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We develop a dynamic programming algorithm for haplotype
block partitioning to minimize the number of representative single
nucleotide polymorphisms (SNPs) required to account for most of
the common haplotypes in each block. Any measure of haplotype
quality can be used in the algorithm and of course the measure
should depend on the specific application. The dynamic program-
ming algorithm is applied to analyze the chromosome 21 haplo-
type data of Patil et al. [Patil, N., Berno, A. J., Hinds, D. A., Barrett,
W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., Lee, D. H.,
Marjoribanks, C., McDonough, D. P., et al. (2001) Science 294,
1719–1723], who searched for blocks of limited haplotype diver-
sity. Using the same criteria as in Patil et al., we identify a total of
3,582 representative SNPs and 2,575 blocks that are 21.5% and
37.7% smaller, respectively, than those identified using a greedy
algorithm of Patil et al. We also apply the dynamic programming
algorithm to the same data set based on haplotype diversity. A
total of 3,982 representative SNPs and 1,884 blocks are identified
to account for 95% of the haplotype diversity in each block.

S ingle nucleotide polymorphisms (SNPs) are promising mark-
ers for population genetic studies and for localizing genetic

variations responsible for complex diseases. They are preferred
to other genetic markers, such as microsatellites, because of their
high abundance (SNPs with minor allele frequency greater than
0.1 occur once about every 600 base pairs) (1), relatively low
mutation rate, and easy adaptability to automatic genotyping. It
is known that studies using haplotype information generally
outperform those using single-marker analysis. Thus it is impor-
tant to know the haplotype structure of the whole genome in the
populations under study. Several groups have carried out studies
of the haplotype structure in specific genes and populations (2,
3), and the results vary significantly for different regions of the
chromosomes. In an effort to identify genetic variations for
Crohn’s disease in a candidate region on human chromosome
5q31, Daly et al. (4) and Rioux et al. (5) genotyped 103 common
(�5% minor allele frequency) SNPs in an 500-kb region on 129
parents–offspring trios. Based on the data, they found that the
region can be divided into blocks (referred as haplotype blocks)
spanning from tens up to about 92 kb. There is limited diversity
within each block.

In a recent paper, Patil et al. (6) studied the global haplotype
structure on chromosome 21. There are two general classes of
methods to infer haplotype frequencies. One is based on geno-
types on large pedigrees and the other is based on statistical
methods such as the EM algorithm (7–11). Those methods deal
with genotype data on diploid copies of the chromosomes.
Uncertainties of haplotype phase are generally unavoidable for
such data. Unlike previous studies, Patil et al. (6) studied
haplotypes of haploid copies of chromosome 21 isolated in
rodent–human somatic cell hybrids, allowing the determination
of full haplotypes of those chromosomes. They also found that
the haplotypes can be divided into blocks of limited haplotype
diversity. Only a small fraction of the SNPs in a block are
sufficient to uniquely identify the common haplotypes in each
block. Those SNPs are referred as representative SNPs. The
techniques to perform the haplotype block partitioning to

minimize the total number of representative SNPs for the entire
chromosome is the topic of this paper.

One of the major objectives of Patil et al. (6) is to characterize
the common haplotypes. To define the common haplotypes in a
block, we need to first introduce the concept of ambiguous and
unambiguous haplotypes as in Patil et al. (6) when missing data
are present. Two haplotypes are said to be compatible if the
alleles are identical at all loci for which there are no missing data;
otherwise the two haplotypes are said to be incompatible. As in
Patil et al. (6), we define the ambiguous haplotypes as those
haplotypes compatible with at least two haplotypes that are
themselves incompatible. We will give a rigorous definition of
ambiguous and unambiguous haplotypes in Methods. In the rest
of the paper, we only study the unambiguous haplotypes. It
should be noted that when there are no missing data, the concept
of ambiguous and unambiguous haplotypes is not needed be-
cause in that case all of the haplotypes are unambiguous.

We define the common haplotypes as those haplotypes that
are represented more than once in a block. We are mainly
interested in the common haplotypes. Therefore we require that,
in the final block partition result, a significant fraction of the
haplotypes in each block are common haplotypes. In Patil et al.
(6), they require that at least � � 70%, 80%, and 90%,
respectively, of the unambiguous haplotypes are represented
more than once.

For each block, we want to minimize the number of SNPs that
distinguish at least � percent of the unambiguous haplotypes in
the block. Those SNPs can be thought of as a signature of the
haplotype block partition. Let f(Bi) be the minimum number of
SNPs required to uniquely distinguish at least � percent of the
unambiguous haplotypes in the ith block, Bi. � is referred to as
the coverage. The objective is to find a partition to minimize the
total number of representative SNPs required to distinguish at
least � percent of unambiguous haplotypes in each block for the
entire chromosome, ¥i�1

I f(Bi), where I is the number of blocks
in the partitioning. The number of blocks, I, is unknown before
the partitioning.

Patil et al. (6) developed a greedy algorithm to achieve this
objective. The greedy algorithm can be briefly described as
follows. They considered all potential blocks of consecutive
SNPs and selected the block that maximizes the ratio of the
number of SNPs in the block, B, with f(B), the minimum number
of SNPs required to distinguish the unambiguous haplotypes
represented more than once. The process was repeated until the
entire chromosome was covered.

Although the greedy algorithm gives an approximate solution
to the problem, it does not guarantee an optimal solution. In this
paper, we present a dynamic programming algorithm for hap-
lotype partitioning that gives an optimal solution to the problem.
In addition, we also minimize the number of blocks among all of
the block partitions with the minimum number of representa-
tive SNPs.

Abbreviation: SNP, single nucleotide polymorphism.
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For each block, we measure the block quality by a function of
the haplotypes defined by the SNPs in the block. The program
can be easily adapted to any measures of haplotype block quality.
For example, Clayton (12) defined haplotype diversity, D, in a
block. He also defined the proportion of haplotype diversity
explained by a subset of SNPs in a block. Let f*(Bi) be the
minimum number of SNPs required to explain � percent of the
haplotype diversity in the ith block. It is reasonable to partition
the chromosome into haplotype blocks such that ¥i�1

I f*(Bi) is
minimized.

Methods
In this section, we mathematically formulate the problem and
provide a dynamic programming algorithm to minimize the
number of representative SNPs. We also minimize the number
of blocks among those block partitions with the minimum
number of representative SNPs.

Assume that we are given K haplotypes and a sequence of n
consecutive SNPs. Let ri, i � 1, 2, . . . , n be a K-dimensional vector
with the kth component ri(k) � 0, 1, or 2 being the allele of the

kth haplotype at the ith SNP locus, where 0 indicates missing
data, and 1 and 2 are the two alleles.

Consider a block defined by ri, . . . , rj. Let us first define
ambiguous and unambiguous haplotypes. Two haplotypes, the
kth and k�th haplotypes, are compatible if the alleles are the same
for the two haplotypes at the loci with no missing data, that is,
rl(k) � rl(k�) for any l, i � l � j such that rl(k)rl(k�) � 0. A
haplotype in the block is ambiguous if it is compatible with two
other haplotypes that are themselves incompatible. For example,
consider three haplotypes h1 � (1, 1, 0, 2), h2 � (1, 1, 2, 0), and
h3 � (1, 1, 1, 2). Haplotype h1 is compatible with haplotypes h2

and h3, but h2 is not compatible with h3 because they differ at the
third locus. Thus, h1 is an ambiguous haplotype, whereas h2 and
h3 are not ambiguous.

Using compatibility as a criterion, we can classify the unam-
biguous haplotypes into disjoint groups. Two unambiguous
haplotypes are in the same group if they are compatible with
each other and will be treated as identical in the reminder of the
paper.

With the above definition of unambiguous haplotypes, we then
define a boolean function block(ri, . . . ,rj) � 1 if at least � percent
of the unambiguous haplotypes in the block are represented
more than once. As discussed above, the blocks in the final block
partition should satisfy this condition.

Fig. 1. The number of blocks versus the size of blocks, using 80% coverage.
(a) The number of blocks as a function of the number of SNPs in a block using
a window of two SNPs. The data points are drawn at the the center of the
window, except that the last point is the number of blocks containing at least
25 SNPs. (b) The number of blocks as the function of the genomic length of the
block, using a window of 2,000 kb. The data points are drawn at the center of
the window except that the last point is the number of blocks spanning at least
25,000 kb along the chromosome.

Fig. 2. The Q-Q plots for the uniform distribution and the positions of the
block break points for four contigs, using 80% coverage for contigs (a)
NT�002836, (b) NT�0 01035, (c) NT�00354.5, and (d) NT�002835.

Table 1. The comparison of properties of haplotype blocks defined by the dynamic programming algorithm and the greedy algorithm
of Patil et al. (6) with 80% coverage

Method
Common

SNPs�block
No. of
blocks

No. of blocks
requiring �1

SNPs

Average
size�block,

kb

Average no.
common

haplotypes�block
All

blocks, %
Common
SNPs, %

Dynamic programming �10 742 738 24.27 4.23 28.8 75.5
3–10 909 842 7.30 3.03 35.3 19.5
�3 924 274 0.73 2.12 35.9 5.0

Total 2,575 1,854 12.58 3.05 100.0 100.0
Greedy �10 589 589 23.90 3.75 14.2 56.8

3–10 1,408 1,396 8.52 2.92 34.1 30.7
�3 2,138 1,776 2.96 2.30 51.7 12.4

Total 4,135 3,761 7.83 2.72 100.0 100.0

Common SNPs are the 24,047 SNPs with minor allele frequency �0.1. Common haplotypes are the haplotypes in each block present more than once in the
sample of 20 chromosomes.
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Let f(�) be the minimum number of SNPs required to uniquely
distinguish at least � percent of the unambiguous haplotypes
within a block. Given a block partition—i.e., B1, . . . . , BI—the
total number of representative SNPs for these blocks is f(B1) �
. . . � f(BI). The optimal block partition is defined to be the one
that minimizes the total number of representative SNPs. Our
goal is to find the optimal block partition for all n SNPs.

Define Sj to be the number of representative SNPs for the
optimal block partition of the first j SNPs, r1, r2, . . . , rj and set
S0 � 0. Then, applying dynamic programming theory,

Sj � min�Si � 1 � f�ri, . . . , rj	,

if 1 � i � j and block�ri, . . . , rj	 � 1
.

Using this recursion, we can design a dynamic programming
algorithm to compute the minimum number of representative
SNPs for the optimal block partition of all of the n SNPs.

In practice, there may exist several block partitions that give
the minimum number of representative SNPs. We want to find
the partition with the minimum number of blocks. Let Cj be the
minimum number of blocks of all of the block partitions requir-
ing Sj representative SNPs in the first j SNPs and set C0 � 0.
Then, applying dynamic programming theory again,

Cj � min�Ci � 1 � 1, if 1 � i � j and

block�ri, . . . , rj	 � 1 and Sj � Si � 1 � f�ri, . . . , rj	}.

By this recursion, the minimum number of blocks in the parti-
tion, Cn, can be computed.

The above dynamic programming algorithm can easily be
adapted to other measures of block quality. Corresponding to the
haplotype diversity measure of Clayton (12), we let f(�) be the
minimum number of SNPs required to explain � percent of
the total haplotype diversity in the block. The dynamic program-
ming algorithm described above is still valid.

The problem of finding the minimum number of representa-
tive SNPs within a block to uniquely distinguish all of the
haplotypes is known as the MINIMUM TEST SET problem,
which has been proven to be NP-Complete (13). This is to say
that there is no polynomial time algorithm that guarantees one’s
finding the optimal solution for any input. However, in this
application, the minimum number of representative SNPs in a
block is generally small, so we can enumerate all of the possible
SNP combinations to find the minimum set.

Results
Haplotype Block Partition Based On Coverage. We apply our dy-
namic programming algorithm to the haplotype data for chro-

Fig. 3. The histograms for (a) the number of blocks, (b) the number of representative SNPs, (c) the size of the largest block, and (d) the number of blocks with
more than ten SNPs for the 1,000 permuted samples. � � 80%.
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mosome 21 of Patil et al. (6). The data contain 20 haplotypes and
each haplotype contains 24,047 SNPs spanning 32.4 Mb of
chromosome 21. The minor allele frequency at each marker
locus is at least 10%. Using our algorithm with the same criteria
as in Patil et al. (6) with � � 80%, a total of 3,582 representative
SNPs and a total of 2,575 blocks are required to define the
haplotype patterns. In contrast, Patil et al. (6) identified a total
of 4,563 representative SNPs and a total of 4,135 blocks to define
the haplotype structure. Our dynamic programming algorithm
reduces these numbers by 21.5% and 37.7%, respectively. The
properties of blocks are given in Table 1. For comparison, we also
give the results of Patil et al. (6) in the same table. The dynamic
programming algorithm defines a total of 742 blocks containing
more than 10 SNPs per block. The blocks with more than 10
SNPs account for 28.8% of all of the blocks. The average number
of SNPs for these blocks is 24.10. The largest block contains 128
common SNPs spanning 140 kb along the chromosome, which is
larger than the largest block (containing 114 SNPs spanning 115
kb) identified by Patil et al. (6). The number of blocks that
contain more than 10 SNPs is increased by 26.0% (from 589 to
742). The number of blocks that contain less than 3 SNPs is
reduced by 56.8% (from 2,138 to 924). On average, there are 3.05
common haplotypes per block, which is slightly larger than the
2.72 common haplotypes defined by Patil et al. (6). Fig. 1 gives
the number of blocks as a function of (a) the number of SNPs in
a block and (b) the genomic length of the block. Note that if at
least � percent of the unambiguous haplotypes in a block are the
same, no SNPs are required to distinguish them.

We statistically test whether the break points of the blocks
follow a Poisson process. If they follow a Poisson process, the
break points should be uniform samples along the region given
the number of break points. The SNPs form four contigs (Fig. 2):
(a) NT�002836, (b) NT�001035, (c) NT�003545, and (d)
NT�002835. Fig. 2 gives the Q-Q plot for the uniform distribution
on each contig and the positions of the break points. If the break
points follow a uniform distribution, the Q-Q plot should be
close to the line y � x. There does seem to be a general agreement
of the curve with the line y � x. However, we test this hypothesis
by using the two-sided Kolomogorov–Smirnov test (14) on the

four contigs. The corresponding P values for the four contigs are
0.0002, 0.7294, 10�6, and 0.0083, respectively. The nonsignificant
result for the second contig may be due to the relatively small
number of block break points (24) in this contig. In the future,
we will use r-scan statistics to identify statistically significant
regions of dense and sparse block break points.

To test whether the results for the block partition are statis-
tically significant, we generate 1,000 samples of 20 chromosomes
by permuting the unambiguous alleles at each SNP locu. We
apply the dynamic programming algorithm to each sample of 20
permuted chromosomes and record the number of representa-
tive SNPs required, the number of blocks, the size of the largest
block, and the number of blocks containing more than ten SNPs.
The histograms for these quantitates for the 1,000 simulated
samples are given in Fig. 3. The four quantities for the real
haplotype data are far out of the range of the corresponding
quantities for the 1,000 simulated samples.

We investigate the influence of coverage � in the dynamic
programming algorithm on the block patterns. We change the
coverage from 80% to 90% and 70%. When the coverage is
increased to 90%, the total number of representative SNPs
required to define these blocks increases to 7,536. The total
number of blocks increases to 3,573. The size of the largest block
decreases to 97 SNPs. When the coverage is decreased to 70%,
the total number of SNPs required to define these blocks
decreases to 1,977 and the total number of blocks decreases to
2,381 with the largest block containing 177 SNPs spanning 177
kb. The properties of the blocks for � � 90% and � � 70% are
given in Tables 2 and 3, respectively.

We compare the block break points for � � 80% with the
block break points for � � 90%. Of the block break points for
� � 80%, 48.1% (total of 1,238) are conserved for � � 90%, and
76.9% (total of 1,979) of the block break points are within a
distance of one SNP. This result means that the block structures
derived from these two criteria are comparable to each other.

Haplotype Block Partition Based On Haplotype Diversity. To show
that the dynamic programming algorithm can be easily adapted
to other measures of haplotype quality in a block, we apply our

Table 2. The properties of haplotype blocks defined by the dynamic programming algorithm
with 90% coverage

Common
SNPs�block

No. of
block

No. of blocks
requiring �1

SNPs

Average
size�block,

kb

Average no.
common

haplotypes�block
All

blocks, %
Common
SNPs, %

�10 669 668 17.41 4.45 18.7 52.9
3–10 1,724 1,722 6.28 3.51 48.3 40.0
�3 1,180 1,127 0.84 2.23 33.0 7.1
Total 3,573 3,517 9.07 3.27 100.0 100.0

Common SNPs are the 24,047 SNPs with minor allele frequency � 0.1. Common haplotypes are the haplotypes
in each block present more than once in the sample of 20 chromosomes.

Table 3. The properties of haplotype blocks defined by the dynamic programming algorithm
with 70% coverage

Common
SNPs�block

No. of
block

No. of blocks
requiring �1

SNPs

Average
size�block,

kb

Average no.
common

haplotypes�block
All

blocks, %
Common
SNPs, %

�10 650 617 30.78 3.93 27.3 79.3
3–10 703 440 7.47 2.81 29.5 14.6
�3 1,028 117 0.60 2.17 43.2 6.1
Total 2,381 1,174 13.61 2.84 100.0 100.0

Common SNPs are the 24,047 SNPs with minor allele frequency �0.1. Common haplotypes are the haplotypes
in each block present more than once in the sample of 20 chromosomes.
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dynamic programming algorithm to define a set of blocks with
the minimum total number of SNPs required to explain 95% of
haplotype diversity in each block as developed by Clayton (12).
It is worth noting that the criteria used in Patil et al. (6) and
Clayton (12) are related. For the same set of haplotypes, if a
subset of SNPs can distinguish all of the different types of
haplotypes in a block, the proportion of diversity explained by
the subset of SNPs is 100%. The properties of blocks defined
based on haplotype diversity are given in Table 4. As above, we
require that at least 80% of the unambiguous haplotypes are
represented more than once in each block. A total of 3,982 SNPs
and a total of 1,884 blocks are required to explain 95% of the
haplotype diversity in each block. The largest block contains 124
SNPs spanning 125 kb along chromosome 21. More than 10 SNPs
are found in 42.7% of the blocks, and together they cover 78.6%
of all of the SNPs in the study. Only 15.6% of the blocks contain
less than three SNPs and together they cover only 1.6% of the
SNPs. Comparing the block break points by using this criterion
with those based on coverage for � � 80%, 64.6% (total of 1,218)
of the block break points based on haplotype diversity are
conserved and 83.4% (total of 1,571) are within a distance of
one SNP.

We generate 1,000 samples of 20 chromosomes by permuta-
tion as above and apply the criterion for haplotype diversity
to the randomized samples. The results are similar to the re-
sults based on coverage (data not shown) and are statistically
significant.

Discussion
We develop a dynamic programming algorithm for haplotype
block partitioning with the minimum number of representative
SNPs required to account for most of the haplotype block quality
in each block. The algorithm can be used for any measures of
block quality. The measure should depend on the purpose of a

specific application. Using the same criteria as in Patil et al. (6),
the dynamic programming algorithm reduces the numbers of
representative SNPs and the number of blocks by 21.5% and
37.7%, respectively, for the haplotype data on chromosome 21.
The results for the block partition are highly statistically signif-
icant. As indicated in Patil et al. (6), knowing the haplotype
structure is extremely important for whole-genome association
studies. In association studies, we compare the haplotype fre-
quencies in unrelated cases to those in the controls. Instead of
genotyping all of the SNP markers, one may wish to use only the
genotype information on the representative SNPs. Only about
14.9% (3,582) of all of the SNPs (24,047) can account for 80%
of the common haplotypes in each block. Thus, studying the
representative SNPs can dramatically reduce the time and effort
for genotyping, without losing much haplotype information.
Haplotype diversity is widely used in population genetics studies.
We also partition chromosome 21 into haplotype blocks based on
haplotype diversity. Of all of the SNPs (24,047), 16.6% (3,982)
can account for 95% of the haplotype diversity in each block. As
in Patil et al. (6), we partition the chromosome into blocks based
on the genetic information without referring to the biological
basis for generating such blocks. Thus, blocks may not have
definite boundaries and caution should be used when inferring
the biological meaning of the break points.
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supported by National Institutes of Health Grant DK53392, National
Science Foundation Information Technology Research Grant EIA-
0112934, and the University of Southern California.
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Table 4. The properties of haplotype blocks defined by the dynamic programming algorithm
with 80% coverage and 95% proportion of diversity

Common SNPs�
block

No. of
blocks

Average size�
block, kb

Average no. common
haplotypes�block

All blocks,
%

Common
SNPs, %

�10 804 24.60 4.48 42.7 78.6
3–10 786 8.88 3.49 41.7 19.8
�3 294 0.85 2.15 15.6 1.6
Total 1,884 17.20 3.70 100.0 100.0

Common SNPs are the 24,047 SNPs with minor allele frequency � 0.1. Common haplotypes are the haplotypes
in each block present more than once in the sample of 20 chromosomes.
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