach to construct multiple alignments based
on segment–segment comparisons, where the segments are incorporated into a multiple alignment by an
iterative process. The PRRP program (Gotoh, 1996) optimizes an alignment by iteratively dividing the
sequences into two groups and then realigning them using a global group-to-group alignment algorithm.
SAGA (Notredame and Higgins, 1996) uses a genetic algorithm to select from an evolving population
the alignment which optimizes an objective function (OF). An OF named COFFEE (Notredame et al.,
1998) is used in SAGA that measures the consistency between the multiple alignment and a library of
CLUSTALW pairwise alignments. HMMT (Eddy, 1995) and SAM (Hughey and Krogh, 1996) apply a
stochastic iterative strategy that maximizes the probability based on a hidden Markov model (HMM), but
they are often used to re� ne prealigned sequences (Notredame, 2002).

The numerous alignment programs mentioned above have their own advantages and drawbacks. However,
there are some common issues for all of the currently available alignment algorithms: 1) robustness under
certain conditions, such as gap-rich regions, repeat-rich regions, etc.; 2) local optima problems, especially
for iterative methods; 3) time ef� ciency and memory usage. The time cost for all current algorithms is at
best proportional to the square of the number of sequences to be aligned.

Although many heuristic algorithms have been applied to alleviate the huge time and memory expenses,
those costs remain a barrier for practical application when confronted with thousands of input sequences, or
millions of letters in each sequence, which are not unusual numbers even in bacterial genomes. Certainly,
handling hundreds of sequences with lengths in the thousands is a worthy goal.

2. MOTIVATION

This paper presents a novel approach to the global multiple DNA sequence alignment problem using
Eulerian paths. We call the method “EulerAlign.” The most signi� cant advantages of EulerAlign are its
linear time and memory cost with respect to the total size of sequences to be aligned and improved
alignment accuracy.

Our motivation comes from the algorithm for fragment assembly in DNA sequencing using the Eulerian
superpath approach (EULER) (Idury and Waterman, 1995; Pevzner et al., 2001). In that algorithm, a
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FIG. 1. An extreme version of fragment assembly is multiple sequence alignment.

fragment assembly problem is � rst reduced to an easy-to-solve Eulerian path problem in the de Bruijn graph,
and an Eulerian path is found that corresponds to the consensus sequence of the genome. A signi� cant
contribution of the Eulerian approach is that it discards the traditional “overlap-layout-consensus” outline.
In another words, it obtains a consensus sequence before knowing an alignment and without doing pairwise
alignments.

A global multiple alignment problem is in fact an extreme version of the fragment assembly problem.
As shown in Fig. 1, if almost all fragments come from the same region of a genome, then EULER should
output a consensus sequence of that region. For multiple sequence alignment, if this consensus sequence
is the closest one to all given sequences, one would expect to achieve an accurate alignment using a
consensus scoring scheme.

Note that the idea is similar to the star method: given N sequences to be aligned, the star method
� rst computes the alignments of all sequence pairs and picks one sequence among N sequences as the
consensus that is closest to all other sequences. EulerAlign attempts to � nd such a consensus that consists
of fragments of the N sequences such that the conserved regions are ampli� ed and noise is suppressed. To
understand this, assume all input sequences are derived from a common ancestral sequence; then EulerAlign
is used to � nd this ancestral sequence. By comparing each sequence with the ancestral, it will be able to
distinguish between conserved letters and mutations. Consequently, the global multiple alignment will be
unambiguously constructed.

A crucial requirement of EULER is the almost “error-free” data that is obtained by an error-correction
procedure. In addition, EULER doesn’t evaluate the quality of its consensus path until the � nal quality
assessment stage. For the multiple alignment problem, however, people are more interested in aligning
distantly related sequences, and for EulerAlign, the consensus sequence obtained must be “accurate.” One
option is to do error-correction aggressively so all “errors” (differences between sequences) are eliminated,
but this is not likely to succeed when aligning distantly related sequences. Instead, EulerAlign applies a
somewhat different procedure than does EULER. EulerAlign transforms the initially tangled graph into a
directed acyclic graph (DAG), and during the transformation it tries to retain k-tuples common to several
sequences. In addition, the weight for each edge is assigned in such a way that the consensus sequence
has the maximum weight. By doing these two steps, a consensus-� nding problem is transformed into a
heaviest path problem.

3. THE ALGORITHM

A brief outline of our approach is as follows: (1) Construct a directed de Bruijn graph using all k-
tuples from the sequences to be aligned. (2) Transform the de Bruijn graph to a DAG. (3) Extract a
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FIG. 2. A k-tuple represented by two vertices and one directed edge connecting them.

consensus path from the DAG according to the weights of edges. (4) Do fast pairwise alignment between
the consensus path and each input sequence. (5) Construct the � nal multiple alignment according to the
pairwise alignments. The central part of EulerAlign is the transformation from the constructed de Bruijn
graph to a DAG that retains the commonalities among sequences in its edges and allows us to easily
construct the consensus path.

We should emphasize that EULER combines all reads and their reverse complements into the graph
since, in assembly, fragment orientations are unknown, whereas in our case the orientations are given.

3.1. Graph construction

A k-tuple is k consecutive letters in a sequence. Each k-tuple in given sequences can be transformed into
a structure of two vertices connected by a directed edge, where the vertices are the .k¡1/-tuples contained
in the k-tuple and the edge represents the k-tuple itself with the direction from the pre� x .k ¡ 1/-tuple
to the suf� x .k ¡ 1/-tuple. For example, a 5-tuple “CCTTA” contains two 4-tuples ‘CCTT’+‘CTTA’ with
overlapping letters “CTT.” Each 4-tuple is a vertex and the directed edge connecting them represents the
5-tuple “CCTTA.” This structure is the basic unit in our de Bruijn graph (Fig. 2).

Our de Bruijn graph is constructed by collecting all k-tuples among the sequences. Each k-tuple structure
is added into the graph successively, and if the incoming k-tuple has vertices or an edge identical to the
vertices or edges in the already existing graph, then they are merged together. Sequence information is stored
in edges. An example is shown Fig. 3. Under this construction, each k-tuple from the sequences corresponds

FIG. 3. Construction of the de Bruijn graph for CCTTAG and k D 5.
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FIG. 4. An example of the initial de Bruijn graph. Branches and loops are due to the differences and repeats among
sequences. All thick edges have multiplicities larger than 1. .N D 10; L D 60bp; k D 6/.

to a unique edge in the graph, and each .k ¡ 1/-tuple corresponds to a unique vertex. Consequently, each
input sequence is represented by a path through this graph.

In order to � nd the consensus path, which is not necessarily in one of the given sequences, we de� ne the
multiplicity of an edge to be the number of sequences containing this edge. Obviously, an edge (of � xed
length) with high multiplicity is more likely to represent a consensus (Fig. 4). By de� ning multiplicity in
this way, EulerAlign can � nd a reasonable consensus path and avoid being biased by repeats.

A consensus path is de� ned as an acyclic path through the graph. Each edge is visited at most once,
and the weight of this path (according to the multiplicities and lengths of edges) is maximized. In another
words, � nding consensus is a heaviest path problem, which is identical to a shortest path problem with
negative weights. A shortest path problem with negative weights can be solved in linear time when the
graph is a DAG. Our heuristic is to transform the graph to a DAG such that we can � nd the consensus in
linear time.

3.2. Transforming the graph to a DAG

Because of the random matches, repeats, and mutations in DNA sequences, the initial graph is extremely
tangled. A tangle is de� ned to be a vertex that has more than one incoming or outgoing edge. As the
number of incoming or outgoing edges in a tangle increases, so do the chances that the tangle will result
in cycles. The goal is to eliminate as many cycles as possible while keeping all the similarity information
among sequences untouched (represented by edges with high multiplicities). Note that only cycles are our
targets, while tangles are not.

Claim: De� ne a left edge for vertex vi to be an edge that points to vi , denoted as E!vi
, and a right

edge for vertex vi to be an edge that starts from vi and points to another vertex, denoted as Evi !. If a
vertex vi has two or more left edges fEn

!vi
gnD1;2;::: that are contained in the same sequence path, then

there must exist a cycle in the graph and vi is a vertex on the cycle.

Proof. If a path of a sequence contains two left edges E1
!vi

and E2
!vi

of vi , then when walking though
this path, vi will be visited when visiting E1

!vi
, and vi will be visited again when visiting E2

!vi
. Since

the path is well connected, it follows that this path contains a cycle with vi as a cross vertex. Thus, the
graph contains a cycle.

Note that the reverse of this claim is not true; i.e., after removing all cycles found by this procedure,
the resulting graph is not necessarily a DAG. But a good point is that after removing all such cycles, in
our data the acyclic consensus we found was satisfactory.
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The basic rules of our transformation are similar to those of EULER (Pevzner et al., 2001):

(1) If a cycle is found by the above procedure, i.e., the corresponding sequence path is of form “¢ ¢ ¢ E1
!vi

E1
vi!

¢ ¢ ¢ E2
!vi

E2
vi ! ¢ ¢ ¢ ,” and the right edges E1

vi ! and E2
vi ! are different, then we can make two superedges

(an edge that represents two short continuous edges connected by a common vertex) E1
!vi! and E2

!vi !
to replace E1

!vi
, E1

vi!, E2
!vi

, E2
vi !, such that the cycle is eliminated (Fig. 5a).

(2) In a situation similar to (1), but now E1
vi ! and E2

vi! are the same, denoted as Evi!, we again make two
superedges E1

!vi ! and E2
!vi! by separating Evi! such that the cycle is simpli� ed but not eliminated

(Fig. 5b). In this case, the sequence information stored in Evi! is partitioned into two superedges
E1

!vi ! and E2
!vi! according to which left edge of vi they come from, and the multiplicities for

superedges E1
!vi ! and E2

!vi! are computed. This is distinct from EULER, because we know the
entire sequences and in most cases it is easy to partition and assign sequences by looking at the
corresponding left/right edges.

Because we are doing multiple sequence alignment, many other sequence paths may visit vi from E1
vi!,

E2
vi! or other edges and leave vi in different directions. Thus, one issue concerning our graph transfor-

mation is whether the transformations lead to the loss of similarity information and whether the order in
which we perform transformations determines whether we will retain the maximum similarity information.
A transformation is safe if the transformation does not introduce the loss of similarity information. An
example is shown in Fig. 6a. Otherwise the transformation is unsafe, as shown in Fig. 6b. We conclude
that under the safe transformation, the desired consensus path will be well maintained. As a result, the
current version of EulerAlign attempts to remove all cycles by performing safe transformations � rst and
leaves all unsafe transformations for later.

In Fig. 7 is a de Bruijn graph transformed from the original graph in Fig. 4. Note that a loop in the
original graph is removed, and it is a DAG now. The thick path represents our heaviest consensus path.

Intuitively, the total number of possible paths in the graph is decreasing as transformations are performed,
and thus we have fewer choices of paths. However, when safe transformations are performed � rst, the
desired consensus path is well maintained, and the number of necessary unsafe transformations to obtain
the desired graph is minimized. On the other hand, it is worth mentioning that safe transformations cannot
eliminate all cycles. In some situations, no transformation is safe. But we will show by example that, in

FIG. 5. (a) A tangle at vi is eliminated by making a copy v0
i of vertex vi . (b) A tangle at vi is eliminated by making

a copy v0
i of vertex vi , and separating Evi! . The cycle is not eliminated yet, due to vertex vj . When this step is

repeated several times, the cycle will be � nally eliminated.
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FIG. 6. Examples of safe/unsafe transformation.Dashed lines show the directionsof sequence paths. Multiplicities are
shown on each edge. (a) Different sequences (with different grey scales) share E1

!vi
and E1

vi!. After transformation,

they remain unchanged. (b) After transformation, the similarity information in E2
!vi

is lost. Thus it is an unsafe
transformation.

our experience, the global multiple alignments constructed by EulerAlign are indeed more accurate than
of other methods.

3.3. Consensus path and � nal alignment

After performing the above transformations, we apply a greedy algorithm to � nd a heaviest path within
linear time. The weight for each edge is proportional to its multiplicity and length. Although the greedy
algorithm does not guarantee optimal solutions, the results are satisfactory. Note that we can always refer
back to the rigorous heaviest path algorithm by arbitrarily removing all edges that complete a cycle (other
than the cycles de� ned by our claim) in linear time and thus guarantee an optimal solution for this version
of the problem.

1

8

2

3

4

5

6

8

9

98
9

9 10

9
8

4

0

1

2

3

5

6

7

8

9

0

7

FIG. 7. A DAG achieved by doing safe transformation.The bold path is the desired consensus path, and multiplicities
are shown on each edge.
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Our next step after obtaining a consensus path is quite straightforward. EulerAlign uses a banded pairwise
alignment algorithm (the positional shifts between two candidate letters in two sequences are bounded by
a constant) to align the consensus sequence with each input sequence and then combines the alignments to
construct the � nal global multiple alignment. As mentioned before, this alignment attempts to maximize
the consensus score, and it is most appropriate for the case that all given sequences are derived from a
common sequence. However, the algorithm performs well with sequences derived from an evolutionary
process (see results section).

4. PROBABILITY ANALYSIS

Assume all input sequences are derived from a common ancestral sequence S0. We will show that when
the number of input sequences increases, the consensus path found in the graph will be asymptotically
“identical” to S0.

Let N denote the number of sequences to be aligned, L denote the average sequence length, k denote
the size of the k-tuple used in construction of the graph, and ¯ denote the mutation rate (by this we mean
the probability of a substitution or indel in a sequence at a given position).

Recall that the consensus path is the heaviest path in the graph weighted by the multiplicity and the
length for each edge. An edge weight is denoted as W.e/. To be simple, de� ne W.e/ D multiplicity of
the edge. Then, with no mutations along the evolution history, all N sequences are exactly identical to
S0, and the multiplicity for any edge is N . With mutations present, there will appear many single edges
corresponding to the mutated k-tuples, and the weight of edges in S0 (denoted as W.e 2 S0/) will decrease.
We will use the Large Deviation Theorem (L.D.T.) for Binomials (see Arratia and Gordon [1989] for an
exposition) to estimate the expected minfW.e 2 S0/g based on the given parameters .N; L; k; ¯/ as de� ned
above. If this expected minimum weight is signi� cantly larger than the expected maxfW.e 62 S0/g, our
consensus path should consist of edges presented in S0 and hence be accurate.

Approximation by L.D.T. Consider a binomial random variable X » B.N; p/, where p is the proba-
bility of success. L.D.T. for Binomials is used to approximate the probability of x or more successes in
N independent trials when the speci� ed fraction of successes, ® ´ x=N , satis� es 0 < p < ® < 1: De� ne
the odds ratio r D p.1¡®/

®.1¡p/ and the relative entropy H ´ H.®; p/ ´ .®/log. ®
p

/ C .1 ¡ ®/log. 1¡®
1¡p

/. Then
L.D.T. gives the following approximation (Arratia and Gordon, 1989):

P .X ¸ ®N/ » 1
1 ¡ r

£ 1p
2¼®.1 ¡ ®/N

£ e¡NH , as N ! 1: (1)

In our case, we de� ne a “success” to be a k-tuple that contains at least one mutation; then the number of
mutated k-tuples at the ith position among N sequences is a random variable Xi with a binomial distribution
B(N,p), where p D P .the k-tuple has mutations/ D 1 ¡ .1 ¡ ¯/k . For example, if ¯ D 0:05 and k D 16,
then p D 0:56. Applying Equation (1), it can be shown that for � xed ® and i , P .Xi ¸ ®N/ converges to 0
quickly as N increases. Therefore, for � xed sequence length L and assuming the independence of k-tuples
in S0, P .maxfXi ; 8ig ¸ ®N/ D 1 ¡ P .Xi < ®N; 8i/ D 1 ¡ P L¡kC1.X1 < ®N/ D 1 ¡ .1 ¡ P .X1 ¸
®N//L¡kC1 ! 0, as N ncreases. So maxfXi j i D all possible positions in S0g is asymptotically less
than ®N , and thus minfW.e 2 S0/g D N ¡ maxfXi j 8ig is asymptotically greater than .1 ¡ ®/N as N

increases. For example, if ¯ D 0:05 and k D 16, weights of all edges in S0 are asymptotically greater than
0:44N .

On the other hand, we estimate maxfW.e 62 S0/g by the maximum number of identical k-tuples matching
by chance, and if it is larger than minfW.e 2 S0/g, our consensus will be biased. Assume the sequences
are randomly generated with uniformly distributed letters and all N £ .L¡k C1/ k-tuples are independent;
let a success be a k-tuple identical to a prede� ned k-tuple, with p D 4¡k . Under these assumptions, the
number of identical k-tuples matching the prede� ned k-tuple by chance is a binomial random variable
Y » B.N.L ¡ k C 1/; p/. We usually pick a suf� ciently large k so that 4k ¸ NL. By Equation (1), the
expected number of events with at least ®N.L ¡ k C 1/ k-tuples matching by chance can be estimated
by 4kN.L ¡ k C 1/P .Y ¸ ®N.L ¡ k C 1// / 4k

p
N.L ¡ k ¡ 1/e¡N.L¡kC1/H . This number converges

to 0 quickly as N increases. Therefore, the maximum number of identical k-tuples matching by chance is
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asymptotically less than ®N.L¡kC1/ for any ® ¸ p. This implies that maxfW.e 62 S0/g is asymptotically
less than ®N.L ¡ k C 1/. As mentioned, usually we choose k to satisfy p D 4¡k · .NL/¡1, so that ® can
be suf� ciently small and the inequality maxfW.e 62 S0/g < ®N.L ¡ k C 1/ < minfW.e 2 S0/g holds for
large N .

The above computation is over-simpli� ed and many assumptions are unrealistic. But we hope it demon-
strates the ability of our heaviest path method to discover the underlying ancestral sequence. Furthermore,
the approximation by L.D.T. for Binomials provides a guidance in choosing tuple-size k, for both the
lower-bound and the upper-bound.

5. SIMULATION RESULTS

EulerAlign is tested on a SUN UltraSPARC 750MHz (CPU speed) workstation for simulated sequences,
ranging from 6 to 500 sequences. Each sequence is from 200 to 1000 bp long, and the similarities between
sequences are from 90% to 70%, i.e., the mutation rate per base ranges from 5% to 16%. Substitutions,
insertions, and deletions are uniformly and randomly distributed in all sequences, and in some cases
according to an evolutionary tree model.

We use three different ways to evaluate alignments:

(1) Sum-of-pairs (SP): One of the typical scoring schema. Although this score will not be appropriate when
both closely related and distantly related sequences are present, it is appropriate for the equidistant
sequences (type A sequences mentioned below). The SP score is normalized by the number of pairs
N.N¡1/

2 .
(2) Aligning Alignment Score (AA): From an ancestral sequence and a phylogenetic tree along which all

homologous sequences are derived, one can unambiguously construct the TRUE multiple alignment by
following the divergence history along the tree. By using simulated data, we know exactly the ancestral
sequence and the tree by which those mutations are generated. Thus, the true multiple alignment is
known. By measuring the distance between the true alignment and the alignment obtained by different
methods, respectively, one can tell which method gives a better alignment. Aligning Alignment serves
as a generalized version of pairwise alignment by regarding each column in one alignment as a “letter”
and de� ning a scoring function for these letters (Waterman and Perlwitz, 1984; Waterman, 1995). The
AA score is normalized by N .

(3) Identity (ID): An identity measure between a given alignment A and the true alignment A¤ mentioned

above: ID D
P

ij k;i<j Iij kP
ij k;i<j 1 £ 100%, where i and j are sequence indices. Here we consider a sequence

pair (i, j). If the kth letter of sequence i matches letter s 2 fA; C; G; T ; ¡g of sequence j in alignment
A and it also matches s of sequence j (not necessarily at the same position in j) in alignment A¤, then
Iij k D 1. Otherwise, Iij k D 0. The ID score is normalized as a percentage of identities.

We compared EulerAlign with CLUSTALW, one of the best-studied and popular currently available global
multiple alignment programs. The test sequences are simulated in two different ways:

(A) All substitutions, insertions and deletions for each sequence EAi , i D 1 ¢ ¢ ¢ N are generated randomly
and uniformly on a predetermined sequence EA0, where EA0 is random. The resulting sequences exactly
� t to the consensus alignment model.

(B) First an evolutionary tree, in which the branch lengths are all equal, is generated, and then different
mutations, with equal probability on each sequence based on its parent sequence from the tree,
are generated. Although this tree is not correct from an evolutionary point of view because of the
equal-length branches, it introduces mutation dependence into sequences and creates sequences that
should � t the model of CLUSTALW. More importantly, we want to test EulerAlign on nonequidistant
sequences.

Tables 1 and 2 compare the results from EulerAlign and CLUSTALW on both types of sequences, with
various N , L, and mutation rates. The alignment scoring function is as follows: match D 0; mismatch D
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Table 1. Multiple Alignment Comparison between EulerAlign and CLUSTALW on
Equidistant Sequences (Type A)

Sequences SP AA ID Time/sec

N L Mutation Eul Clw Eul Clw Eul Clw Eul Clw

6 200 5.2% 48 49 19 29 97.4% 93.8% 1 2
10 200 5.2% 53 58 13 37 98.2% 91.7% 1 3
15 200 5.2% 52 66 17 46 97.7% 91.6% 3 4
50 200 5.2% 53 119 14 83 97.9% 85.1% 4 32
6 500 5.2% 120 121 34 55 97.9% 96.0% 3 6

10 500 5.2% 135 148 35 83 97.8% 92.4% 4 14
15 500 5.2% 130 157 41 92 97.5% 92.1% 8 25
50 500 5.2% 141 309 44 230 97.3% 84.1% 11 189

100 500 5.2% 131 396 39 298 97.7% 81.8% 22 643
500 500 5.2% 130 719 38 640 97.8% 64.4% 132 14348

6 200 10.5% 113 103 57 101 90.8% 76.6% 1 1
10 200 10.5% 140 118 91 129 86.0% 70.8% 1 2
15 200 10.5% 133 140 71 149 89.7% 68.2% 3 4
50 200 10.5% 146 188 82 200 86.9% 59.5% 4 29
6 500 10.5% 335 283 191 264 88.3% 77.3% 3 7

10 500 10.5% 334 332 201 317 87.1% 72.0% 3 14
15 500 10.5% 326 339 182 357 88.8% 70.3% 7 25
50 500 10.5% 380 493 268 506 83.3% 61.2% 9 183

100 500 10.5% 380 580 245 606 84.5% 55.9% 19 628
500 500 10.5% 349 751 195 865 88.1% 43.6% 113 14093

6 200 16.4% 232 154 334 282 51.5% 45.6% 1 1
10 200 16.4% 237 163 236 260 64.2% 44.1% 1 2
15 200 16.4% 252 190 289 288 56.8% 43.1% 2 3
50 200 16.4% 262 211 287 332 59.0% 34.0% 3 19
6 500 16.4% 593 389 666 623 59.2% 48.5% 3 6

10 500 16.4% 591 429 634 652 61.2% 43.8% 3 12
15 500 16.4% 621 459 702 709 58.3% 42.4% 5 21
50 500 16.4% 627 541 686 818 59.7% 36.4% 7 129

100 500 16.4% 644 565 726 875 57.7% 32.7% 16 397
500 500 16.4% 628 636 685 1012 60.9% 29.2% 98 8514

1; gapopen D 4; gapextension D 1, an af� ne distance measure. The relations between mutation rates and
sequence similarities are 5:2% » 90%, 10:5% » 80%; 16:4% » 70%.

As shown in the tables, the quality of our alignments for both equidistant sequences (Table 1) and
nonequidistant sequences (Table 2) is generally better than CLUSTALW, especially for large N , although
type B sequences � t CLUSTALW’s model. More signi� cantly, the quality of EulerAlign’s alignments is
almost invariant with N . When N is small (· 10), our SP scores are worse than CLUSTALW, but AA and
ID scores are generally better. Finally, the time cost of EulerAlign is approximately linear with respect to
N . Figure 8 shows two almost identical alignments obtained by EulerAlign and CLUSTALW.

We also compared EulerAlign with a program using hidden Markov models, SAM (Hughey and Krogh,
1996), for which the simulated equidistant sequences perfectly � t the model. It turns out that SAM outper-
forms CLUSTALW on equidistant sequences when evaluated by the AA scoring scheme. But EulerAlign
works at least as well as SAM, and we believe that EulerAlign will be superior to SAM when the input
sequences are more complex. In addition, with some modi� cation, our method can be extended to many
other applications, including multiple local alignment and repeat � nding, which will be presented in another
paper.
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Table 2. Multiple Alignment Comparison between EulerAlign and CLUSTALW on
Nonequidistant Sequences (Type B)a

Sequences SP AA ID Time/sec

N L Mutation Eul Clw Eul Clw Eul Clw Eul Clw

6 500 5.2% 110 110 36 61 98.1% 95.2% 3 6
10 500 5.2% 162 172 71 109 96.4% 91.1% 4 13
15 500 5.2% 163 180 60 120 96.6% 90.9% 6 31
50 500 5.2% 138 242 48 160 97.1% 88.8% 11 181

100 500 5.2% 151 399 50 318 97.2% 80.1% 24 631

6 500 10.5% 236 219 91 175 94.4% 84.9% 3 7
10 500 10.5% 380 342 280 375 83.3% 69.2% 4 14
15 500 10.5% 356 340 298 338 83.8% 76.0% 7 25
50 500 10.5% 397 494 283 501 83.2% 63.0% 10 181

100 500 10.5% 345 582 214 610 86.9% 60.3% 18 623

6 500 16.4% 527 362 571 557 65.2% 52.2% 2 6
10 500 16.4% 550 396 629 647 63.9% 47.8% 4 13
15 500 16.4% 583 438 613 635 66.1% 48.8% 4 24
50 500 16.4% 626 540 697 838 59.7% 38.3% 8 119

100 500 16.4% 601 623 649 868 62.6% 39.2% 17 500

a“Eul” is EulerAlign, Clw is CLUSTALW, N is the number of sequences to be aligned, L is the average length of each sequence,
and “mutation” the mutation rate, corresponding to the similarity between sequences.

FIG. 8. An example of alignments from EulerAlign (E) and CLUSTALW (C). Total 8 sequences with average length
60 bases and » 90% identities are aligned. The visual tool used is ClustalX (Thompson et al., 1997).

6. COMPUTATIONAL COMPLEXITY

From the results shown in Tables 1 and 2, the time cost for our algorithm is modest. When N D 500
and L D 500, EulerAlign runs three minutes while CLUSTALW runs 3 » 4 hours. The time cost for
EulerAlign is » O.NL): (i) for construction and transformation of the graph, it is » O.NL/, where NL
is the total size of sequences, (ii) for � nding the heaviest path, it is » O.j 6 j NL/, because each vertex
connects at most 2 j 6 j other vertices, where j 6 j is the size of the alphabet set 6, (iii) for banded
pairwise alignment, it is » O.NL/.
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In addition, EulerAlign’s memory usage is also ef� cient, because the size of our de Bruijn graph
constructed by k-tuples is proportional to the size of input sequences, say, O.kNL/, and the memory for
banded pairwise alignment is O.L/. Consequently, the total memory usage is O.kNL/.

7. APPLICATION ON ARABIDOPSIS SEQUENCES

We have applied EulerAlign on the results of resequencing a portion of the Arabidopsis genome from
96 individuals in order to � nd polymorphism. Data is provided by Prof. M. Nordborg and his group at
USC. Each individual genome is sequenced from both the forward and the reverse complement strands,
and each letter has a quality value computed by Phred (Ewing and Green, 1998). We implement quality
values into EulerAlign by two steps: � rst, we rede� ne the weight of edges based on quality values; second,
we apply quality values in the scoring matrix of pairwise alignment.

To de� ne the weight of edges from quality values, we need to combine three types of information: edge
length, multiplicity, and quality values of all letters in the edge. Recall that the Phred score is de� ned as Q D
¡10£ log.P.® is incorrect j ® observed//, and thus a higher quality value means a more accurate base-call
of the letter. Regardless of the genetic variations, sampling sequences from N individuals is equivalent
to sequencing one individual N times. Let G denote the individual being sequenced and Si denote the
sequence obtained from the ith sequencing. If a k-tuple is called in n (> 1) sequencing processes from the
same position, the probability that the k-tuple is indeed in G should be higher than the probability computed
from one sequencing result. Based on this fact, let Te denote the k-tuple in an edge e and let T

i;j
e denote the

actual occurrence of Te in Si at position j . We rede� ne the weight function of an edge e with multiplicity n
by calculating the probability P

.n/
Te

D P .Te 2 G j Te called in n sequences from the same position in G/

(we assume all k-tuples in edge e are called from the same position in G, because our graph is an
alignment) and the mean value NPTe

D 1
M 6i;j P .T

i;j
e 2 G j T

i;j
e called/, where M is the total number of

Te called at any position in any sequence, and � nally taking the log ratio P
.n/
Te

divided by NPTe . That is,

W.e/ D log
P

.n/
Te
NPTe

. A larger weight means the k-tuples are more accurate. By assuming the independence

of letters, we calculate this log ratio for each letter in Te individually, where the quality values for each
letter from Phred can be directly applied, and then do a summing. Since each edge is constructed from
overlapping k-tuples, the overlapping parts among different edges will be counted only once; i.e., during
the heaviest path � nding process, the weight for each edge is adjusted to disregard the overlapping parts.
Following the above formulation, the heaviest path weight is the log ratio of the actual probability that
the path is correct divided by the expected probability that the path is correct, and the heaviest path will
consist of edges representing the most accurately called k-tuples. We also tried other formulations for the
weight functions of edges, such as log likelihood ratio models, and obtained similar results.

When doing pairwise alignment, instead of using an arbitrary scoring matrix, we apply the quality values
to compute an average score for aligning two letters. The quality values for each sequence are given, while
the quality values for consensus can be computed from the path, or alternatively one can deem the consensus
completely correct. The average score of aligning two letters ®, ¯ is then computed as NS®¯ D 6S®0¯ 0P®0¯ 0 ,
where ®0 and ¯ 0 are all possible letters, S® 0¯ 0 is a prede� ned score, and P® 0¯ 0 D P.®0 and ¯ 0 are true letters j
Observations/ is computed from both quality values of letter ® and ¯. Gap penalties remain arbitrary in
the current version of EulerAlign. Figure 9 shows part of the dataset At_000000072 aligned by EulerAlign.

We computed the alignments of � ve sequence sets by EulerAlign and CLUSTALW respectively. To
apply quality values in CLUSTALW, we replaced DNA letters of different qualities by different protein
alphabets. For example, the letter A of quality 40 was replaced by W, whereas A of quality 20 was replaced
by V. Then we provided CLUSTALW with a speci� c score matrix to do the alignment. This work was
done by Tina Hu in Prof. M. Nordborg’s group at USC. For the sake of consistency, we used a modi� ed
version of sum-of-pair scores to measure the alignments computed with quality values. That is, for a
match/mismatch, we computed an average match/mismatch score as described before; for an indel, the
gap penalty is inversely related to the quality value of the corresponding letter. To test the robustness of
EulerAlign, we also computed the alignments without using quality values and compared them using the
typical sum-of-pair score. Table 3 shows the results.
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FIG. 9. Part of EulerAlign’s alignment of At_000000072. The visual tool used is ClustalX (Thompson et al., 1997).

The alignments by CLUSTALW using quality values are worse than those by EulerAlign on all sequence
sets. We tested different score matrices and gap penalties but observed similar results. Since each individual
genome was sequenced from both the forward and the reverse complement strands, the asymmetric base-
calls between two strands may complicate the alignment. In addition, the quality values in each sequence
vary greatly. These observations imply the necessity to combine the forward and the reverse complement
strands into one sequence before doing alignments.

One may argue that one can simply choose the sequence with the highest average quality value as the
consensus. Doing this, in addition to its limited � exibility, gives results that are surprisingly bad compared
to using the consensus obtained from the graph, although the two consensus sequences are very similar
to each other. To test whether the result is due to the poor quality regions, we cut all sequences at both
ends to obtain a set of putative sequences that should align properly with high quality values. Although
the result is much better than that when using full length sequences, the conclusion remains unchanged.
As shown in Fig. 10, the maximal normalized multiple alignment score is 0.655 (similarity score) by using
each sequence as the consensus respectively, whereas we get 0.693 by using our graph consensus. On the

Table 3. Multiple Alignment Comparison between EulerAlign and
CLUSTALW on Arabidopsis Sequencesa

With qual Without qual

Sequences N L Eul Clw Eul Clw Time by Eul

At0072 184 751 214 216 188 194 48 sec
At0076 188 761 234 335 199 210 75 sec
Arab008 181 720 299 431 256 287 39 sec
Arab022 190 701 198 288 159 175 36 sec
Arab042 187 700 182 305 160 174 40 sec

a(Mismatch, GapOpen, GapExt) D (1, 4, 1); Eul: EulerAlign; Clw: CLUSTALW; time by
CLUSTALW: > 40 mins.
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FIG. 10. The normalized sum of pairs score obtained by directly using each sequence as consensus against average
quality value of that sequence. Each point represents a sequence. The sequence achieving the best alignment score is
not the sequence with the highest average quality value.

other hand, we have the reference sequence from the assembled genome from TIGR, which is regarded
as the correct sequence. We then draw two histograms for the similarity between each sequence to the
reference and to our consensus. The curve of the similarity score distribution to our consensus turns out
to be narrower than that to the reference (Fig. 11), which shows that our consensus is a better estimation
of the “center” than is the reference based on the given data.

8. DISCUSSION AND OPEN PROBLEMS

EulerAlign’s most signi� cant advantages are its capability to handle a large number of sequences simul-
taneously and its extraordinary speed. In addition, a consensus sequence that captures the most conserved
similarities is obtained before getting an alignment, a distinguishing feature with regard to other alignment
algorithms. EulerAlign is very � exible in that additional information can be easily incorporated into the de
Bruijn graph. For example, if input sequences have different weights, the weights can be easily incorpo-
rated into the multiplicity for edges by modifying the de� nition. If position-speci�c information is given,
besides doing position-speci�c pairwise alignment, we can also construct the de Bruijn graph according
to this information.

Although our Eulerian approach to global multiple sequence alignment has been successful, there exist
some practical problems and we will now discuss them.

Choice of k-tuple size

The choice of tuple-size k affects the quality of the consensus path, because generally one mutation in
a sequence will cause a single edge to diverge away from the common edges by .2k ¡ 1/ letters. Thus,
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FIG. 11. Distribution of similarity between each sequence to either the reference sequence (grey bar) or our consensus
(white bar). The grey bars are slightly shifted to the left for visualization purpose.

the larger k is, the fewer commonalities (or multiplicities for edges) are retained in the graph. Of course,
the smaller k is, the more likely it is that a k-tuple is not unique in the sequence.

Currently, EulerAlign arbitrarily chooses a k to construct the de Bruijn graph. For small N and distantly
related sequences, a small k .· 10/ is chosen in order to get high multiplicities for edges. For large N

and closely related sequences, a large k .¸ 16/ may be proper because a graph constructed using large k

is always simpler to solve (fewer random matches result in fewer tangles and cycles) than the one using
small k. The upper bound of k can be estimated by L.D.T.

Graph transformation may lose information

As mentioned above, sometimes the safe transformations cannot remove all cycles in the graph, and thus
several unsafe transformations may be performed in later stages to remove all remaining cycles. Unsafe
transformations inevitably cause the loss of similarity information among sequences that are represented
by multiplicities of edges. One reason that a transformation is unsafe comes from our transformation rules.
We consider only two left edges at one time, which is not suf� cient. One improvement is to consider all
left edges of a vertex simultaneously. On the other hand, since we are doing the global sequence alignment,
we can perform a banded graph construction; i.e., when merging a k-tuple to an edge, in addition to the
requirement of identical k-tuples, their corresponding positions must also be within a window. This feature
has been implemented as an option in current version of EulerAlign.

Arbitrary scoring function

In the pairwise alignment step, the scoring function is arbitrarily chosen. This is a common issue for all
alignment algorithms that use arbitrary scoring functions, because no scoring function exists that is optimal
for all types of input sequences. Consequently, how to choose the optimal scoring functions for different
data is a problem. However, because our graph itself is a representation of multiple sequence alignment,
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the drawback from an arbitrary scoring function might be solved by using data from the graph; e.g., the
existence of many sequence paths sharing a common edge in the graph provides us more con� dence to
align them together at the corresponding positions.

Our de Bruijn graph is in fact another representation of multiple alignment, in which the alignments of
letters are represented by many sequence paths sharing common edges. Since one mutation in sequences
will cause a single path to diverge from the consensus by .2k ¡ 1/ letters when using a k-tuple, a de
Bruijn graph inaccurately represents the multiple alignment. However, the graph representation has its own
advantages in searching local commonalities and showing sequence variability. In fact, the Eulerian path
approach to the local multiple alignment problem is a natural extension to its global counterpart. We will
present the local alignment algorithm in another paper.

NOTE ADDED IN PROOF

After the preparation of our paper, we became aware of a paper “Multiple sequence alignment using
partial order graphs” (Lee, C., Grasso, C., and Sharlow, M. 2002. Bioinformatics, 18, 452–464). In that
paper, a graph structure is embedded in the dynamic programming algorithm to ef� ciently align a large
number of sequences. The authors’ method successively reduces the space requirement due to the graph
structure applied. A series of pairwise alignments are employed in an arbitrary order under a certain
scoring scheme. As with any pairwise method, errors can easily accumulate during the alignment process
that results in misalignment. As a comparison, CLUSTALW requires O.N 2/ time simply to � nd a better
order to do the pairwise alignments.
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