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Whole-genome shotgun sequencing began in 1995 with the
TIGR publication of the 1.83-Mb sequence of Haemophilus influ-
enzae (Fleischmann et al. 1995). This approach has become in-
creasingly common for genomes of various sizes, and shotgun
sequencing of BAC clones is now routine. In many cases, the
genome sizes are not known precisely, and in the case of BAC
sequencing, the clone size can vary greatly.

In the process of shotgun sequence assembly, reads of
length ~600 bp are sampled randomly from a DNA clone library.
In traditional sequencing, using the sequences of those reads,
pairwise overlaps are calculated, and then read layout is deter-
mined, and finally, the consensus sequence is deduced. This
yields an estimate of the original DNA sequence. In 1988, Lander
and Waterman (Lander and Waterman 1988; Waterman 1995) de-
scribed the statistical issues of this process. They model the left
(right) ends of reads as a Poisson process, and give formulas for
the expected properties of the project. In 1995, Idury and Water-
man (Idury and Waterman 1995) proposed a new algorithm for
shotgun sequencing. By combining the shotgun sequencing data
with the algorithmic ideas from sequencing by hybridization,
their algorithm gave an entirely new approach to assembly using
¢-tuples from the reads. Later, Pevzner et al. (2001) proposed
methods for read error correction and carried on that set of ideas.

In this study, we try to solve the following problem. Assume
N reads are drawn randomly from the clone library for an un-
known DNA sequence. For simplicity, assume all reads are L base-
pairs long. Furthermore, assume the unknown coverage is at least
2%, that is,

NL

G =%

in which G is the length of the DNA. Under those assumptions,
can we estimate G? Moreover, can we tell how many families of
repeats there are in the sequence? Also, what fraction does each
family of repeats account for in the overall sequence? Here, a
family of repeats means a set of highly similar substrings occur-
ring at different locations in the sequence. Of course, the fre-
quency of similar substrings is very different for different fami-
lies, as are the lengths.

To understand the problem better, here is an example. As-
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sume 1% of the genome is composed of substrings that are re-
peated 10 times, 2% that are repeated 12 times, 7% that are
repeated 40 times, and 90% of the genome is unique sequence.
The genome is 5-Mb long. Then, can we give an approximate
estimate of those numbers given a set of reads that cover the
genome at least 2x?

In the following, we use ¢-tuples from reads for the purpose
of estimating the length and the repeat structure of the DNA
being sequenced. Moreover, we will give the consensus for each
repeat family. Our method has other applications. It can be used
to mask out the reads sampled from repeat regions of the genome
before assembling reads sampled from unique regions, even with-
out any prior information about the repeats in the genome. In
addition, by using the advanced algorithm, we can provide useful
information for assemblers. Furthermore, the advanced algo-
rithm is useful to find the biologically meaningful repeats in a
genome.

RESULTS

Assuming that the left ends of reads consist of a Poisson process,
we have shown the occurrence numbers of ¢-tuples form mixture
Poisson samples by choosing ¢ properly (see Methods section).
Using the EM algorithm (Mclachlan et al. 1997, Lange 1998) to
decompose those mixture Poisson samples, the basic algorithm
can find the coverage of the reads and the repeat structure of the
genome. Moreover, we have the advanced algorithm to find the
consensus of repeats in the genome on the basis of a set of ran-
dom reads. In the following, we will show the results on simu-
lated data first, then consider the result on 1674 real reads from
a BAC, H_NHO0140H23.

Positions of Repeats in the Sequence

To test the fact that the result of the basic algorithm has no
relation to the positions of repeats, given that reads are randomly
chosen from the genome, we generate the starting positions of
repeats in the original sequence in two ways. One is to generate
the starting positions of repeats randomly. The other is to let
repeats appear in tandem. In both cases, the algorithm gives good
results. Next, we illustrate this with two examples.

Example 1

The genome length is 100 kb, each read is 500-bp long, and the
coverage is 3. There are two families of repeats. One is 2-kb
long with 15 copies, whereas the other is 2-kb long with 7 copies
(i.e., &, = 21 and ¢, = 45). Repeats appear randomly in the original
sequence. Our result is as follows. The estimated genome length
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is 98,371 bp. The estimated coverage is 3.05X. The unique se-
quence accounts for 56.8% of the genome. There are two families
of repeats, one of which has 7 copies and accounts for 13.1% of
the sequence, whereas the other has 15 copies and accounts for
30.1% of the sequence (i.e., ¢; = 20.34 and ¢, = 43.92).

Example 2

The genome length is 100 kb, each read is 500-bp long, and the
coverage is 3X. There are two families of repeats. One is 2-kb
long with 15 copies, whereas the other is 2-kb long with 7 copies
(i.e., ¢, =21 and &, = 45). Repeats appear in tandem in the origi-
nal sequence. Our result is as follows. The estimated genome
length is 97,087 bp. The estimated coverage is 3.09 X . The unique
sequence accounts for 47.5% of the genome. There are 2 families
of repeats, one of which has 7 copies and accounts for 17.2% of
the sequence, whereas the other has 13 copies and accounts for
35.3% of the sequence (i.e., ¢; = 20.6 and ¢, = 39.24).

The above examples show that the estimates have no rela-
tion to the distribution of the positions of repeats in the original
sequence. This results from the fact that the positions of left ends
of reads are random in the sequence. No matter where the repeats
appeatr, they have the same chance to be covered by reads.

The Number of Independent ¢-Tuple Observations Has
Great Effects

In general, if we have enough reads, we always can separate two
families of substrings efficiently, no matter how similar they are.
Following are two examples, each with 3 X coverage, that chal-
lenge the method. In Example 3, we cannot distinguish the two
families of tuples very well, but in Example 4, we can. Note that
the genome size in Example 4 is 10X as long as that in Example
3. That is, we have more independent ¢-tuple observations for
the repeat families in Example 4. In fact, simulation shows that
we cannot separate the observations by the basic algorithm if half
of the observations are from Poisson variable with intensity 2 and
the other half from Poisson variable with intensity 4, even when
the number of observations is 800, and those observations are
independent with each other. However, we can do so when we
have 8000 independent observations. That is, we may not be able
to distinguish the two sequence families, of which one has two
copies and another is unique, when the coverage is 2 X and the
DNA is about 800-bp long. But, we can do so when we have
longer DNA sequence with the same percent unique and repeated
sequences.

Example 3

The genome length is 80 kb, each read is 500-bp long, and the
coverage is 3. There are two families of repeats. One is 6-kb
long with 2 copies, whereas the other is 1-kb long with 12 copies.
Repeats appear in tandem in the original sequence. In more than
95% of the simulations, we obtain the following results: The
estimated genome length is 73,104 bp; the estimated coverage is
3.283 X; the unique sequence accounts for 82.7% of the genome.
There is only one family of repeats, which has 12 copies and
accounts for 17.3% of the sequence. For the remainder of the
simulations, we may get similar fractions and copy numbers as
those in Example 4.

Example 4

The genome length is 800 kb, each read is 500-bp long, and the
coverage is 3 X. There are two families of repeats. One is 60-kb
long with 2 copies, whereas the other is 10-kb long with 12 cop-
ies. Repeats appear in tandem in the original sequence. Our result
is as follows: the estimated genome length is 782,789 bp; the
estimated coverage is 3.067 X ; the unique sequence accounts for
70.7% of the genome. There are two repeat families, one of which

has 2 copies and accounts for 14.2% of the sequence, whereas the
other has 12 copies and accounts for 15.1% of the sequence.

Another way to increase the number of independent
¢-tuples is to increase the coverage. For the sequence in Example
3, if we let coverage be 10X instead of 3 X, we obtain the fol-
lowing results: The estimated genome length is 79,289 bp; the
estimated coverage is 9.928 X; the unique sequence accounts for
57.3% of the genome. There are two repeat families, one of which
has 2 copies and accounts for 27% of the sequence, whereas the
other has 12 copies and accounts for 15.7% of the sequence. Note
that a large set of observations for the unique tuples has been
considered as those for the first repeat family. No matter how
much we increase the coverage, this will not change much, due
to the fact that the substrings from the first repeat family are
repeated only twice.

In summary, the more independent ¢-tuples there are, the
better our estimate for the coverage should be. But how can we
know whether the number of independent ¢-tuples is large
enough? In general, if we have a set of samples and we find that
the group i for i=1, 2, ..., groupNum are distributed very
sparsely, no matter what number we choose as the tuple length,
we should infer that either our samples are somehow biased or
our sample size is too small.

Different Nucleotide Distributions

Our method is based on the random locations of reads along the
sequence. In other words, the left ends of reads are uniformly
distributed along the sequence. Therefore, our result really has no
relation to the distribution of the nucleotides in the sequence.
Following are two examples in which the DNA sequence is 80 kb,
each read is 500-bp long, and the coverage is 3 X. There are two
repeat families, one is 800-bp long and has 5 copies, whereas the
other is 800-bp long and has 15 copies. In the first example,
the distribution of nucleotides is Pr(A) = Pr(G) = Pr(C) = Pr(T) =
0.25. In the second example, Pr(A) = 0.10, Pr(C) = 0.15,
Pr(G) = 0.2, Pr(T) = 0.55. The results for both examples are the
same, because the positions of the repeats are the same in the
sequence. The result is as follows: The estimated coverage is
3.004 x, the estimated length of the sequence is 79,886, and there
is an estimated 79.4% unique sequence. There are two repeat
families: One has 5 copies and accounts for 4.7% of the sequence,
the other has 16 copies and accounts for 15.9% of the sequence.

Real Experiments

In practice, there are some errors in reads. Will that restrict the
applications of the basic algorithm? Fortunately, Pevzner et al.
(2001) introduced a method to do the error correction for us;
therefore, we use the basic algorithm on the reads after error
correction.

The data is as follows: The original sequence is the consen-
sus of the insert of a BAC, H_NH0140H23, with 103,432 bp. After
error correction, we have 1674 reads that share >90% similarity
to the consensus. Actually, we have 3328 corrected reads, but we
can find only 1674 reads sharing >89% similarity to somewhere
in the consensus. We doubt that there are some reads from other
BACs. On the other hand, the consensus provided at NCBI is said
to be expected longer or shorter. Following is the summary sta-
tistics of those reads. Minimal read length is 101 bp; maximal
read length is 777 bp; mean of read length is 507 bp; median of
read length is 553 bp, and standard deviation is 148 bp.

Those 1674 reads cover the consensus ~8.27 times on aver-
age. There are 1465 reads occurring exactly in the consensus of
the BAC, and 209 reads sharing >90% similarity to some sub-
strings of the BAC.

In Table 1, numbers in the second column are the results
from using basic algorithm on 609 real reads, which are ran-
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Table 1. The Efficiency of the Basic Algorithm for the
Repeat Structure

Substring Real Simulated Count 12-mer

family reads reads with errors  REPuter
unique 66.1% 47.8% 50% 69.33%
repeated twice 16.46%  11.99% 14% 14.78%
repeated 3 times 0% 22.11% 21% 15.89%
repeated 4 times 14.25% 4.24% 4% 0
repeated 5 times 0% 4.39% 3% 0

the rest 3.19% 9.47% 8% 0

domly chosen from the 1674 real reads (see Supplemental Mate-
rial, available online at www.genome.org). For the third column,
we randomly chose 1674 positions in the consensus as the start-
ing positions of reads and make those simulated reads have the
same length distribution and the same rate of error bases, and
then calculate the numbers using the basic algorithm. (We use
12-tuples in the basic algorithm.) For the fourth column, we
counted 12-tuples in the consensus and found 50% 12-tuples are
unique, 14% occurred twice, 21% occurred three times in the
consensus. For the fifth column, we found repeat sequences by
using the REPuter (Kurtz et al. 2001).

There are many factors making the estimation on the basis
of the real reads a little bit different from others. The most critical
one is that the reads are too far away from random. Even the 609
real reads are not so random, as the Kolmogorov-Smirnov Good-
ness-of-Fit (Stevens 1986) Test gives the P-value 0.337. Moreover,
we know there are totally 10,185 bp in 12 intervals without any
read covered, the longest of which is 4757 bp, even in original
1674 real reads.

In summary, the basic algorithm can tell us the basic repeat
structure of the genome. Moreover, the estimated genome size is
103,696 bp and the estimated coverage is 2.945 X, which are close
to the corresponding real values 103,432 bp and 3.018 X, given
the fact that the reads are not uniformly distributed in the BAC.

Finding the Consensus for Repeats

The repeat structure given by the basic algorithm is the descrip-
tion of the genome by using the occurrence numbers of ¢-tuples.
Sometimes it is more biologically meaningful to show what the
repeat sequences are. In the following, we try to find the repeat
sequences from the reads in a very simple way. We use the ad-
vanced algorithm, which is based on two simple observations.

1. For a repeat family, there are at least a few ¢-tuples appearing
an unusual number of times in reads. Otherwise, the fraction
of this repeat family can be neglected, due to its low-copy
number and short length.

2. If there are no errors in the reads, we can separate reads cov-
ering different copies of a repeat family into different groups
by starting from one read and extending it when there are
more than a predefined number of reads with their prefixes
exactly the same as the suffix of the read we are considering.

After calculating the coverage from reads, we can find very
long suspect regions for repeats on the basis of observation 1, and
the second observation can help us extend the repeats from the
suspect regions and obtain different instances of each repeat fam-
ily, and thus obtain the consensus of the repeat family. After we
obtain the consensus for each repeat family, we have two ways to
estimate the copy number for each repeat family. The first is to
calculate the sum of the length of reads similar to each consensus
and then divide it by the estimated coverage. The second way
consists of two steps. First, for a given consensus, find left reads
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whose suffixes are similar to the prefix of the consensus. Simi-
larly, find the middle reads that are similar to some substring in
the middle of the consensus, and the right reads whose prefixes
are similar to the suffix of the consensus. Second, use those reads
to build a graph, in which a vertex is a read and there is a directed
edge from vertex i to vertex j; if the suffix of read i is the same as
the prefix of the read j and the overlap is larger than a statistically
given threshold, then find all paths starting from a left read and
ending at a right read.

The advanced algorithm has two advantages compared with
the Euler assembler. First, from the beginning we are focused on
some special regions that are parts of the repeats. Therefore, we
have minimized our difficulties by minimizing the size of the
problem. Second, when we consider a repeat family, there is no
need to resolve the repeat graph. We are trying to find at least
two different paths that (partially) represent two instances of the
repeat family. From those paths, we can estimate the consensus,
and then the copy number of the repeat family, by using the
coverage and then all other paths sometimes. However, the Euler
assembler must locate all four paths if there are four. Sometimes
it must fail to do this.

We tested our algorithm on simulated data first. Our simu-
lation parameters are as follows: the genome length is 80 kb, each
read is 500-bp long, and the coverage is 3 X. There are two fami-
lies of repeats. One is 700-bp long with 27 copies, whereas the
other is 300-bp long with 53 copies. In the genome sequence, any
two copies of the repeat is at least 100-bp apart. Then, we use our
advanced algorithm and obtain the following result. The esti-
mated genome length is 81,561 bp. The estimated coverage is
2.94 x. There are two repeat families, one of which is 704-bp long
with 28 copies and the other is 305-bp long with 49 copies.

Next, we use REPuter (Kurtz et al. 2001) to find repeat se-
quences and their positions in the consensus of the BAC,
H_NHO0140H23. We found the seven repeat families (see Supple-
mental Material).

Next, we use the 1674 reads directly to find the consensuses.
We can only find the seventh repeat family, as other repeat re-
gions are poorly covered or not covered at all. Note that we can
find coverage, genome length, and sometimes even repeat struc-
ture very precisely, even when there are some regions uncovered
by any read by using the basic algorithm, due to the Poisson
process property, as is shown above. However, the advanced al-
gorithm really depends on the good random locations of reads
and the good coverage of the genome. Therefore, it is still a naive
idea that may be used to provide useful information in the pro-
cess of assembly.

On the other hand, however, the advanced algorithm is so
powerful that it can be used to find the biological repeat structure
of a genome when the genome sequence is given. To our knowl-
edge, REPuter cannot find repeats in a genome by inputting
phrases such as “finding repeats sharing 90% similarity” because
of the suffix tree structure, whereas the advanced algorithm can
be implemented in this way naturally. With the genome se-
quence given, we can generate reads uniformly across the ge-
nome with some coverage, for instance, 3. Then, we can use
the advanced algorithm. Because the algorithm is based on
{-tuples, it has linear time complexity. Our preliminary test
shows that we can find more consensuses than REPuter, which
are biologically more meaningful (X. Li and M.S. Waterman, un-
publ.).

METHODS

Mixture Poisson Samples

Let us consider a given DNA sequence. If we can choose ¢, such
that almost all ¢-tuples appear only once in the sequence if they
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appear at all, then, by counting how many different ¢-tuples
there are in the reads, we can have a good estimate of the length
of the sequence. This is by assuming that the sequence is random
with letters generated independently. However, there may be
many repeats in the sequence (Primrose 1998), such that many
¢-tuples appear twice or more in it, even if ¢ is quite large. In this
case, the number of different ¢-tuples in the reads should be
much smaller than the number of nucleotides in the sequence.
However, if we know how many times each ¢-tuple is repeated,
and what fraction of the sequence it accounts for, we can esti-
mate the sequence length. That is, we may have to estimate the
repeat structure and coverage in order to estimate the sequence
length.

Note that there is a confounding between genome duplica-
tion and coverage. A 3 X coverage of a duplicated genome would,
by our methods, be estimated at 6 X coverage of half of the du-
plicated genome. But in practice this seldom occurs, and there
are some unique substrings in the genome in most cases.

Recall that we obtain the number of a tuple’s occurrence
from N reads instead of the original sequence for an ¢-tuple ap-
pearing in the sequence. Because the reads are chosen randomly
from clone libraries, their positions in the original sequence are
random, as is the number of occurrences of any ¢-tuple in the
sequence. Let us consider the distributions of those random vari-
ables first.

Here is our formulation of the problem. Assume we know
the coverage,

NL

C:E,

of the genome by those N reads. Also assume that an ¢-tuple in
the sequence cannot appear twice or more in any read, that is,
any two copies of an ¢-tuple are at least L base-pairs apart in the
original sequence. For a given ¢-tuple, for instance, w, that ap-
pears in the sequence n(w) times, how many times will it appear
in N reads?

Assume x;(w) is the number of reads that cover the i-th copy
of w, in which i is from 1 to n(w). Then, w appears x,(w)(w) times
in the reads. Please note that x;(w), i=1, ..., n(w), are i.i.d. They
are independent, due to the assumption that a read cannot cover
two adjacent copies of w. The fact that they have identical dis-
tributions follows from the homogenity of the Poisson process®.
Assume the parameter of the Poisson process is \, in which

N

N=G LAl

(Lander et al. 1988). Obviously, the distribution of x,(w) is Pois-
son with parameter A(L — ¢ + 1). Due to the additivity of Poisson
process, the distribution of x(w) is Poisson with parameter
nwWANL — €+ 1).

Unfortunately, for any given ¢-tuple w in the sequence,
what we have is not a multiset of {x,(w)|i =1, ..., n(w)}, but x(w),
the sum of the elements in the multiset. That is, there is only one
observation for w. Clearly, we cannot get good estimates for n(w)
and N\ by using only x(w). Fortunately, there may be many
¢-tuples appearing n(w) times in the sequence, for some n(w). For
example, there are many unique tuples in the original sequence,
that is, there are always many ¢-tuples for n(w) = 1. Therefore, we
can use all observations from those ¢-tuples, that appear approxi-
mately n = n(w) times in the original sequence, as samples of w.
We will refer to these tuples as those of family n. Recall that the
number of occurrences of those ¢-tuples may not be indepen-
dent, although they have the same distribution. Assume w;, w,,

SThe left end of all reads consist of a homogeneous Poisson process with
parameter ¢/L (Lander et al. 1988).

.., w,, are those ¢-tuples appearing n(w) times in the original
sequence. At first glance, it appears incorrect to use

x(wy) + ...+ x(w,,)
m

as an approximation to n(w)\(L — € + 1). But, as the length of
reads is fixed and very small compared with that of the sequence,
and any of those random variables is dependent on at most
L — € + 1 of others, we know

x(Wy) + ...+ x(w,,)
m

will approach n(W)\(L — ¢ + 1). When m is large, we can use the
former to approximate the latter.

Therefore, if we assume there are k families of tuples in the
original sequence, the number of occurrences of any tuple in the
reads from the i-th family is a Poisson random variable with
parameter a,¢, in which ¢ =A(L — € + 1) is the coverage and q; is
an unknown integer. Moreover, we assume the different tuples in
the i-th family account for o; X 100% of all different tuples in
the original sequence. Then, we can rephrase our problem in a
more mathematical way; if we have a set of samples from a mixed
Poisson distribution, and some of the samples are dependent, can
we estimate a;, o;, and ¢ fori=1, 2, ... , k?

The above problem is well known as the mixed-proportion
problem in statistics (Mclachlan et al. 1997) when the samples
are independent. For the mixed-Poisson proportion problem, it is
very easy to get the following formulas (Lange 1998):

2 n(w)Pr[w e family i|n(w)]

w

a.c =
' 2 Pr[w e family i|n(w)]
> Priw e family ijn(w)]
o= pan )
> > Priw e family jjn(w)]
j=1 w
Q

Pr(w € family ijn(w)) = P

2 aj(g)”(me(o‘i—“i)f
j=1 i

Note that there are two conditions that our problem does not
satisfy. The first is that we have no data for w with n(w) =0 in
order to use the formulas. That is, we do not know group 0 if we
assume there are group i tuples in the sequence, which appear i
times in the reads, for i = 0, ..., groupNum®. But, we can use the
following formulas to estimate group O.

k
2 (x,»efa'f
i=1
group[0] = 3

D a1 - e

i=1

groupNum

Z group(i]

The second condition not satisfied is that our samples are not
independent. Fortunately, any one of them is dependent on at
most L — ¢ + 1 others. Because the size of samples in each family
is much larger than L — € + 1 (otherwise, we are not interested in
such repeat families), we can use the above recursive formulas.
Moreover, we will use the following formulas to calculate the

6GroupNum is the maximal number of groups we used.
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length of the sequence and the percentage of each family of
substrings. The length of the sequence in our problem is calcu-
lated by the last formula below.

od;
k ’

Z a4;Q;

j=1

percentage of the tuples from the i-th family =

k groupNum
length of the sequence = >, ajo; >,  group[j];
i1 i
or

NL-¢+1)
min{ac: j=1, ..., groupNumy’

length of the sequence =

Basic Algorithm

1. Set a large number for k and a proper number for ¢;
2. Calculate group j, forj=1, 2, ..., groupNum;
3. Set an initial value for ¢, a; and «;, respectively fori=1, 2, ...,
k. Set d to be 1.
4. While (d>1 x 1073)
a. Calculate group 0;
b. Calculate the new values for ¢, a;, and «;, respectively for
i=1,2,..,k
c. Calculate d, which is the sum of the square of the dis-
tance between new ¢, a;, and «; and corresponding old

ones fori=1, 2, ..., k.
5. Calculate the percentage of each family of substrings from ¢,
a; and «; for i=1, 2, ..., k; and calculate the length of the
sequence.

How to Choose ¢ and k
As we stated above, we should let ¢ be large enough such that
many {-tuples in the original sequence are unique tuples. That is,
when the DNA is G-base pairs long, ¢ should satisfy 4° > G if the
sequence is generated from a uniform i.i.d. mechanism. If the
sequence is from a nonuniform i.i.d. mechanism, we should let
1
— >G
in which p is the probability that the most frequent nucleotide
will appear at a given position.

Table 2. The Effect of Tuple Length

On the other hand, we cannot let ¢ be too large. For in-
stance, if we let ¢ =L, then there are N tuples in all. And each
{-tuple appears once in the reads in general. Then, our estimation
of ¢ is 1. That is not what we want and is incorrect. Moreover, in
some sense, the larger that ¢ is, the fewer the number of sam-
ples, and the less accurately we can estimate ¢, a;, and «; for
i=1, 2, ...,k Therefore, ¢ must be large, but not too large.

How large should ¢ be? Let us consider a given DNA se-
quence. Assume there are n; tuples appearing i times in the se-
quence, fori=1, 2, ..., k. Recall we used

i=n1 i=np i=ng

E O}l) 2 Ong) E Olgk)
i=1 i=1 i=1

n, npyx2 7T mpxk

to approximate ¢ in the above algorithm, in which O is the
number of occurrences of the i-th tuples that appear j times in
the sequence. By summing up the above denominators and
nominators, we actually use

-1

NL-¢+1) 1-=7

G-t+1 (-1 M
==

to approximate ¢. That is, the theoretical ¢ satisfies the following
formula:

. -1
NIL-€¢+1) T L

G-L+1 7 L-71 )
G

Cc=

When L < G, our calculation is almost the same as the theo-
retical one. Because we do not know G, we prefer to use the
calculated ¢ to approximate c¢. Under such considerations, we
should let ¢ be as small as possible.

Table 2 gives an example showing how ¢ affects our estima-
tion. In this example, the original sequence is 80 kb, 55% of
which are unique ¢-tuples. There are two kinds of repeats. One is
6-kb long, repeated 4 times; the other is 1-kb long, repeated 12
times. From the above analysis, we know it is better to choose €
to be 11 or 12, and this agrees with the experimental results.

¢ G/4° & % Unique ¢, % Repeat1 GY % Repeat2 G

9 3.1e-001 3.14 49 12.17 34 38.97 17 76433
10 7.6e-002 3.03 52 12.08 31 38.65 17 79207
11 1.9e-002 3.00 53 12.07 31 38.49 16 79980
12 4.8e-003 2.99 53 12.04 31 38.36 16 80268
13 1.2e-003 2.98 53 12.02 31 38.29 16 80537
14 3.0e-004 2.97 53 11.99 31 38.22 16 80808
15 7.5e-005 2.97 53 11.97 31 38.14 16 80808
16 1.9e-005 2.96 53 11.94 31 38.06 16 81081
17 4.7e-006 2.96 53 11.91 31 37.98 16 81081
18 1.2e-006 2.96 53 11.89 31 37.90 16 81081
19 2.9e-007 2.95 53 11.86 31 37.82 16 81356
20 7.3e-008 2.95 53 11.84 31 37.74 16 81356
21 1.8e-008 2.94 53 11.81 31 37.66 16 81633
22 4.5e-009 2.94 53 11.79 31 37.58 16 81633
23 1.1e-009 2.93 53 11.76 31 37.50 16 81911
24 2.8e-010 2.93 53 11.73 31 37.42 16 81911

¢, ¢, and ¢; are estimates of the average number of occurrences (in the reads) of the first, second, and third family of tuples, respectively. Here, the
first family of tuples are unique ones. The numbers under the column named unique, repeat1, and repeat2 are the percentages of sequences that
belong to the unique part, the first repeat family, and the second repeat family, respectively.
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Moreover, from the above formula, we know that the estimations
for coverage become less accurate when ¢ increases to some de-
gree. Similar phenomena occur in column ¢, ¢,, and c;.

Next, let us look at how to choose k. At first glance, choosing
k seems difficult. However, the fact is that we only need to
choose a large number for k. Table 3 shows the result of using
different k for the above setup.

If we increase the number of families, we will get similar
results. That is, after arriving at the correct number of families,
we will divide some into subfamilies with almost the same cov-
erage. Moreover, the sum of the percentages that those subfami-
lies account for is the percentage for which the original family
accounts. Therefore, by increasing k one by one from 1 and run-
ning our algorithm for each k, we discover how many repeat
families we should choose.

Advanced Algorithm

1. Choose k and ¢ as we did in the basic algorithm;
2. Define suspect regions in each read according to the frequency
of tuples in the region and the length of the region;
3. While (there is a suspect region in any read),
a. Select the longest suspect region and collect all the reads
that contain at least one tuple in the suspect region;
b. Do an Eulerian tour by using those reads and output the
possible paths;
c. If (the number of paths is larger than 2)

(i) Choose the best path from those paths by finding the
one with maximal sum of the similarity scores of pair-
wise alignments of it and all chosen reads;

(ii) Find pairwise alignment between other paths and the
best path;
(iii) Get the multiple alignment and output the core con-
sensus;
(iv) Extend the core consensus as long as possible;
(v) Compare reads with the consensus and redefine the
suspect regions;
(vi) Compute the copy number for the current repeat;
d. Delete the current suspect regions that are similar to the
current repeats;
4. Define the unique part in each read by comparing with all
consensuses;
5. Use basic algorithm to find the coverage from the unique part;
6. Calculate the length of the genome.

Note that the alignments in the algorithm are banded align-
ments, because we know the starting position of the alignments.
Therefore, the alignments can be done in linear time. Finding
Eulerian tours is also a linear algorithm, in which we walk from
read to read on the basis of the sharing of tuples. So, the ad-
vanced algorithm is very fast.

DISCUSSION

There are many factors affecting our estimates, of which the ran-
dom locations of reads is the most important one. If they are too

Table 3. The Effect of the Number of Families

biased, we cannot achieve much. To get good estimates given a
set of samples, we prefer to use the data many times, and each
time we randomly choose a fixed fraction of samples. If the origi-
nal samples are too biased, the results will have larger variance. If
they are not biased, by summarizing those experiment results, we
can get better results.

Beside the randomness of the samples, the initial values of
our parameters have some effects. In general, we should let our
initial coverage be larger than 1x. Otherwise, the estimated
group O is so bad that it affects the following estimates, and the
coverage, in general, will converge to an incorrect value. There-
fore, our principle to set initial values is to begin with large initial
coverage. As to the initial values of the number of occurrence of
those tuples, we only need to use different numbers. In general,
if we can try different starting points for the data and get con-
sistent results, we are finished.

Although Pevzner et al. (2001) can remove many errors in
reads, there are still some errors remaining. The largest error rate
the basic algorithm can use is 0.0075. That is, if there are >7.5%
errors per nucleotide in the reads, we cannot get good estima-
tions.

Serious readers may find that we have not talked much
about the repeats that appear many times in the genome, such as
ALU in the human genome. We can use the algorithm in those
cases as well. We suggest dealing with this case as follows. First,
we use groupifori=1, 2, ..., M to estimate the coverage first, in
which M is specified in advance. For example, M is <300. Then,
we can estimate the copy numbers of tuples for frequently du-
plicated repeats by using the occurrence numbers of those tuples
and the estimated coverage.

As for the advanced algorithm, it can always help to find the
consensus for each repeat family, given that the genome or BAC
is uniformly covered. Although in practice uniform coverage is
seldom true, the advanced algorithm can give many repeat sub-
strings. Sometimes it may give portions of a consensus sequence
instead of the whole. However, all of this information will help
our assembly. First, the advanced algorithm can be used as the
repeat masker very efficiently. When we finished this work, we
noticed that RePs (Wang et al. 2002) used a naive idea of the
advanced algorithm to mask repeats. They count the occurrence
numbers of each 20-mer in the reads. If the occurrence number of
a 20-mer is larger than some threshold, they consider this 20-mer
as the one from a repeat region. By the advanced algorithm, we
can obtain the threshold in a more reasonable way. Second, the
advanced algorithm is designed to find the consensus instead of
assembling reads. It will benefit the assemblers if it is properly
implanted into them. Moreover, preliminary tests show the idea
that the advanced algorithm can be used to find the repeats in a
given genome sequence. Further efforts will be spent to imple-
ment this to get the biologically more meaningful repeats.

There is much information we have not used in our simple
setup. Our goal is to obtain as much information as possible

k é % (1) & % (2) & % (3) ¢ % (4) & % (5) G

1 4.81 100 48684
2 3.07 56 16.84 44 78175
3 2.98 53 12.02 31 38.29 16 80537
4 2.98 51 2.98 2 12.02 31 38.29 16 80537
5 2.98 51 2.98 2 12.02 23 12.02 8 38.29 16 80537

The numbers under ¢,, ¢, ¢, ¢, and ¢ are the average number of occurrences (in the reads) of the first, second, third, fourth and fifth family of
tuples, respectively. The numbers under (1), (2), (3), (4) and (5) are the percentages of ¢-tuples from the first, second, third, fourth, and fifth family
of tuples, respectively. G is the estimated genome length. In all experiments, € = 11.
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before assembly. In the near future, we hope this idea can be
incorporated into current assemblers.
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