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Haplotype Block Partition with Limited Resources and Applications
to Human Chromosome 21 Haplotype Data
Kui Zhang, Fengzhu Sun, Michael S. Waterman, and Ting Chen
Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles

Recent studies have shown that the human genome has a haplotype block structure such that it can be decomposed
into large blocks with high linkage disequilibrium (LD) and relatively limited haplotype diversity, separated by
short regions of low LD. One of the practical implications of this observation is that only a small fraction of all
the single-nucleotide polymorphisms (SNPs) (referred as “tag SNPs”) can be chosen for mapping genes responsible
for human complex diseases, which can significantly reduce genotyping effort, without much loss of power. Al-
gorithms have been developed to partition haplotypes into blocks with the minimum number of tag SNPs for an
entire chromosome. In practice, investigators may have limited resources, and only a certain number of SNPs can
be genotyped. In the present article, we first formulate this problem as finding a block partition with a fixed number
of tag SNPs that can cover the maximal percentage of the whole genome, and we then develop two dynamic
programming algorithms to solve this problem. The algorithms are sufficiently flexible to permit knowledge of
functional polymorphisms to be considered. We apply the algorithms to a data set of SNPs on human chromosome
21, combining the information of coding and noncoding regions. We study the density of SNPs in intergenic regions,
introns, and exons, and we find that the SNP density in intergenic regions is similar to that in introns and is higher
than that in exons, results that are consistent with previous studies. We also calculate the distribution of block
break points in intergenic regions, genes, exons, and coding regions and do not find any significant differences.

Introduction

The pattern of linkage disequilibrium (LD) plays a cen-
tral role in genomewide association studies to identify
genetic variation responsible for common human dis-
eases. SNP markers are preferred over microsatellite
markers for association studies because of their abun-
dance along the human genome (SNPs with minor allele
frequency 10.1 occur in ∼1 of every 600 bp) (Wang et
al. 1998), the low mutation rate, and accessibilities to
high-throughput genotyping. However, genotyping a
large number of individuals for every SNP is still too
expensive to be practical when using current technology.

The number of SNPs required for genomewide as-
sociation studies depends on the LD pattern. Recent
studies (Daly et al. 2001; Johnson et al. 2001; Patil et
al. 2001; Dawson et al. 2002; Gabriel et al. 2002) have
shown that the human genome can be partitioned into
discrete blocks of high LD separated by shorter regions
of low LD, such that only a small fraction of charac-
teristic (“tag”) SNPs are sufficient to capture most of
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haplotype structure of the human genome in each block.
The haplotype block structure with the corresponding
tag SNPs can be extremely useful for association studies
in which it is not necessary to genotype all SNPs. A
recent simulation study (Zhang et al. 2002a) indicated
that the genotyping effort could be significantly reduced
without much loss of power for association studies.

In a large-scale study of chromosome 21, Patil et al.
(2001) identified, by a rodent-human somatic cell hy-
brid technique, 20 haplotypes consisting of 24,047
SNPs (with at least 10% minor allele frequency) span-
ning 132.4 Mb. They developed a greedy algorithm to
partition the haplotypes into 4,135 haplotype blocks
with 4,563 tag SNPs on the basis of two criteria: (1) in
each block, at least 80% of the observed haplotypes are
represented more than once; and (2) the total number
of tag SNPs for distinguishing at least 80% of haplo-
types is as small as possible. For the same data, Zhang
et al. (2002b) reduced the number of blocks and tag
SNPs to 2,575 and 3,582, respectively, using a dynamic
programming algorithm. Both studies tried to minimize
the total number of tag SNPs for the entire chromosome.
However, when resources are limited, investigators may
not be able to genotype all the tag SNPs and, instead,
must restrict the number of tag SNPs used in their stud-
ies. An objective of the present article is to prioritize
SNPs and corresponding chromosomal regions for ge-
notyping in association studies with limited resources.
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We first give a mathematical formulation for this prob-
lem and then develop two dynamic programming al-
gorithms for haplotype block partitioning to maximize
the fraction of the genome covered by a fixed number
of tag SNPs.

The goal of association studies is to identify genetic
variation responsible for human complex diseases and
traits. Thus, it is necessary to know the functional SNPs.
In addition, to understand the biological implications
of haplotype block structure, we must know whether
the results, such as the SNPs at the starting points of
long blocks, are associated with biological functions. To
address these questions, we first apply our algorithms
to a data set of SNPs on human chromosome 21 (Patil
et al. 2001) to obtain the corresponding haplotype block
partitions. We then search the dbSNP database and hu-
man genome resources in the National Center for Bio-
technology Information (NCBI) database to identify
SNPs located in regions of known biological functions,
which are, specifically, genes, exons, coding regions, and
nonsynonymous SNPs. Finally, we statistically charac-
terize the relationship between the SNPs at the begin-
ning of the haplotype blocks and the SNPs in these
regions to assess the biological implications of the hap-
lotype blocks.

Methods

We first formulate the problem of haplotype block par-
titioning with limited resources, and then we provide
algorithmic solutions. We also calculate the distribution
of SNPs along coding and noncoding regions.

Haplotype Block Partitioning with Limited Resources

Assume that we are given K haplotype samples con-
sisting of consecutive SNPs: s1,s2,…,sn. For simplicity, the
SNPs are referred as 1,2,…,n. Let h1,h2,…,hK be the K
haplotype samples. Each haplotype hk,kp1,2,…,K can
be represented as an n-dimensional vector with the ith
component , 1, or 2 being the allele of the kthh (i) p 0k

haplotype at the ith SNP locus, where 0 indicates missing
data, and 1 and 2 are the two alleles.

Here, we follow the definitions of ambiguous and un-
ambiguous haplotypes and the haplotype blocks proposed
by Patil et al. (2001) and used by Zhang et al. (2002b).
To make the present article self-contained, we summarize
the definitions of “ambiguous” and “unambiguous” hap-
lotypes. Consider haplotypes defined by SNPs i and j. Two
haplotypes, k and k′, are compatible if the alleles for the
two haplotypes are the same at the loci with no miss-
ing data, that is, for any l,i�l�j, andh (l) p h (l)′k k

. A haplotype in a block is ambiguous if ith (l)h (l) ( 0′k k

is compatible with two other haplotypes that are them-

selves incompatible. For example, consider three haplo-
types , , and .h p (1,0,0,2) h p (1,1,2,0) h p (1,1,1,2)1 2 3

Haplotype h1 is compatible with haplotypes h2 and h3,
but h2 is not compatible with h3, because they differ at
the third locus. Thus, h1 is an ambiguous haplotype,
whereas h2 and h3 are unambiguous haplotypes. In the
remainder of the present article, only unambiguous hap-
lotypes will be included in the analysis. Compatible hap-
lotypes will be treated as identical haplotypes.

A segment of consecutive SNPs can form a block if
at least a percent of unambiguous haplotypes are rep-
resented more than once in the samples (Patil et al. 2001;
Zhang et al. 2002b). The tag SNPs are selected on the
basis of the measure of haplotype quality in each block.
Different measures of block quality have been used, de-
pending on the purpose of a study. For example, Patil
et al. (2001) defined the tag SNPs as the minimum subset
of SNPs that can distinguish at least a percent of the
unambiguous haplotypes. Another measure is based on
haplotype diversity (Johnson et al. 2001). We can choose
tag SNPs that minimize the number of SNPs that can
account for at least b percent of overall haplotype di-
versity. In the present article, we follow the definition of
tag SNPs used by Patil et al. (2001).

Given a and the above-mentioned criterion for defin-
ing tag SNPs, Zhang et al. (2002b) developed a dynamic
programming algorithm for haplotype block partition-
ing to find a partition with the minimum total number
of tag SNPs. For a fixed number of SNPs to be geno-
typed, we consider haplotype block partitions with some
SNPs being excluded. For a set of consecutive SNPs
(si,si�1,…,sj), we define the following functions:

● if at least aM( ) unambiguousblock(i, … ,j) p 1 a ! 1
haplotypes defined by the SNPs si,si�1,…,sj are rep-
resented more than once, where is the totalM � K
number of unambiguous haplotypes defined by the
SNPs si,si�1,…sj.

● f(i,…,j): the number of tag SNPs within the block.
Given a set of disjointed blocks, Bp{B1,B2,…,Bl} and

, where indicates that the lastB ≺ … ≺ B B ≺ B1 l 1 2

SNP of B1 is located before the first SNP of B2, (if the
last SNP of B1 and the first SNP of B2 are not con-
secutive, the interval between them is excluded from
this block partition); the total number of tag SNPs for
these blocks is defined by .I

f(B) p � f(B )iip1

● L(i,…,j): the length of the block. We simply define it
as the number of SNPs in this block, L(i, … ,j) p

. We can also define it as the actual lengthj � i � 1
of the genome spanning from the ith SNP to the
jth SNP. Given a set of disjointed blocks, B p

, the total length for these blocks is{B ,B , … ,B }1 2 l

.I
L(B) p � L(B )iip1

With a given number of tag SNPs, our goal is to find
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the haplotype block partition to maximize the total
length of the region included. We formulate the problem
as follows:

Block partition with a fixed number of tag SNPs
(FTS).— Given K haplotypes consisting of n consecutive
SNPs and an integer m, find a set of disjointed blocks

with such that L(B) isB p {B ,B , … ,B } f(B) � m1 2 1

maximized.
This problem can be converted to an equivalent,

“dual” problem as follows:
Block partition with a fixed genome coverage

(FGC).—Given a chromosome with length L, K hap-
lotypes consisting of n consecutive SNPs, and , findb � 1
a set of disjoint blocks withB p {B ,B , … ,B }1 2 l

such that f(B) is minimized.L(B) � bL
In the following, we propose a two-dimensional (2D)

dynamic programming algorithm for the FTS problem
and then a parametric dynamic programming algorithm
for the FGC problem.

A 2D Dynamic Programming Algorithm

Let S(j,k) be the maximum length of the genome that
is covered by, at most, k tag SNPs for the optimal block
partition of the first j SNPs, . Setj p 1,2, … ,n

for any and for anyS(0,k) p 0 k � 0 S(0,k) p ��
. Then,K ! 0

S(j,k) p max [S(j � 1,k)]

and

S(j,k) p max {s[i � 1,k � f(i, … ,j)] � L(i, … ,j)}

for all 1 � i � j where block(i, … ,j) p 1 .

Let be the set of disjointed blocks forB p {B , … ,B }1 J

S(j,k), such that L(B) is maximal with the constraint
. Then either the last block BJ ends before j, suchf(B) � k

that , or BJ ends exactly at j and startsS(j,k) p S(j � 1,k)
at some , such that∗ ∗ ∗i ,1 � i � j S(j,k) p S[i � 1,k �

. Using this recursion, we can design a dy-f(B)] � L(B )J
namic programming algorithm to compute S(m,n), the
maximum length of genome that is covered by m tag
SNPs. The optimal block partition B can be found by
backtracking the elements of S that contribute to S(m,n).

The space complexity for this algorithm is O(m7n).
If we have precomputed the values of block(7), f(7), and
L(7), then the time complexity of this algorithm is
O(N7m7n), where N is the number of SNPs contained in
the largest block, and generally. In fact, given aN K n
block of k SNPs (i.e., si,…,Si�k�1), the computation
time for L(7) is O(1), and the computing time for
block(i,…,i�k�1) is O(K2N), because we need to deter-

mine whether any two of the K haplotypes are compatible
at these k SNPs in the block. In total, there are, at most,
O(nN) blocks, which requires O(K2N2n) time for
computing all values of block(7). As mentioned else-
where (Zhang et al. 2002b), the problem of calculat-
ing f(i,…,i�k�1) is NP complete, which means that there
are no polynomial time algorithms computing f(7) for any
input. Theoretically, the time needed for the enumeration
method proposed elsewhere (Zhang et al. 2002b) is, at
most, O(NK), but it is much shorter in practice. Consid-
ering the computation of block(7) and f(7), the overall
time complexity becomes O( ).2 K�2K N n � Nmn

A Parametric Dynamic Programming Algorithm

For a consecutive set of SNPs i,…,j, if block(i,…,j) p
1 and if this block is included in the partition, then
f(i,…,j) equals the number of tag SNPs. If these SNPs
are excluded in the partition, the penalty for this exclu-
sion is defined as lL(i,…,j), where l is the parameter
for deletion and . l can be regarded as the penaltyl � 0
for each unit length of the excluded regions. Using this
scoring scheme, we can score a block partition by

, where B represents the included blocks,f(B) � lL(E)
and E represents the excluded SNPs. Let the scoring
function S(j,l) be the minimum score for the optimal
block partition of the first j SNPs ( ) withj p 1,2, … ,n
respect to the deletion parameter l. Let . WeS(j,l) p 0
can apply the dynamic programming algorithm to obtain
S(j,l) by the following recursion:

S(j,l) p min [S(i � 1,l) � lL(i, … ,j),1 � i � j]

and

S(j,l) p min [S(i � 1,l) � f(i, … ,j),1 � i � j]

and block(i, … ,j) p 1 .

For any given , the dynamic programming algo-l � 0
rithm that uses the above recursion can compute the
minimum score.

For any j, if there exists i* satisfying ∗1 � i � j
and , then the block∗ ∗S(j,l) p S(i � 1,l) � lL(i , … ,j)
[ ] is included in the partition. Otherwise, there∗i , … ,j
must exist i* satisfying 1�i*�j and ∗S(j,l) p S(i �

, such that the interval [ ] is ex-∗ ∗1,l) � f(i , … ,j) i , … ,j
cluded from the partition. The penalty for the excluded
intervals equals the product of and the total length of
these intervals. For any , S(n,l) equals the sum ofl � 0
the total number of tag SNPs for included blocks and
the penalty for excluded intervals. It should be noted
that the parametric dynamic programming method is a
classical computational tool in sequence alignment, in
which the parameters are the weight of matches, mis-
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matches, insertions/deletions, and gaps (Waterman et al.
1992; Gusfield et al. 1994). In the following, we use a
method similar to that used by Gusfield et al. (1994)
and Waterman et al. (1992), to study the properties of
block partitions according to the deletion parameter l.

Obviously, , since all SNPs are excludedS(n,0) p 0
from the block partition, and S(n,�) equals the minimum
number of tag SNPs for the entire genome, because all
SNPs are included in the block partition. S(n,�) can be
obtained by the dynamic programming algorithm de-
scribed elsewhere (Zhang et al. (2002b). For any fixed

, the parametric dynamic programming algorithml 1 0
can compute the optimal solution with included blocks
and excluded intervals. Let the length of the included
blocks be equal to bL. Then, the number of tag SNPs
is In fact, mustS(n,l) � l(1 � b)L. S(n,l) � l(1 � b)L
be equal to the minimum number of tag SNPs that is
necessary to include at least bL of the genome length.
Otherwise, there must exist a partition that needs only

tag SNPs to cover at least bL ofm ! S(n,l) � l(1 � b)L
the genome, and this partition can reduce the score to

, which contradicts the assump-m � l(1 � b)L ! S(n,l)
tion that is the minimum. Using ideas similar toS(n,l)
those discussed by Waterman et al. (1992), it can be
shown that has the following properties:S(n,l)

is an increasing, piecewise-linear, and convexS(n,l)
function of l. The right-most linear segment of isS(n,l)
constant. The intercept and slope for for each piece-S(n,l)
wise-linear segment are the total number of tag SNPs and
the total length of excluded intervals, respectively.

Waterman et al. (1992) proposed a method to find
for all efficiently. To make the presentS(n,l) l � 0

article self-contained, a brief description of the idea and
a brief sketch of the algorithm are given in this para-
graph and the next. Assume that, for an arbitrary li, we
obtain , where a equals the numberS(n,l ) p a � l bi i

of tag SNPs for the included blocks, and b equals
the length of the deleted intervals. Define a linear func-
tion by a and b. By definition, iss(l) p a � lb S(n,l)
minimal. Therefore, for any l�0, includ-S(l) � S(n,l)
ing li where ). Since is piecewise lin-s(l ) p (n,l S(n,l)i i

ear, the point must be located within some(l ,S(n,l ))i i

linear segment of . If is not locatedL (l) S(n,l) (l ,S(n,l ))i i i

at the end of , s(l) should be exactly the line definedL (l)i

by Li(l), because when l is ∼li, and, at thes(l) � L (l)i

same time, . Repeating this idea, we ares(l ) p L (l )i i i

able to find all such line segments for .S(n,l)
The algorithm begins with , and S(n,�), S(n,0) pS(n,0)

0, and the slope of the corresponding line L0 equals the
total length of the genome. S(n,�) equals the minimum
number of tag SNPs, and the corresponding line L� is
horizontal. Let the intersection point for L� and L0 be
(x,y). If , then L0 and L� together define theS(n,x) p 0
entire function of . Otherwise, , and theS(n,l) S(n,x) ! y
corresponding line Lx for the point intersects[x,S(n,x)]

both L0 and L�. We then divide l into two regions—[0,x]
and [x,�]—and repeat the above procedure for these two
regions separately, until all the line segments of areS(n,l)
found.

To find all the intersection points of the piecewise-
linear segments of , we need to compute forS(n,l) S(n,l)
any specific l efficiently. In the above algorithm, the
calculation of depends onmin (S(i � 1,l) � f(i, … ,j))1�i�j

the block structure of the haplotypes and is the same as
the dynamic programming algorithm (Zhang et al.
2002b). If we have precomputed the values of block(7),
f(7), and L(7), the parametric algorithm takes O(Nn2)
time, where N is the number of SNPs contained in the
largest block. However, if L(7) is an additive function,
we can improve the algorithm to O(Nn) time (Waterman
et al. 1992; Waterman 1995). Considering the compu-
tation of block(7),f(7), the total time for finding S(n,l)
is , where K is the total number of2 K�2O(K N n � NSn)
haplotype samples, and S is the number of segments in

, which is less than the total number of tag SNPs.S(n,l)
After finding all the line segments of , we knowS(n,l)

the entire function of . At each intersection pointS(n,l)
[x,S(n,x)], several block partitions with different num-
bers of tag SNPs and lengths of excluded intervals may
have the same score. We will choose the right-most one
with the maximum number of tag SNPs and the mini-
mum length of excluded intervals. For each line segment
between two intersection points, both the total number
of tag SNPs and the total length of excluded intervals
are constant along this segment, and both are equivalent
for the low intersection point between this segment and
the previous segment. We can sort the number of tag
SNPs in ascending order, according to the deletion pa-
rameters at the intersection points. The gaps between
these numbers give us information as to how the block
partition is affected by the deletion parameter l.

Results

Source of Data

We test our algorithms on a data set of human chro-
mosome 21 reported by Patil et al. (2001). The data set
includes 20 haplotypes of 24,047 SNPs (at least 10%
minor allele frequency) spanning 132.4 Mb. These SNPs
are located in four contigs. Here, we apply our al-
gorithms to the largest contig, NT_002836, which con-
tains 21,840 SNPs. We search the dbSNP database and
the human genome resources in the NCBI database to
identify SNPs in genes, introns, exons, and coding
regions and nonsynonymous SNPs. We distinguish coding
regions from exons, because not all exons are translated
into proteins. In fact, about a third of all the exons are
untranslated. We then apply the algorithms to partition



Figure 1 Results of the 2D dynamic programming for block partitioning. A, Relationship between the number of tag SNPs and the
percentage of the total number of SNPs being included. B, Relationship between the number of tag SNPs and the percentage of the actual
genomic length being included.
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Figure 2 Relationship between the deletion parameter (l) and the corresponding coverage of the total number of SNPs at the intersection
points of piecewise-linear segments of the score function S(n,l), using the parametric dynamic programming algorithm. The penalty for a set
of excluded consecutive SNPs is chosen as the product of the deletion parameter l and the number of SNPs.

the haplotypes into blocks that include all the SNPs in
coding regions.

Haplotype Blocks with Limited Resources

The parameters used in the algorithms are set as fol-
lows. The number of tag SNPs for a block, f(7), is defined
by the minimum number of SNPs that can distinguish
at least of unambiguous haplotypes, anda p 80%

when there is one haplotype with �80% fre-f(7) p 1
quency. is set as either the number of SNPs inL(i, … ,j)
included blocks or the genome length of these blocks.
Figure 1A shows the relationship between the number
of tag SNPs and the ratio of the number of SNPs in
included blocks over the total number of SNPs, using
the 2D dynamic programming algorithm. The minimum
number of tag SNPs that can cover 70%, 80%, 90%,
and 100% of all SNPs are also shown in figure 1A. A
total of 3,488 tag SNPs can cover 100% of SNPs, and
this number becomes 2,229 for coverage of 90% of SNPs
and 1,639 for coverage of 80% of SNPs. Figure 1B
shows the relationship between the number of tag SNPs
and the ratio of the length of the sequence of included
blocks over the length of the whole sequence, as well as
the minimum number of tag SNPs for covering 70%,
80%, 90%, and 100% of the genome sequence.

We also implement the parametric dynamic program-
ming algorithm and test it on the same data set. We set

L(7) to be the number of SNPs, .L(i, … ,j) p j � i � 1
Figure 2 shows the relationship between the percentages
of the total number of SNPs being included and the
deletion parameter l at the intersection points of the
piecewise-linear segments. Figure 3 shows the relation-
ship between the percentages of the total number of
SNPs being included and the number of tag SNPs re-
quired at the intersection points of the piecewise-linear
segments. When figure 3 is compared with figure 1, the
corresponding numbers of tag SNPs shown in each figure
give comparable percentages of the total number of SNPs
included. The scoring function with respect to the de-
letion parameter with the right-most segment of each
intersection point is shown in figure 4. The slopes of the
lines connecting two adjacent intersection points in fig-
ures 3 and 4 are very useful for selecting tag SNPs for
genotyping.

SNPs at Coding and Noncoding Regions

We searched the dbSNP database and the human ge-
nome resources of the NCBI database to identify SNPs
in genes, introns, exons, coding regions, and nonsynon-
ymous SNPs. We distinguish coding regions from exons
because not all exons are translated into proteins.

Instead of using the contig NT_002836, which is not
mapped in the human genome at the NCBI database, we
use the mapped contig NT_011512, which contains the
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Figure 3 Relationship between the number of tag SNPs and the corresponding percentage of the total number of SNPs being included
at the intersection points of piecewise-linear segments of the score function S(n,l), using the parametric dynamic programming algorithm. The
penalty for a set of excluded consecutive SNPs is chosen as the product of deletion parameter l and the number of SNPs.

Table 1

Numbers of SNPs in Different Regions of the Genome

TYPE OF SNPS

NO. OF SNPS IN

NT_002836a NT_011512b

Mapped 20,503 38,089
Ambiguously mapped 38 117
In genes 11,055 20,814
In introns 10,736 20,041
In exons 319 773
In coding regions 221 476
Nonsynonymous 144 278

a Patil et al. 2001.
b NCBI database.

contig NT_002836, to search the positions of the SNPs.
On July 18, 2002, the length of the contig NT_011512
was 28,512,199 bp. There are 380 mapped genes and
38,083 mapped SNPs in the contig NT_011512 in the
NCBI database. Among the 380 genes, 357 have both
exon information and coding information, and the rest
are either pseudogenes or unconfirmed genes. We there-
fore included only these 357 genes in our analysis. The
total lengths of the genes, the exons, and the coding
regions are 15,425,073, 486,409, and 315,574 bp, re-
spectively, corresponding to 54.10%, 1.71%, and 1.11%,
respectively, of contig NT_011512. Among the 21,840
SNPs used by Patil et al. (2001), 20,503 are mapped to
the dbSNP database and the human genome resources of
the NCBI database, and 38 have ambiguous map posi-
tions (at least two positions in one contig), which were
excluded from further analysis.

Table 1 shows the numbers of SNPs in genes, exons,
and coding regions, together with the number of non-
synonymous SNPs. Table 2 shows the density of SNPs
(expressed as the average number of SNPs per kilobase
and its 95% CI) in intergenic regions, genes, introns,
exons, and coding regions, based on the data of Patil.
et al. (2001). The last row gives the P values of the
observed data under the null hypothesis that SNPs are
uniformly distributed along the chromosome. Table 2
shows that the densities of SNPs in intergenic regions,
genes, introns, and coding regions are similar to the av-

erage density along the chromosome. However, the den-
sity in exons is somewhat lower than the average
( ). This observation is consistent with previousP p .1
studies on SNPs in coding and noncoding regions. The
reason for the relatively high density of SNPs in genes
is that most of the gene regions are in introns. However,
it is surprising that the density in coding regions is some-
what higher than that in exons. Figure 5 shows histo-
grams for the number of genes with different numbers
of SNPs in genes, exons, and coding regions and the
number of nonsynonymous SNPs.

We partition the haplotypes into blocks, using the dy-
namic programming algorithm (Zhang et al. 2002b),
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Figure 4 Scoring function S(n,l) with respect to the deletion parameter l. The penalty for a set of excluded consecutive SNPs is chosen
as the product of deletion parameter l and the number of SNPs.

Table 2

Densities of SNPs and Their CIs in Different Regions of the
Genome for the Contig NT_002836

DENSITY OF SNPS IN

Intergenic
Regions Genes Introns Exons

Coding
Regions

SNPs/kb .722 .717 .719 .656 .700
95% CI (.71–.73) (.71–.73) (.71–.73) (.65–.79) (.63–.81)
Pa .60 .60 .93 .10 .69

NOTE.—Contig NT_002836 is described by Patil et al. (2001).
a Calculated under the null hypothesis that the SNPs are uniformly

distributed along the chromosome.

and test whether the starting SNPs of the blocks are
evenly distributed along the chromosome. The number
of tag SNPs in each block, measured by f(7), is defined
as the minimum number of SNPs that can distinguish
at least 80% of unambiguous haplotypes. We obtain a
total of 2,182 blocks. The number of starting SNPs in
different regions is given in table 3. We assess the as-
sociation between the SNPs in the beginning of the hap-
lotype blocks and in regions with known biological func-
tions, such as exons. Differences in distribution of the
starting SNPs along the chromsome were not statistically
signficant.

To investigate the pattern of LD in the haplotype
blocks obtained above, we plot a histogram of the num-
ber of blocks with different numbers of distinct haplo-
types (fig. 6). We find that most of the blocks contain
seven or fewer distinct haplotypes; only 213 blocks
(∼10%) contain eight or more distinct haplotypes, and
1,204 (55%) contain four or fewer distinct haplotypes.
A small number of haplotypes within a block indicates
a strong LD signal.

One of the advantages of the algorithms used in the
present study is that functions of SNPs, such as whether
they are in coding or noncoding regions, can be incor-
porated into the algorithms. In an association study,
investigators may put more weight on SNPs within
coding regions than on those in noncoding regions.
One method is to add higher penalty to the SNPs in

coding regions. In the parametric dynamic program-
ming algorithm, we define the length of a set of con-
secutive SNPs as follows:i, … ,j,L(i, … ,j)

∗L(i, … ,j) p (j � i � 1 � n ) � T n ,c c

where nc is the number of SNPs in coding regions and
T is a relatively large positive number. We implemented
the parametric dynamic programming algorithm, using
this definition of L(7), to obtain the corresponding block
partitions. We set . The number of tag SNPsT p 1,000
for a block, f(7), is defined by the minimum number of
SNPs that can distinguish at of unambiguousa � 80%
haplotypes. We let if a single haplotype has af(7) p 1
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Figure 5 The histograms for the number of genes according to the number of SNPs in genes (a), the number of SNPs in exons (b), the
number of SNPs in coding regions (c), and the number of non-synonymous SNPs (d).

Table 3

The Number of Starting SNPs in Blocks and the Average
Number of Starting SNPs per Megabase in Various Regions
of the Genome

NO. OF SNPS IN

Intergenic
Regions Genes Exons

Coding
Regions

Starting SNPs 1,025 1,157 39 25
Starting SNPs/Mb 78 75 80 79
Pa .49 .49 .82 .89

a Calculated under the null hypothesis that the SNPs are
uniformly distributed along the chromosome.

frequency �80%. For example, we obtain 596 blocks
with 1,081 tag SNPs representing 14,048 SNPs when
the deletion parameter a is set at 0.140. All 221 SNPs
in the coding regions are included in this block partition.

Discussion

Several recent studies have suggested that the human
genome can be divided into blocks with high LD within
each block. Because of this feature, a relatively small
fraction of SNPs can capture most of the haplotypes in
each block. Previously, Zhang et al. (2002b) developed
a dynamic programming algorithm for haplotype block
partition to minimize the total number of tag SNPs
across the whole genome. However, in a genetic study
with limited resources, investigators may wish to ge-
notype only a fixed number of SNPs. The problem then
becomes how to choose tag SNPs and the corresponding
genomic regions to maximize the genome coverage with
the fixed number of tag SNPs. In the present article, we
formulate the problem of finding the haplotype blocks
by use of a restricted number of tag SNPs. We provide
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Figure 6 Histogram for the number of blocks according to the
number of distinct haplotypes in a block. The blocks are obtained on
the basis of a data set of human chromosome 21 from Patil et al.
2001, using the dynamic programming algorithm (Zhang et al. 2002b).
The number of tag SNPs in each block, measured by f(7), is defined
as the minimum number of SNPs that can distinguish at least 80% of
unambiguous haplotypes.

two dynamic program algorithms to solve this problem.
One of the advantages of the algorithms is that prop-
erties of SNPs, such as whether they are in coding or
noncoding regions, can be incorporated into the algo-
rithms, whereas, in an association study, investigators
may put more weight on SNPs within coding regions
than on those in noncoding regions.

As an initial step to understand the biological impli-
cations of haplotype blocks, we characterize the rela-
tionship between the starting SNPs of haplotype blocks
from the optimal block partition and the SNPs in
regions with known biological functions. We find that
the starting SNPs of haplotype blocks are evenly dis-
tributed in genes, exons, and coding regions.

We apply the algorithms for haplotype block partition
with limited resources to a contig of a data set of SNPs
on human chromosome 21. In this example, we require
that all the SNPs in coding regions be selected. The
algorithms developed in the present study are flexible
enough to allow investigators to decide the weights for
SNPs with different functions. In the present article, we
use the fraction of haplotypes represented by the tag
SNPs as a quality measure. Other quality measures, such
as haplotype diversity (Johnson et al. 2001), can be
easily incorporated into the programs. The output from
the algorithms can guide investigators to SNPs for ge-
notyping, to maximize the success of association studies.

The algorithms developed in the present article are
based on haplotype data. Although laboratory tech-
niques, such as allele-specific long-range PCR (Mich-

lataos-Beloin et al. 1996) or diploid-to-haploid conver-
sion (Douglas et al. 2001), have been used to determine
haplotypes in diploid individuals, these approaches are
technically difficult, labor intensive, and expensive.
Most of the time, it is unrealistic to do a large-scale
study across the whole genome, as was done by Patil
et al. (2001). For these reasons, multiple sets of large-
scale genotype data rather than haplotype data are being
generated. Thus, it is important to develop methods to
extract haplotype block information from genotype
data directly. The dynamic programming algorithms de-
veloped in the present study, combined with methods
for haplotype inference (e.g., Qin et al. 2002) can be
used to achieve this objective.
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