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ABSTRACT

Zinc finger genes in mammalian genomes are frequently
found to occur in clusters with cluster members appearing
in a tandem array on the chromosome. It has been
suggested that in situ gene duplication events are primarily
responsible for the evolution of such clusters. The problem
of inferring the series of duplication events responsible for
producing clustered families is different from the standard
phylogeny problem. In this paper we study this inference
problem using a graph called Duplication Model that
captures the series of duplication events while taking
into account the observed order of the genes on the
chromosome. We provide algorithms to reconstruct a
duplication model for a given data set. We use our method
to hypothesise the series of duplication events that may
have produced the ZNF45 family that appears on human
chromosome 19.

1. Introduction

Zinc finger (ZNF) genes code for proteins that contain
one or more zinc finger motifs. The zinc finger motif is
one of the most common motifs involved in nucleic acid-
protein interaction. This motif was first discovered in the
transcription factor TFIIIA in Xenopus [10]. Since then,
the database of ZNF genes has been increasing rapidly. Of
the various zinc finger motif types, the most commonly
occuring type is the C2H2 type. In fact, it is estimated
that mammalian genomes contain between 600 and 1000
genes that code for C2H2 type zinc finger proteins [6,
16]. Experimental studies on functions of these ZNF genes
suggest that many of them code for transcription factors,
and some of them are known to take part in cellular growth
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and development [5]. However, the biological functions of
most of these ZNF genes are currently unknown.

The various sequencing projects reveal an interesting
picture regarding the organization of these ZNF genes
in mammalian genomes. In mammals, ZNF genes tend
to occur as clusters (families) scattered throughout the
various chromosomes. For instance, studies [2, 15] on
human chromosome 19 (H19) indicate that there are at
least 100 ZNF genes on this chromosome; in addition, these
genes are found to occur in clusters in five major sites. One
of the most striking features of the organization of these
families is that the family members appear in a tandem
array on the chromosome.

Most studies on zinc fingers have focussed on the three
dimensional structure of fingers and on the biochemistry of
DNA recognition by zinc fingers. However, less attention
has been paid to the organization and evolution of ZNF
gene families. In this paper we undertake a study of the
evolution of ZNF gene families whose members occur in
a tandem array on the same chromosome. Evolutionary
studies can shed light on the mechanisms of evolution of
such gene families. Also, evolutionary studies in conjunc-
tion with other analyses (for instance, analysis of upstream
sequences) can yield valuable insights into the regulatory
mechanisms controlling these genes and thus provide clues
to their functions.

2. Representing evolutionary history using a
Duplication Model

We introduce the evolutionary inference problem by using
the ZNF45 gene family as an example; the organization
of the members of this family is typical of several known
zinc finger gene families. The ZNF/5 gene family is found
in the q13.2 gene cluster on H19 chromosome [16]. This
family is estimated to have between 15 and 20 members.
Each member in this family is a KRAB-ZNF gene; that
is, each member has a Kruppel-associated box (KRAB) at
the head and zinc fingers at the tail. The head is separated
from the tail by a spacer element. The KRAB is a non-
ZNF sequence that is known to take part in transcriptional
repression [9] and it is highly conserved in each member of
the family. Every zinc finger is C2H2 type and has 28
amino acids. A typical C2H2 type finger sequence is of the
form CysX2CysX3PheXsLeuX2HisX3HisX7 (with X being
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any amino acid) [16, 5]. The members of the ZNF45 family
have differing number of zinc fingers. The members are
approximately evenly spaced on the chromosome and are
arranged in a tandem array.

The organization and features of the members of the
ZNF}45 gene family suggest that the members in the family
may have been produced by a series of in situ tandem
gene duplication events [12, 16]. The duplication process
operates on a unit of one or more genes. It copies the unit
and places the copy adjacent to the original. A mechanism
for such a process could be unequal crossing-over during
meijosis or mitosis that occurs in the germ line [8]. In our
model of evolution we assume that transposition events do
not occur; that is, a gene cannot be excised and reinserted
in another region in the chromosome.

Recent work [3] notes that inferring evolutionary re-
lationships of sequences evolving through tandem duplica-
tion is different from the traditional phylogeny inference
problem as there is the additional constraint imposed by
the order of the sequences in the genome. We argue simi-
larly and introduce the notion of a Duplication Model - a
graph that can be used to capture the series of duplication
events and the evolutionary relationships while taking into
account the observed left-to-right order of the genes on the
chromosome.

A duplication model is a directed graph that has
nodes, edges, and blocks. A node represents a gene, an
edge between two nodes represents parent-child relation-
ship, and a block represents a gene duplication event. Cer-
tain edges in a duplication model are allowed to cross each
other; this is described using an edge-crossing rule. Fig-
ure 1 shows an example of a duplication model.

S1 82 83 84 8586 S7Sg S9 S10S11
Figure 1: Example of a duplication model on a
leaf set £ = {s1,s2,..,511}. The six blocks are
represented by boxes; they are By = (r),B; =
(v1),Bs = (v2,v3), Ba = (va,v5),Bs = (ve,vr),Bs =
(1)8,1)9).

There is a special node designated the root node r that
has only outgoing edges; the root represents the ancestral

gene of the genes in our data set. An edge e = (u,v)
from node u to node v indicates that w is the parent of
v. A node that has no outgoing edges is called a leaf
node. The set of leaves is denoted by £. The leaves of a
duplication model represent our data set (that is, the genes
that we observe on the chromosome). The left-to-right
order of the leaf nodes (genes) defined by the duplication
model is the same order in which these genes appear on
the chromosome; for instance, in Figure 1, the left-to-right
order is s1, $2, 83, S4, S5, S6, S7, S8, 89, S10, and S11.

Every non-root node in a duplication model has
exactly one incoming edge and every non-leaf node has
exactly two outgoing edges. A node u is an ancestor of
node v if u is on the path from r to v; in this case, v is also
said to be a descendent of u. The direction of the edges
in Figure 1 has been omitted with the understanding that
the orientation is from top to bottom, i.e. a node appears
below its ancestor in the graph.

A block consists of one or more non-leaf nodes. A
block with one node represents a single gene duplication
event and a block with at least two nodes represents a
multigene duplication event. Every non-leaf node is part
of exactly one block. No node in a block is the ancestor of
another node in the same block. The following rule applies
to the children of nodes in a block: let B = (v;,, iy, ..., Vi, )
denote a block containing genes v;,,vi,,...,v;, in left-to-
right order. Then, for each 1 < k < I < b, the duplication
event places vi’s left child to the left of v;’s left child and
vg's right child to the left of v;’s right child; this is an
alternate way of stating that a duplication event places
the copy of a block adjacent to the original.

Certain edges in a duplication model cross each other
as described by the following edge-crossing rule. Let block
B = (viy, Vi, --., U3, ) and let lc(v) and re(v) denote the left
child and right child respectively, of a node v. Then, for
every k,l, where 1 < k <1 < b, the edges (vk,rc(vr)) and
(vi, le(vy)) cross each other. No other edges in a duplication
model cross each other.

If we represent only the parent-child relations defined
by a duplication model DM, then the resulting structure
Tp is planar and can be drawn without the edges having
to cross each other. This is apparent from the definition
of nodes and edges in a duplication model. The graph
Tpwu is the rooted binary tree for the given set of genes
and is said to be the associated phylogeny for DM. Clearly,
the associated phylogeny of DM is unique. Figure 2 shows
an example of an associated phylogeny of a duplication
model. While the nodes in DM and Tpa are the same,
the key difference between Thy and DM is that Tpom
does not contain blocks and thus cannot directly explain
the duplication events that produced the genes we observe.

In summary, a duplication model captures three as-
pects of the evolutionary history of a gene family: the
ancestral relationship, the duplication history, and the or-
dering of the members on the chromosome. For the remain-
der of the paper we assume that the set £ = {s1, s2,..., Sn}
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Figure 2: The associated phylogeny of the duplica-
tion model in Figure 1.

of genes under consideration appear as si, $2, .., s, on the
chromosome; we say that a duplication model is consis-
tent with £ if the left-to-right ordering of its leaves is
81,82,...,8n.

The remainder of the paper is organized as follows. In
Section 3 we define the cost of a duplication model and
formulate the problem of inferring a duplication model of
minimum cost. We provide algorithms to solve a restricted
version of the inference problem. In Section 4 we provide
a general method to construct a duplication model and
discuss the performance of this method using simulation.
In Section 5 we address the following question: given a
phylogenetic tree T, does there exist a duplication model
DM such that its associated phylogeny Tpas is equal to T'?
In Section 6 we apply the method described in Section 4
to the ZNF45 family.

3. An inference problem

Let £ = {s1, 82, .., 8 } be a set of genes where each gene s;
is a sequence of length k, with each position (or site) in the
gene having a label from an alphabet X of size r. Thus,
each s; € Z*. Let Dist be a pairwise distance measure on
sequences in ©F that satisfies the triangle inequality.

Let DM be a duplication model consistent with L.
Further, let s(v) € ¥ denote the sequence at internal
node v in DM. The size of a block in DM is the number of
nodes in that block. We use C(DM) to denote the cost of
DM and define it as

C(DM)= > Ca(bi)+ Y Cle),

block b edge e

where Cy4(b;) denotes the duplication cost for block b of
size b; and C(e) = Dist(s(u), s(v)) for edge e = (u, v). For
instance, Dist can be the Hamming distance between the
sequences.

Our discussions motivate the following inference
problem.

Gene duplication problem -

Input : Set £ = {s1, 32, .., Sn} of genes and integer b.
Output: A duplication model DM consistent with £
having maximum block size b, and of minimum cost.

In the remainder of this section we consider the
simplest version of the gene duplication problem - the
single gene duplication problem. In this problem, the
maximum block size b = 1; alternatively, C4(1) = 0 and
Cy(b;) = oo, Vb; > 1.

3.1 Single gene duplication. The single gene duplica-
tion problem is essentially a phylogeny inference problem
but with the additional constraint that we seek a phy-
logeny whose planar representation (i.e. edges not allowed
to cross) induces the same ordering on the genes as their
ordering on the chromosome. We refer to such a tree as an
ordered tree.

An ordered tree on a set L = {s1,82,...,8,} is a
rooted tree with n leaves in which each leaf has a unique
sequence from £ and such that the left-to-right ordering
of the leaves is s1,s2, ..., Sn-

Single gene duplication problem - (Maximum
Parsimony)

Input Set £ = {si1, 82, .., 8o} of genes, where each
gene has length k.

Output: An ordered tree T (on L) in which each

internal node is labelled with a sequence of length k£ and
such that the cost of T is minimum.

‘We conjecture the single gene duplication problem to
be NP-complete. The single gene duplication problem has
been addressed in [3] and an approximation algorithm with
ratio 2 has been given. In this paper we provide a dynamic
programming framework that provides algorithms whose
quality (of solution) and running time complexity can be
controlled by choice of different sequence labels at the
internal nodes. Using this framework we provide an exact
algorithm and then an approximation algorithm with ratio
2 (this algorithm is different from the one in [3]). We
then modify this approach to provide a polynomial time
approximation scheme for the problem.

Algorithms: We describe a dynamic programming
framework for solving the single gene duplication problem.

For 1 < ¢ < j < m, we use [i,j] to denote the gene
set {si, Sidly ey Sj}, whose elements appear in consecutive
order on the chromosome. We say that an ordered tree T'
spans [i, 7] if T has leaf set {s;, sit1, .., $;} and the left-to-
right order of the leaves in T is s;, Si41, .., S;-

Consider an ordered tree T that spans [i,j]. This
tree is obtained by combining ordered subtrees T: and
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T> that span [i,m] and [m + 1, j] respectively, for some
i < m < j. Let C([i,j],s,m) denote the minimum cost
among all ordered trees T that span [z, j] and have root
labelled with s € ©*, and such that T”s left subtree spans
[¢,m] and T"s right subtree spans [m+ 1, j]. Let C([3, j], )
denote the minimum cost among all ordered trees that span
[i, 7] and have root labelled with s. Let C([¢,j]) denote
the minimum cost among all ordered trees that span [i, j].
Then, we have the following recurrence relations:

Cc(li, jl,s,m) = min [C([i,m],s*) + Dist(s,s*)] +

s*€8y
min_ [C([m + 1,5],s™") 4 Dist(s, s™™)] (3.1)
s**ESg
Cllidle) = | gmin Ol 4], s,m) (3.2)
Clid) = minCidl e (3.3)

where Dist is the pairwise distance measure on se-
quences in ¥ and 8, S, and S, are subsets of £, The dy-
namic programming algorithm works by considering each
subproblem [, j] in the order of increasing cardinality (note
that the cardinality of a subproblem [i,j] is j — ¢ + 1).
The base cases are C([¢,i],s:) = 0,V1 < ¢ < n, and
C([¢, 1], s5) = 00,8; # s;. The minimum cost ordered tree
can be recovered by keeping track of its subtrees.

The framework we discussed defines algorithms for
which the quality (of solution) and running time can be
controlled by the choice of §,81, and S2. If we set § =
81 = S» = =¥, then we are allowing all possible choices
of sequence labels. It is clear that the solution returned
by the dynamic programming algorithm is optimal. The
running time of the algorithm is computed as follows: all
pairwise distances of the sequences in ¥* can be computed
in O(r?*k), where r = |X|; there are O(n?) subproblems of
the form [¢, j] and each subproblem [¢, j] can be solved in
O(r*n). Thus the total running time is O(r?* (k 4+ n?)).

LEMMA 3.1. The single gene duplication problem can be
solved exactly in O(r**(k 4+ n®)).

We obtain a 2-approximation algorithm by combining
the dynamic programming described above with the tech-
nique of lifting [20]. Consider a rooted tree T' in which node
v is labelled with sequence s(v) € *. Lifting is a process
that replaces the sequence at a node v with a sequence of
one of the leaves in the subtree rooted at v. Lifting op-
erates in a bottom-up fashion, i.e. a node is lifted only
after all its children have been lifted. Suppose we are at
a node v (labelled with sequence s(v)) and we have al-
ready lifted its children v1 and w2, whose new sequences
are denoted by s;; and s;, respectively (where s;; € L is
in the subtree rooted at v: and s;, € L is in the subtree
rooted at vz). Then, to lift v, we replace s(v) with s;;
if Dist(s(v),si;) < Dist(s(v), si,); otherwise, we replace
s(v) with s;,.

LEMMA 3.2. Let Dist be a pairwise distance measure that

satisfies the triangle inequality. For a tree T = (V, E), let
cost of T be given by

c(T) = Z Dist(s(u), s(v))

(u,v)EE

Let T* be a most parsimonious ordered tree for the single
gene duplication problem and let T be the tree obtained
from T by the lifting process described above. Then
C(T*) < 20(T*).

The proof of the above lemma uses the results from
[20, 19]. The above lemma shows the existence of an
ordered tree T that is lifted and whose cost is at most
twice the optimal cost.

Recall our dynamic programming framework. If we
set S = [i,7], S1 = [¢i,m], and S2 = [m + 1, 5], then the
algorithm returns an ordered tree T that is lifted and has
minimum cost among all lifted ordered trees. From the
above lemma, we have C(T) < C(T*) < 20(T*). Since
lifting considers only labels from £, the total running time
is O(n?(k +n?)).

LEMMA 3.3. The single gene duplication problem has a 2-
approzimation algorithm with running time O(n*(k+n®)).

The lifting technique can be combined with local
optimization to provide a Polynomial Time Approximation
Scheme (PTAS) for the single gene duplication problem.
A PTAS is an algorithm which, for every ¢ > 0, returns
a solution whose cost is at most (1 + €) times the cost
of the optimal solution, and runs in time bounded by a
polynomial (depending on ¢) in the input size. The key
lemma for designing the PTAS is based on the results on
the problem of tree alignment with a given phylogeny [20,
19]. We leave the details of the PTAS to the full version
of the paper.

LEMMA 3.4. The single gene duplication problem has a
PTAS.

4. Window method

In this section we describe a general distance based method
for reconstructing a duplication model for a given set of
genes. This method is analogous to sequential clustering
methods like UPGMA [11, 17] and Neighbor-Joining [14].
Our method, called the Window Method, detects both
single gene and multigene duplication events.

The window method works with a list £ of genes.
Initially, list £ = (s1,82,..., 8n), that is, the list of all
the genes in the order they appear on the chromosome.
The window method operates on sublists of £ called
windows. It identifies a pair of adjacent non-overlapping
windows (of same length) that are closest to each other.
List £ is then modified by merging these two windows.
The process of identifying closest adjacent windows and
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merging them is repeated till the list £ has a single gene.
The duplication model is reconstructed by recording the
sequence of window merges. We now discuss the details.

Let £ = (a1,a2,...,ap) be the list of genes at
the start of the current iteration. A window W of
length [ is a sublist (as,a@it1,...,ai+i—1) of I consecu-
tive genes in L. Let D(Wi,W:) denote the distance
between two adjacent non-overlapping windows W; and
W> of same length I, where W1 = (a4, ait+1, -, Giti—1)
and W2 = (ai+1,ai+l+1,...,ai+21_1). Among all ad-
jacent non-overlapping windows of the same length,
the window pair (Wi, Ws2) is said to be a closest
pair if D(W1, W) is minimum. The merging step in
the window method involves identifying a closest pair
(W1,W2) and merging them to give a new window
(ai,ait1, -, @j4;_1). The list £ is then modified result-
ing in £ = (a1,82, ..., @i—1, 05, @1, ey Q15 Q205 ooy Qp)
at the end of the iteration.

Several definitions for D, the distance measure on win-
dows, are possible. Recall that Dist denotes the pairwise
distance measure between genes. We implemented the win-
dow method with the following definitions.

j=itl—1 .
=i Dist(aj,a;4+1)
l b)
where Wi = (ai,a¢+1,...,ai+l__1)_ and W, =
(@iti, @itit1, -, @i421—1). The pairwise distances be-

tween the genes in £ are updated using the following
equations:

D(Wh, W) =

Dist(ar,aq) + Dist(ar4i,aq)

2 )
where : <r <¢41—-1, and
either 1 <g<i—1lori+20<qg<p
Dist(ar,aq) + Dist(ar,aqy1)

_|_

4

Dist(ar41,aq) + Dist(ar41,aq+1)
4 b

where : <r <g<i+1—-1

Dist(al,,aq) =

Dist(ar,a,) =

The running time of the window method is O(n*).

4.1 Simulation Results. We assess the performance of
the window method using simulations. In each run of the
simulation, a duplication model and the gene sequences are
generated for the corresponding values of the parameters.
These sequences are used to compute a distance matrix
which is given as input to the window method. The
performance of the window method on the run is measured
by the ezact recovery of the original duplication model.
The parameters are k - the length of each gene sequence,
p - the mutation rate, and f - the number of generations.

The duplication model and the gene sequences are
generated as follows. A list gen; is used to keep track of all
genes at generation 7 as they appear on the chromosome.
List geni, corresponding to the first generation, has a
single gene of length k& where each position in the gene

is one of the four nucleotides A,C,T, G. Suppose gen; has
r1 genes. Then gen;11 is obtained from gen; by selecting a
random sublist (say, of length r;), duplicating this sublist
and placing the copy next to it in the list; gen;41 thus has
r1 + r2 genes, each of length k. Finally, for each gene, the
nucleotide at each site is allowed to mutate to a different
nucleotide, independently and identically, with probability
p. The gene sequences are allowed to evolve in this manner
for f generations. The duplication model is obtained by
keeping track of the gen;’s.

The above procedure was used to generate duplication
models and sequence data for p from 0.01 to 0.5 (incre-
ments of 0.05), k& from 100 to 800 (increments of 100), and
f = 6,10. For each combination of the parameter values,
200 data sets were generated. We note that f = 6 resulted
in an average of 25 genes in a data set and f = 10 resulted
in an average of 55 genes in a data set. From each data
set, the aligned gene sequences were used to create a dis-
tance matrix (using hamming distances) and the window
method was used to infer a duplication model from this dis-
tance matrix. The duplication model was compared with
the original. The performance is measured by the fraction
of runs for which the inferred duplication model is equal
to the original duplication model. Figure 3 reports two
graphs, one with fixed sequence length of 600 base pairs
(with varying mutation rates and number of generations)
and the other with fixed mutation rate of 0.05 (with vary-
ing sequence length and number of generations).

length = 600 mutation rate = 0.05

0.9

<-- 6 generations

0.8

o
3

performance
o
o

I <—- 10 generations
I

performance

04 | <—- 10 genlerations 4 !
! !
| !

\ 0.4t |

0 0.1 0.2 0.3 0.4 0.5 0 200 400 600 801
mutation rate p sequences length

Figure 3: Performance of the window method.

The graphs in Figure 3 show the effects of mutation
rate, sequence length and number of generations on the
performance of the window method. For a fixed sequence
length, the performance of the window method is good at
low and moderate ends of the mutation rate scale; however,
the performance drops off as the mutation rate increases.
Also, for a fixed mutation rate, the performance of the
window method improves with an increase in the sequence
length. The two graphs also show that the performance of
the window method degrades with increasing f. Similar
observations have been made in the context of phylogeny
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inference from simulated data [7, 18].

The simulation study reported here is a preliminary
one. Several modifications can be made to improve the
performance of the window method. These include using
an alternative distance update formula (from the one
discussed in Section 4) and using appropriate distance
correction [18] to account for the assumptions of the
evolutionary model; we used uncorrected distances in our
study. Finally, we note that in our study, performance is
measured by the ezact recovery of the original duplication
model. It is also possible to measure the partial recovery
of the original duplication model (in terms of number of
edges and blocks that are recovered); this may provide a
better insight into the performance of the window method
at high mutation rates.

5. Reconstructing a duplication model from a
phylogeny

From our discussions in Section 2 recall that every duplica-

tion model DM has a unique associated phylogeny Tpas.

In this section we consider the inverse question, namely,

given a phylogeny T', does there exist a duplication model

DM such that T =Tpm?

\:71 ":v
s1 83 82 $1 S22 83 s1 82 83

(a) (b)

Figure 4: Counter example.

Figure 4(a) shows a phylogeny T on leaf set £1 =
{s1, 82, s3} that is not the associated phylogeny of any du-
plication model. This is easily seen by considering all pos-
sible duplication models (they are shown in Figure 4(b))
that are consistent with £1; none of the duplication mod-
els have an associated tree equal to 7. Figure 4(c) shows
a phylogeny on leaf set L2 = {s1,s2, 53,54} that is not
the associated phylogeny of any duplication model. These
examples imply that given a phylogeny T, a duplication
model which has T as its associated phylogeny need not
exist.

In the remainder of this section we show that if a
duplication model DM exists for a given phylogeny T such
that T'= Tpu, then DM is unique. This is done by using
an encoding scheme that uniquely defines a duplication
model. We conclude this section by providing an algorithm
to construct the duplication model (when it exists) from a
given phylogeny.

Definitions: Let DM be a duplication model consistent
with £ = {s1, 82, ..., Sn}. As before we use lc(v) to denote
the left child of v and rc(v) to denote the right child of v.
A leaf in DM that is labelled with s; is said to have indez 3.
The height of a node v in DM is defined to be the number
of edges in the path from v to root r. The height of a block
B is defined inductively as follows: the height of the block
containing root r is 0; if H(parent(v)) denotes the height
of the block containing the parent of node v, then height of
block B = max,{H (parent(v))|v is in block B} + 1. We
use MAX_HEIGHT to denote the maximum height of
a block in DM. For instance, the heights of the blocks in
Figure 2 are as follows:

Height of By = 0, height of B, = 1, height of Bs = 2,
height of B4 = 3, height of Bs = 4, and height of Bg = 5.

Encoding of nodes in DM: We define an encoding
of DM, denoted by Enc(DM), in which each node v is
represented by a pair (L,, R,) of leaf indices; this pair
is called the LR pair of v. The LR pair is defined as
follows:1. The LR pair of a leaf with index ¢ is (3,17); 2.
The LR pair of a node v is (Ly,Ry) = (Licw), Rre(v)),
where (Lic(v), Ric(v)) and (Lyc(v), Rre(v)) are the LR pairs
of v’s left and right children respectively. We define
Enc(DM) = {(Ly, Ry)|v € DM }.

We describe a property of Enc(DM) that is useful
for our purposes. To describe this property, we introduce
the concept of a generation list genp - a list containing
nodes of a certain height in DM. A genj, list is defined
inductively, for 0 < h < MAX_HEIGHT + 1, as follows:
geno = (1); genp41 is obtained from geny, by the following
operation - every sublist (vp,, Up,, .., Up, ) in gens that cor-
responds to a block of height i is replaced with the sublist
(le(vpy ), le(py ) -+, Le(vpy ), me(Vpy ), Te(Vpy )+, TC(Upy ))-

For instance, the generation lists for the duplication
model in Figure 1 are:
geno = (1), gen1 = (v2,v1), gena = (v2, Vs, vg),
gens = (81, v4,V5,V7,V9),
geng = (317 82, 83, $4, Vs, U7, UQ);
gens = (s1, 82, 83, S4, S5, 87, Vs, Vg),
gene = (81, S2, $3, S4, S5, S6, S7, S8, S9, 810, 511)-

The proofs of the lemmas in this section will be given
in the full version of the paper.

LEMMA 5.1. Let DM be a duplication model consistent
with L = {s1,82,..,8,}. Let Enc(DM) denote the set
of LR pairs of all the nodes in DM. For any 0 < h <
(MAX_HEIGHT+1), let gen, = (viy, Vig, -..., Vi, ). Then
Ly, <Ly, <..< Ly, and Ry;; <Ry, <..<Ry;,

COROLLARY 5.1. Let DM be a duplication model consistent
with £ = {s1, 82, ..,8,}. Then

1. No two nodes in DM have the same LR pair.

2. Let v be a non-leaf node in DM. Then Ly, = Loy <
L'rc(v) and Rlc(v) <R, = R’rc(v)
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3. For a non-leaf node v with LR pair (Ly, Ry), Ly < Ry .
4. For any node v with LR pair (Ly, R,), the following is
true: L, is the smallest index of a leaf that is a descendent
of v and R, is the largest indez of a leaf that is a descendent
of v.

5. Let B = (Up;,Upy, .., Vp,) be a block in DM. Then,
Ly, <Ly, <. <Ly, <Ry, <Ry, <.<Ry,

6. Let the LR pairs for nodes v and u be (Lv,Rv) and
(Ly, Ry) respectively.

(a) Let L, = L,. Then R, < R, iff u is a descendent of

.
(b) Let R, = R,. Then L, < L, iff u is a descendent of
.

Encoding of nodes in Tpa:  Consider the associated
phylogeny Tpam of DM. Both DM and Tpa define the
same evolutionary relationships on the elements in £; that
is, both of them induce the same topology on any subset of
elements in £. Therefore, we can define a similar encoding
for nodes in Tpas. For node v € Tpum, let S, and G, denote
the smallest and largest leaf indices respectively, in the
subtree rooted at v. We define Enc(Tpm) = {(Sv, Gu)|v €
Towm } .

LEMMA 5.2. Let DM be a duplication model consistent
with L = {s1,82,..,8n} and let Tpr be the associated
phylogeny of DM. Then Enc(DM) = Enc(Tpwu).

LEMMA 5.3. Let DM; and DM, be duplication models
consistent with L = {s1,s2,...,8n}, and let Tprm, and
Tom, be their associated phylogenies respectively.  If
Enc(DMy) = Enc(DM>) then Tpa, = Tou,.

We now show that the encoding scheme Enc defined
above is unique; that is, different duplication models
cannot have the same encoding.

LEMMA 5.4. Let DM: and DM> be duplication models
consistent with L = {s1,82,...,8n}. The following state-
ment is true: Enc(DM1) = Enc(DM2) iff DMy = DM,.

Next we show that if two associated phylogenies are
equal then their corresponding duplication models are also
equal.

LEMMA 5.5. Let DMy and DM> be duplication models
consistent with £ = {s1, 82, ..., $n}. Let Tpry, and T, be
the associated phylogenies for DM and DM, respectively.
If Toym, =Tpwmy, then DMy = DMs>.

We conclude this section by providing an algorithm
for reconstructing DM from a given phylogeny T. If
DM exists then, from Lemma 5.1, the statement about
the generation list gen; will be true for every 0 < h <
(MAX_HEIGHT+1). Thus, we reconstruct DM by doing

a top-down traversal of the nodes in T'. Two minor points
have to be addressed here. We assume that |Enc(T)| is
equal to the number of nodes in T as otherwise, from
Lemma 5.2 and Part (1) of Corollary 5.1, we conclude that
the duplication model does not exist. Also, every node in
T can be preprocessed to identify its left child and right
child. If v; and v2 are the children of v, then v is v’s left
child if S, = Sy; < Sy and Gy; < Gy = Gy if for any
node, this test fails, then from Part (2) of Corollary 5.1 we
conclude that the duplication model does not exist.

The algorithm starts at the root and at each iteration
identifies blocks and replaces the nodes in the blocks with
their children in the appropriate order. This is accom-
plished by using list gen. A sublist (vi;,vi;,,, -, vi;,,) of
gen is identified as a block only if the condition in Part (5)
of Corollary 5.1 holds for this sublist and Lemma 5.1 holds
for the resulting modification of gen. If at any stage when
gen # (s1,82,..,8n) and it is not possible to identify a
block, then the algorithm terminates and outputs that the
duplication model does not exist. The correctness of the
algorithm follows from Lemma 5.1. The running time of
the algorithm is O(n?).

6. Analysis of ZNF45 family

The amino acid sequences for 16 members of the
ZNF45 family were aligned wusing the Multiple
Sequence  Alignment program  available through
the Sequence Analysis Server at Michigan Tech
(http://genome.cs.miu.edu/map/map.html). The pa-
rameters used in the alignment were the following - amino
acid substitution matrix: blosum62, gap open penalty:
30, gap extension penalty: 2. The alignment was used
to produce a matrix of pairwise distances between the
members. This distance matrix was given as input to the
window method described in Section 4. The resulting
duplication model for the 16 members of the ZNF/5
family is shown in Figure 5. This duplication model
hypothesises that the ZNF45 family has evolved mainly
through single gene duplication events.

The members of the ZNF/5 family have different
number of zinc fingers. In situ tandem duplication events,
involving zinc fingers of the same gene, are likely to have
given rise to this feature. Studies [13, 4, 5] have shown that
residues in certain key positions in a C2H2 type finger bind
to DNA. We note that the zinc fingers of the ZNF45 family
are quite diverse in the residues in these key positions.
This suggests a diversity in the DNA that the transcription
factors encoded by these genes bind to. As noted in [16],
the high degree of conservation of the KRAB domains
coupled with the diversity in the zinc fingers of the ZNF45
family members suggests that they may regulate different
genes in a similar manner during development.

It has been suggested that families like ZNF45, that
have members in a tandem array with even spacing be-
tween the members, are gene batteries that have evolved
in such a way that the family members are co-ordinately
expressed at various stages of development [16, 1]. An
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Figure 5: The duplication model for the ZNF45

family. The left-to-right order of the above genes
is the same as their ordering on the chromosome.

analysis of the upstream sequences for these genes could
shed further light on this hypothesis.

7. Conclusion

In this paper we described a graph-theoretic structure
called a duplication model to study the evolutionary
relationships of members of gene families that have
evolved through in situ gene duplication events. There
are several extensions to this work. Statistical inference
techniques (like maximum likelihood estimation) can be
incorporated to construct duplication models. Another
extension is to consider gene deletion events (which we do
not presently consider) in the evolutionary model.
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