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Abstract

Optical mapping is a new technique to generate restriction maps of DNA easily and
quickly. DNA restriction maps can be aligned by comparing corresponding restriction
fragment lengths. To relate, organize, and analyse these maps it is necessary to rapidly
compare maps. The issue of the statistical significance of approximately matching maps
then becomes central, as in BLAST with sequence scoring. In this paper, we study the
approximation to the distribution of counts of matched regions of specified length when
comparing two DNA restriction maps. Distributional results are given to enable us to
compute p-values and hence to determine whether or not the two restriction maps are
related. The key tool used is the Chen–Stein method of Poisson approximation. Certain
open problems are described.
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1. Introduction

Before a genome is sequenced, restriction maps of the genome are often obtained. Restriction
maps are examples of physical maps. The restriction map of the DNA sequence of an organism
is a very useful tool for DNA sequencing and other genome studies. Restriction maps are
aligned for many reasons including: constructing longer restriction maps by overlapping short
maps, finding evolutionary relationships and, given genome restriction maps, locating smaller
pieces of DNA in that genome. The basis of restriction map alignment is that, if two DNA
sequences are identical, their restriction maps using the same set of enzymes are expected to
be almost identical, which means they should have the same number of restriction sites and
each ordered pair of restriction fragments should have almost the same length (‘almost’ is due
to the experiment error in measuring the lengths of restriction fragments, detailed explanation
for different kinds of error sources are described in Tang (2000a).

In 1987, Kohara et al. constructed an eight-enzyme restriction map of the entire genome
of Escherichia coli. One key step in their strategy of construction is that they searched for
overlapping pairs of clones by matching the clones’eight-enzyme restriction maps. Overlapping
clones are detected when they match at more than 5 consecutive fragments. Lander and
Waterman (1988) presented a mathematical analysis for physical mapping by fingerprinting
random clones, and also evaluated different types of fingerprinting schemes. Their paper
contains simplified calculations for the probability that random clones will be declared an
overlap.
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Waterman et al. (1984) first modelled the map alignment problem to study the evolution
between homologous genes from closely related organisms. The goal is to align the maps,
which is the so-called global alignment problem. An algorithm was provided to compute an
optimal alignment of two maps. The algorithm allows for site indels as well as differences in
distance between sites. Later, Waterman and Raymond (1987), in a study of geological strata
matching, made a modification to the algorithm that handles one type of the restriction map
data errors from experiments: closely spaced sites of the same enzyme are merged as a single
site. Huang and Waterman (1992) extended the previous map comparison model to handle
another type of data error: closely spaced sites for different enzymes are ordered incorrectly,
and that gave a dynamic algorithm program. Rudd et al. (1990) used restriction map alignment
software to align DNA sequence, genetic, and physical maps of E. coli to form an integrated
genomic map, after which the integrated genomic map of E. coli was used to refine the genetic
map and to locate newly sequenced or mapped genes. The restriction map alignment software
considers restriction maps as strings analogous to DNA or protein sequences, except that two
values, enzyme name and DNA base address, are associated with each position on the string.

A new technique to generate restriction maps of DNA, optical mapping, has been developed
by David Schwartz et al. (1993). A single DNA molecule is stretched out and fixed to a surface.
A restriction enzyme is added to cut the DNA sequence, and the cut sites are visualized as
gaps and the lengths of fragments are estimated by an optical method (the DNA molecules are
coated with a fluorochrome and imaged). Optical mapping can generate restriction maps easily
and quickly. Schwartz et al. (1993) applied optical mapping to Saccharomyces cerevisiae,
and Lin et al. (1999) obtained the whole-genome restriction map of Deinococcus radiodurans.
Potentially, this method can rapidly produce restriction maps of megabases of DNA, possibly
of genomes. To relate, organize, and analyse these maps it will be necessary to rapidly compare
maps. Anantharaman et al. (1997) provided the first detailed model of the data produced
by the optical mapping process. They formulated a statistical algorithm for the problem of
producing optical maps and implemented the algorithm. Statistical issues of the significance of
approximately matched maps then become central as they do in BLAST with sequence scoring.

The global matching of two random restriction maps has been studied in Tang (2000b). The
probability that two random restriction maps match is very small. Looking at two restriction
maps, there might be two segments of consecutive restriction fragments on the two restriction
maps, respectively, that do match. A pair of segments of matched fragments is referred to
as a matching region in this paper. The number of fragments in the matching region, which
is called length of the matching region, varies from 1 to some large value. Obviously, the
larger the length, the less chance such a matching region occurs at random. If there exists
a matching region of a specified length, there might be a significant similarity between the
two restriction maps. But how large should the length be to detect the significant similarity?
Karlin et al. (1983) outlined such a study for nucleic acid and protein sequences. Later on, this
statistical significance problem has been studied widely for DNA sequences (see Arratia et al.
(1990), Karlin et al. (1990), Karlin and Altschul (1990), Waterman and Vingron (1994), and
C. Neuhauser (1994)). Here we will study this problem for restriction maps. There is much
similarity with DNA or protein sequence matching, but enough differences to challenge us. As
with sequence matching, maps present their own set of difficulties.

We consider single-enzyme DNA restriction maps with the model as follows. The occur-
rences of cut sites along a DNA sequence is a Poisson process with rate λ, where λ is determined
by the specific pattern of the cut site. Hence, the fragment lengths are i.i.d., each fragment length
following an exponential distribution with density function λe−λx, x ≥ 0.
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We consider two fragments equal if their lengths differ by no more than a constant σ (which
is usually small compared to λ−1) and the probability of this event is denoted as p, which is
later computed from the exponential distribution. We will study two types of matching regions
here. One is a matching region with all the consecutive pairs matched in the region. We are
interested in the longest matching region between two random restriction maps. Since base
mutations and deletions occur in the evolution of DNA sequences, to enable us to reveal the
relationship between DNA sequences even after these changes, we will study another model
of matching regions by allowing a few mismatches in a matching region. The main goal is
to find an approximation to the distribution of counts of matching regions of specified length.
From those distributional results, we can compute the tail probability for a matching region of
specified length or greater, and hence test whether or not the two restriction maps are related.

The outline of the paper is as follows. In Section 2, we give an introduction to the key
tool used in the paper: the Chen–Stein method. We approximate the distribution of the counts
of matching regions of specified length in Section 3, where only matched fragment pairs are
allowed in matching regions. Also, we test the results using simulations. In Section 4, we
extend the approximation for matching regions to allow a few mismatches. Finally, we discuss
an unsolved problem in Section 5, which we term the merge-matching problem, similar to the
indel-problem of sequence alignment.

2. The Chen–Stein Method of Poisson approximation

The basic method employed in this paper is the Chen–Stein method, which is a method used
to approximate the distribution of occurrences of dependent events by the Poisson distribution.
A brief introduction is given in this section. The method is based on the work by Stein (1972)
and was developed by Chen (1975). It was generalized to a multivariate context by Arratia et
al. (1989), and below, we will state a version of the Chen–Stein method following their paper.

Let I be an arbitrary index set, and for i ∈ I , Xi is an indicator function to indicate whether
or not some event occurs. The total number of occurrences of events is

W =
∑
i∈I

Xi.

The set of events {Xi}i∈I could be dependent. The Chen–Stein method is a general approach to
approximate the distribution of W by a Poisson distribution Z via bounding the total variation
distance between W and Z. Let h : Z

+ → R, where Z
+ = {0, 1, 2, . . . }, and write ‖h‖ =

supk≥0 |h(k)|. The total variation distance between W and Z is denoted by

‖W − Z‖ = sup
‖h‖=1

|Eh(W)− Eh(Z)| = 2 sup
A⊂Z+

|P(W ∈ A)− P(Z ∈ A)|.

Before we state the theorem, we present more notation used in the approximation. Let Ji
be an index set such that j /∈ Ji ifXj is independent ofXi . The approximation is related to the
first and second moments of {Xi}i∈I , b1 and b2, which are defined as

b1 =
∑
i∈I

∑
j∈Ji

E(Xi)E(Xj ),

and
b2 =

∑
i∈I

∑
i �=j∈Ji

E(XiXj ).
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Theorem 2.1. LetW be the number of occurrences of dependent events, and letZ be a Poisson
random variable with E(Z) = E(W) = λ. Then

‖W − Z‖ ≤ 2(b1 + b2)
1 − e−λ

λ
≤ 2(b1 + b2),

and in particular

|P(W = 0)− e−λ| ≤ (b1 + b2)
1 − e−λ

λ
.

This theorem is a process version of the Poisson approximation which is useful when
we have to use the entire process of indicators {Xi}i∈I . If b1 and b2 are small, then W
will be approximately Poisson distributed with rate E(W). Thus, to establish the Poisson
approximation, we should check that the quantities b1 and b2 are small.

3. Matching region with matched fragment pairs

As in the global matching problem, a restriction map is represented as a string of capital
letters with indices, such asA1A2 . . . An. EachAi denotes the length of the ith fragment in the
restriction map in a fixed orientation and n is the total number of fragments in the restriction
map (on maps with several enzymes, the cut site can also carry the identity of the enzyme as
well). A pair of fragments Ai and Aj are matched if their lengths differ by no more than a
small constant σ ; matching is denoted by Ai =∇ Aj in this paper. A matching region between
two restriction maps consists of two series of contiguous restriction fragments from each of the
two restriction maps that have the same number of fragments and in which each corresponding
fragment pair matches (see Figure 1). The number of fragment pairs in the matching region is
defined to be the length of the matching region. When two restriction maps are aligned locally,
we are interested in the matching region with the maximum length observed between the two
restriction maps. If a matching region of length greater than or equal to some test value t is
observed, can we conclude that there is a high similarity or relation between the two sequences?
To answer the question, we wish to know the p-value of such an observation.

As is often used for the studies of restriction maps, the occurrences of cut sites along a DNA
sequence is assumed to be a Poisson process of rate λ, which is used to denote the cutting
rate along DNA sequence. Therefore, the length of a restriction fragment has an exponential
distribution with mean 1/λ. The value of λ depends on the cut site pattern and the distribution
of nucleotides in the DNA sequences.

3.1. Main results

Let A = A1A2 . . . An and B = B1B2 . . . Bm denote two restriction maps from the same
enzyme of length n andm respectively. We wish to find the local similarities between A and B;
that is, we are interested in finding the matching regions of specified length between A and B.

Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8

Figure 1: Example of a matching region {A2 =∇ B2, A3 =∇ B3, A4 =∇ B4, A5 =∇ B5} starting at
(2, 2). The length of the matching region is 4.
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A matching region between A and B can start at any index pair (i, j) for 1 ≤ i ≤ n and
1 ≤ j ≤ m. For a test value t , we define the index set I to be {(i, j) : 1 ≤ i ≤ n− t + 1, 1 ≤
j ≤ m− t + 1}. For any index pair ν = (i, j) ∈ I , it is possible to observe a matching region
of length t starting at ν, which is {Ai+k =∇ Bj+k : k = 0, 1, . . . , t − 1}.

To state our results, we need a few more definitions. We define Yν to be an indicator function
to denote the occurrence of the matching region of length t starting at ν = (i, j), that is,

Yν = 1{Ai+k=∇Bj+k :k=0,1,...,t−1}.

Thus, Yν = 1 denotes the occurrence of a matching region of length t starting at ν. The
probability of observing such an occurrence can be easily calculated by the following argument.
The probability that Ai+k =∇ Bj+k , for k = 0, 1, . . . , t − 1, is

P(Yν = 1) =
t−1∏
k=0

P(Ai+k =∇ Bj+k) = pt ,

since A1, . . . , An and B1, . . . , Bm have i.i.d. exponential distributions. Here, p = 1 − e−λσ
is the probability of two random restriction fragments matching, and is computed later in
Lemma 3.2. When the fragment pair immediately before the matching region matches, matching
regions occur in clumps. To de-clump, we define Xν to be the indicator function for the start
of a new clump of matching region. Hence,

Xν = Yν, if i = 1 or j = 1,

otherwise
Xν = 1{Ai−1 �=Bj−1,Ai+k=∇Bj+k :k=0,1,...,t−1}.

Therefore, it is easy to show that

P(Xν = 1) =
{
pt , i = 1 or j = 1,

(1 − p)pt , otherwise.

Let W(t) = ∑
ν∈I Xν denote the number of occurrences of de-clumped matching regions

and Sn,m denote the length of the longest matching region between A and B. We will prove
the following theorem, where we set

λn,m(t) = [(n+m− 2t + 1)+ (n− t)(m− t)(1 − p)]pt

and define
n ∨m = max{n,m}.

Theorem 3.1. Let A and B be two random restriction maps of length n andm respectively, as
defined above, andW(t) be the number of de-clumped matching regions of length t between A

and B. Then
E(W(t)) = λn,m(t).

Let b1 and b2 be as in Section 2. Then

|P(W(t) = 0)− e−λn,m(t)| ≤ b1 + b2

≤ 2λn,m(t)(2t − 1)(n ∨m)pt
+ nm(2(2t − 1)(n ∨m)p(3/2+3c)t + (2t − 1)2p(1+2c)t ),
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since
b1 ≤ 2λn,m(t)(2t − 1)(n ∨m)pt

and
b2 ≤ nm(2(2t − 1)(n ∨m)p(3/2+3c)t + (2t − 1)2p(1+2c)t ).

The expected value of W(t) can easily be derived as follows. Since

E(W(t)) =
∑
ν∈I

E(Xν) =
∑
ν∈I

P(Xν = 1),

and there are (n− t + 1)+ (m− t + 1)− 1 distinct starting indices in I with i = 1 or j = 1
and (n− t)(m− t) distinct starting indices in I with i > 1 and j > 1. The proof for the second
result in Theorem 3.1 is the main goal in the next subsection.

From this theorem, we can derive a corollary to enable us to compute the tail probability of
Sn,m approximately. Before we start our study of approximating the tail probability of Sn,m,
we present an asymptotic result. Arratia and Waterman (1985) proved for sequence matching
that

lim
n,m→∞

Sn,m

log1/p((1 − p)nm)
= 1, with probability 1

when n = m. By the same argument, they obtain the same result even if n �= m, when the
growth rate of n and m satisfies certain conditions.

The second result of Theorem 3.1 can be formulated under some conditions about the relative
growth rate of n, m and t . Suppose that the growth rate of n and m follows

log(n)

log(nm)
→ ρ > 0.

Then t can be scaled appropriately with n and m so that λn,m(t) stays bounded away from 0
and ∞. Actually, from the asymptotic property of Sn,m, setting t = log1/p((1−p)nm)+ s will
keep λn,m(t) between 0 and ∞. We will be more specific on how to choose the relative growth
rate at the end of Subsection 3.2. Using this growth rate, we will approximate the distribution
of W(t) by a Poisson distribution that has the same expected value as W(t) and then derive
the probability of W(t) = 0 when n,m, t → ∞. Thus, we obtain the following corollary of
Theorem 3.1.

Corollary 3.1. Under the conditions on the relative growth rate of n,m and t described above,
there exists constants C, γ > 0, such that

|P(Sn,m < t)− e−λn,m(t)| = |P(W(t) = 0)− e−λn,m(t)| ≤ C(log nm)−γ .

3.2. Approximate distribution for W(t)

To establish the Poisson estimate for W(t), we use the Chen–Stein method as introduced in
Section 2. The first and second moments of W(t) should be well behaved to achieve our goal.
Therefore, we need find bounds for b1 and b2 in the method and show their convergence to 0 as
n, m → ∞. As in Theorem 2.1, for a given Xν , where ν ∈ I , let Jν denote the set of potential
dependence, i.e.

Jν = {µ = (i′, j ′) ∈ I : |i − i′| ≤ t or |j − j ′| ≤ t}.
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j + t

j − t

n

m

D2

i + ti − t

D2

D2

D2D1

Figure 2: The four arms are D2, the central part is D1.

Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6

Figure 3: Solid lines and dashed lines represent two dependent matching regions of length 5, Y(1,1) and
Y(4,2), respectively. The two matching regions separate all the involved fragments to two 2-components
and two 5-components. They are {A1 =∇ B1}, {A8 =∇ B6}, {A2 =∇ B2, B2 =∇ A4, A4 =∇ B4,

B4 =∇ A6} and {A3 =∇ B3, B3 =∇ A5, A5 =∇ B5, B5 =∇ A7}.

If µ ∈ Jν , the two matching regions starting at µ and ν share common restriction fragments,
and so Xν and Xµ can be dependent; otherwise, if µ /∈ Jν , the two matching regions share no
common fragments, and so Xν and Xµ are independent.

The estimation of b1 is easily found to be

b1 =
∑
ν∈I

∑
µ∈Jν

E(Xν)E(Xµ) ≤
∑
ν∈I

E(Xν)(2t + 1)(n+m)pt

≤
∑
ν∈I

E(Xν)2(2t + 1)(n ∨m)pt = 2λn,m(t)(2t + 1)(n ∨m)pt .

The estimation of the upper bound of b2 is not as straightforward as the estimation of b1. We
notice that Jν consists of a horizontal and a vertical strip. We divide Jν into two disjoint subsets
(see Figure 2). Let

D1 = {γ = (i′, j ′) ∈ I : |i − i′| ≤ t and |j − j ′| ≤ t}
be the intersection of the two strips and D2 = Jν −D1.

We estimate b2 by computing upper bounds for E(XνXµ) for µ ∈ Di, i = 1, 2, separately.
Since Xν ≤ Yν , an upper bound for E(YνYµ) is also an upper bound for E(XνXµ). Here we
only study the bound for E(XνXµ) when iν − iµ �= jν − jµ, since Xν = Xµ = 0 when
iν − iµ = jν − jµ by our definition of de-clumping. In the following figures, we represent
a fragment as a node and a solid or dashed line connecting two matched fragments. All the
fragments involved in the two matching regions are separated into independent connected
components (see Figure 3). We define the size of a component as the number of fragments
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A1 A2 A3 A4 A5 A6 A7

B8B1 B2 B3 B4 B5 B6

Map 1

Map 2
B7

Figure 4: Full connected matching regions.

(nodes) involved in the component; an r-component is a component of size r . The distinct
components do not share any common fragments, so they are independent. The probability
that Yν = Yµ = 1 can be written as the product of the probabilities of the occurrence of those
independent components.

The following lemma about the components defined by two matching regions will be useful
in estimating the upper bound for b2. It is the same result as in sequence matching, but we
include the proof for completeness.

Lemma 3.1. Let Yν , Yµ be variables defined for matching regions as above, that is, µ ∈ Jν ,
and iν − iµ �= jν − jµ. All the fragments involved in the two matching regions are separated
into independent connected components. Let xr , r = 2, . . . , 2t + 1, denote the number of
r-components, then

2t+1∑
r=2

xr(2(r − 1)) = 4t.

Proof. It is obvious that the size of a component is at least 2; the largest component formed
from two matching regions of length t is that where all the fragments in the two matching
regions are connected to one component (see Figure 4) and the size is 2t + 1.

We count the number of fragments involved as follows. If a fragment appears in one matching
region, it is counted once; if it appears in both matching regions, it is counted twice. Since
there are 2t fragments in each matching region, there is a total of 4t fragments. For each
r-component, the middle r − 2 fragments appear in both matching regions and are counted
twice; the two end fragments appear in only one matching region and are counted once. So
an r-component contains 2 + 2(r − 2) = 2(r − 1) counted fragments. Summing over all the
components, we obtain

2t−1∑
r=2

xr(2(r − 1)) = 4t.

Let pr denote the following probability,

pr = P(A1 =∇ A2 and A2 =∇ A3 and . . . Ar−1 =∇ Ar),

where Ai, i = 1, . . . , r , are i.i.d. and exponentially distributed with density function λe−λx .
We use pr in the calculation of E(YνYµ), but it is difficult to compute. Since we only need to
estimate the upper bound of E(YνYµ), we give the following two lemmas for a similar purpose
to that of Lemma 11.5 in Waterman (1995). The proof of the two lemmas are given in the
appendices.

Lemma 3.2. Let p3 denote the probability of observing a 3-component, then p3 = p3/2+3c,
for a constant 0 < c < 1

6 .
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B7

Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6

A8 A10

Figure 5: There are y = 4 2-components and x = 3 3-components. The length of matching region is 5,
and 4x + 2y = 20 = 4t .

Using Lemma 3.2, pr can be bounded through p for any r ≥ 2.

Lemma 3.3. For any r ≥ 2, there is

pr ≤ p(1/2+c)(r−1),

where c is as in Lemma 3.2.

Now, we consider the upper bound for b2. First, we will consider µ ∈ D2 (see Figure 2). In
this case, there are only 2-components and 3-components (see Figure 5), since no two matched
fragments in the matching region starting at ν are involved in the matching region starting at µ
and vice versa.

Let x denote the number of 3-components and y denote the number of 2-components; then
4x+ 2y = 4t . Since 3c < 1

2 , we have 3c− 1
2 < 0 and (3c− 1

2 )x > (3c− 1
2 )t for x ≤ t . Thus,

E(YνYµ) = pypx3 = p2t−2x(p3/2+3c)x = p2t+(3c−1/2)x

≤ p2t+(3c−1/2)t = p(3/2+3c)t , for µ ∈ D2.

Next, we consider µ ∈ D1. In this case, the size of component varies from 2 to 2t −
1. If xr denotes the number of r-components formed from the two matching regions, then∑2t−1
r=2 xr(2(r − 1)) = 4t . We write

E(YνYµ) = px2p
x3
3 · · ·px2t−1

2t−1 ≤
2t−1∏
r=2

(p(1/2+c)(r−1))xr

= p(1/2+c)∑2t−1
r=2 (r−1)xr = p(1/2+c)2t = p(1+2c)t , for µ ∈ D1.

The inequality is due to Lemma 3.2, pr ≤ p(1/2+c)(r−1), for r ≥ 2.
We have bounded E(YνYµ) for µ in D1 and D2 separately. From the definition of D1, we

know that |D1| = (2t + 1)2 and |D2| = (2t + 1)(n + m). To obtain the bound for b2 we
combine the above results:

b2 =
∑
ν

∑
ν �=µ∈Jν

E(XνXµ) ≤
∑
ν

∑
ν �=µ∈Jν

E(YνYµ)

=
∑
ν

(∑
D2

+
∑
D1

)
E(YνYµ)

≤ nm((2t + 1)(n+m)p(3/2+3c)t + (2t + 1)2p(1+2c)t )

≤ nm(2(2t + 1)(n ∨m)p(3/2+3c)t + (2t + 1)2p(1+2c)t ).
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Combining with the bound for b1, we obtain

b1 + b2 ≤ 2λ(2t + 1)(n ∨m)pt + nm(2(2t + 1)(n ∨m)p(3/2+3c)t + (2t + 1)2p(1+2c)t ).

We have proved Theorem 3.1. To derive Corollary 3.1, we need to show the bound for
b1 + b2 goes to zero as n, m, t → ∞ under the relative growth rate of n and m

log(n)

log(nm)
→ ρ > 0 and

log(m)

log(nm)
→ 1 − ρ > 0,

and make a choice of t such that λn,m(t) ∈ (0,∞). The expected value of W(t) has already
been calculated and is denoted by λn,m(t). Obviously,

λn,m(t) ≈∞ nmpt ,

where ≈∞ means the asymptotic equality of the logarithms of the two quantities, that is,

Q1 ≈∞ Q2

implies that
log(Q1)

log(Q2)
→ 1, as n,m → ∞,

where Q1 and Q2 are two quantities depending on n and m. From the asymptotic equality
between Q1 and Q2, it is easy to derive that Q1 → 0 as Q2 → 0 for n,m → ∞ and vice
versa.

If ρ ≥ 1
2 , then (n ∨m) ≈∞ n ≈∞ (nm)ρ , and thus

b1 ≈∞ 2λn,m(t)(2t + 1)(n ∨m)pt
≈∞ λn,m(t)(2t + 1)(nm)ρpt

≈∞ λ2
n,m(t)(2t + 1)(nm)ρ−1,

and

b2 ≈∞ (2t + 1)(nm)1+ρp(3/2+3c)t + (2t + 1)2(nm)p(1+2c)t

≈∞ λ
(3/2+3c)
n,m (t)(2t + 1)(nm)ρ−(1/2)−3c + λ(1+2c)

n,m (t)(2t + 1)2(nm)−2c.

To ensure that these bounds go to 0, the following conditions should be satisfied:

ρ − 1 < 0, ρ − 1
2 − 3c < 0, and − 2c < 0.

The first and third inequalities are satisfied automatically, so ρ should assume values to satisfy
the second inequality, and we obtain ρ < 1

2 + 3c. When ρ ≤ 1
2 , (n ∨ m) ≈∞ m ≈∞

(nm)1−ρ , and repeat the above argument, to obtain ρ > 1
2 − 3c. From the analysis, if we let

ρ ∈ ( 1
2 − 3c, 1

2 + 3c), and t be chosen so that λn,m(t) is bounded away from 0 and ∞, then
b1 + b2 → 0 when n, m, t → ∞. We conclude that W(t) is approximately distributed as a
Poisson random variable with mean λn,m(t). Since

|P(W(t) = 0)− e−λn,m(t)| ≤ (b1 + b2)
1 − e−λn,m(t)

λn,m
(t) ≤ b1 + b2,
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Figure 6: Comparison of λ600,600(t), the expected number of W(t), of our calculated formula and
simulation results with 2 standard deviation.

and letting t = log1/p(nm) + s, s > 0, to keep λn,m ∈ (0,∞), there exists some constants
C > 0 and γ > 0 such that

b1 + b2 ≤ C(log nm)−γ ,
under the relative growth rate of n, m and t as discussed in the above asymptotic study.
Therefore,

|P(W(t) = 0)− e−λn,m(t)| ≤ C(log nm)−γ .
Finally, we wish to find the p-value of Sn,m given a test value t . If W(t) = 0, then there

is no matching region of length t between A and B, which implies that there is no matching
region of length greater than or equal to t between the two restriction maps, that is, Sn,m < t ;
on the other hand, Sn,m < t implies that there is no matching region of length t between A and
B, and thus W(t) = 0. We conclude that the p-value of Sn,m is the same as 1 − P(W(t) = 0),
so

|P(Sn,m < t)− e−λn,m(t)| =≤ C(log nm)−γ .
3.3. Testing the model

In the previous subsection, we showed that W(t) is approximately Poisson distributed.
We will do tests simulating restriction map matching to show how well the distribution is
approximated. Our simulation tests λn,m(t) and the distribution of W(t) compared with the
Poisson distribution.

We use n = m = 600, σ = 200 and λ = 1/1024 (corresponding to a 5-letter cutter). In
our simulation, 5000 pairs of random restriction maps are compared. For each comparison, we
count the number of de-clumped matching regions of some specified length t , where t assumes
values 8, 9, 10, 11 and 12 separately. The average number of de-clumped matching regions of
length t for the 5000 comparisons is computed and compared with the values from our formula
for λn,m(t). From Figure 6, we see that λn,m(t) agrees with the simulation results very well,
which is due to the fact that λn,m(t) is the exact analytical expected value of W(t) under our
assumptions.
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Figure 7: Poisson approximation for the distribution of W(t), for t = 7, 8, 9, 10. Here, * denotes the
empirical distribution ofW(t) from our simulation. The vertical bar denotes the Poisson distribution with

mean value λ600,600(t).

To test the distribution ofW(t), we collect the lengths of matching regions for many (5000)
matchings of restriction maps of length n = m = 600. Then, for a given t , we count the
number of compared restriction map pairs with maximum matching regions of length over
t . In general, for larger t the Poisson approximation is better. To show how well W(t) is
approximated by the Poisson distribution, we compare the empirical distribution of W(t) with
the Poisson distribution Z with the same expected value λn,m(t). From Figure 7, we see that
the larger t is, the better the empirical distribution is approximated by Poisson.

4. Matching regions with a few mismatches

In the evolution of DNA sequences, when deletions occur (here we refer to large segment
deletions, which reduce the length of a restriction fragment), the restriction map of the DNA
sequence with deletions is quite different from the restriction map of the original DNA sequence.
If the deletion occurs within a restriction fragment, i.e. between two adjacent cut sites, then the
lengths of the two restriction fragments in the two DNA sequences do not match (see Figure 8).
In this case, even if the two DNA sequences are highly related, it might not be reported since
the deletion shortens the length of matching region between the two restriction maps.

4.1. The expected counts of matching regions

To be able to reveal highly related restriction maps even if there are large segment deletions
within single restriction fragments, we allow a few mismatches in a matching region. Instead
of the model of exact matching, in which all fragment pairs in a matching region are matched,
we study the model of imperfect match, in which we consider a long run of matches of length
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Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6

A9 A10

B7 B8 B9 B10

Figure 8: The occurrence of a segment deletion in map 1 causes A6 not to match B6.

Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7

Figure 9: Example of a matching region of length 4 with 1 mismatch.

t except for k mismatches, i.e.

{Ai+r =∇ Bj+r : r = 0, . . . , t − 1, except for k mismatches},
as a matching region of length t (see Figure 9), and it is called a matching region of type (t; k),
where k < t . Also, we call the t consecutive fragment pairs a window of size t starting at (i, j).
For a fixed k, we wish to find the longest window with no more than k mismatches. Let Skn,m
denote the maximum length of a window between A and B including at most k mismatches.
We wish to find the distribution of Skn,m in order to estimate the p-value. We study the problem
for fixed t first.

When looking at a window of size t , the more matching pairs we observe the higher the
similarity is. We begin by finding the probability of observing k mismatches in a window of
size t . As usual, I = {(i, j) : 1 ≤ i ≤ n− t + 1, 1 ≤ j ≤ m− t + 1} denotes the index set.
To begin with, we consider fixed t and k, and refer to matching regions without mentioning
type (t; k). We give some definitions below that are used in the proof. Let Yν be the indicator
function for indicating the occurrence of a matching region starting at ν ∈ I . (Remember that
Yν actually depends on k in this section. For simplicity, we ignore k in all the notations.) Since
we allow k mismatches in a matching region, there are many possible matchings starting at ν
of the same type. Let Y ν1 , Y ν2 , . . . , Y νKν be indicator functions of all possible matchings starting
at ν ∈ I ; then

Yν = 1{Y ν1 =1 or Y ν2 =1 or ... or Y νKν=1}
= 1{Ai+r=∇Bj+r :r=0,...,t−1 except for k mismatches},

where Kν is the number of all possible distinct matchings starting at ν. Clearly,

Kν =
(
t

k

)
≤ tk,

which is a constant for all ν ∈ I .
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Map 1

Map 2
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B1 B2 B3 B4 B5 B6

Figure 10: Two highly correlated matching regions.

In each possible matching region, there are t−k matching pairs and k mismatches. It is easy
to calculate the probability P(Y νi = 1) = pt−k(1 − p)k . Let pt,k denote the probability that
there is at least one matching region starting at position ν = (iν, jν) ∈ I with k mismatches,
i.e. pt,k = P(Yν = 1). For 1 ≤ i �= j ≤ Kν , Y νi = Y νj = 1 implies there is an 0 ≤ l < t

with Aiν+l =∇ Bjν+l in one matching region and Aiν+l �= Bjν+l in the other one, which is a
contradiction. Therefore, the events {Y νi }Kνi=1 are mutually exclusive, and we obtain

pt,k = P({Ai+r =∇ Bj+r : r = 0, 1, . . . , t − 1, except for k mismatches})

=
Kν∑
l=0

P(Y νl = 1) =
(
t

k

)
(1 − p)kpt−k,

which is also E(Yν). The two matching regions starting at ν = (iν, jν) ∈ I andµ = (iµ, jµ) ∈ I
and µ �= ν, if iν − iµ = jν − jµ and |iν − iµ| < t , are highly correlated (see Figure 10) since
they share t − |iν − iµ| common compared fragment pairs in the two windows. Thus, the
matching regions tend to occur in clumps.

To be able to obtain a Poisson approximation, we should count the clumps and define the
indicator function that a clump begins at ν to be

Xν = Yν(1 − Yν−1)(1 − Yν−2) · · · (1 − Yν−t+1),

where ν − l, for l = 1, . . . , t − 1, is the index pair (iν − l, jν − l). When iν − l < 1 or
jν − l < 1, we always have Yν−l = 0. To simplify the proof of the next lemma, we neglect the
edge condition and set I ′ = {(i, j) : t − 1 < i < n− t + 1, t − 1 < j < m− t + 1}. We state
a result for approximating the expected value of Xν, ν ∈ I ′, by the expected value of Yν . The
proof for this lemma is almost the same as the proof of a similar lemma in Arratia et al. (1990)
and is therefore omitted.

Lemma 4.1. Let p < a = (t − k)/t ≤ 1, for ν ∈ I ′

a − p ≤ E(Xν)

E(Yν)
≤ (a − p)+ C(k)tkpt ,

where C(k) is a positive constant depending on k and p.

For fixed k, C(k)tkpt → 0 as t → ∞, so E(Xν) → (a − p)E(Yν) when t goes to infinity.
For large t we can use (a − p)E(Yν) to approximate E(Xν).
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Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8 B9

A9

Figure 11: Solid lines and dashed lines each represent two matching regions of length t = 4 and
k = 1. There are x2 = 2 2-components, x3 = 2 3-components and 2 mismatches in total. Therefore,

2 × 2 + 2(2(3 − 1))+ 4 × 1 = 16 = 4t .

Theorem 4.1. LetW(t, k) = ∑
ν∈I Xν be the number of de-clumped matching regions of type

(t; k). We have

1 ≤ E(W(t, k))

et,k
≤ 1 + C(k)tkpt

a − p
+ (n+m− 2t + 2)(t − 1)

(a − p)(n− 2t + 2)(m− 2t + 2)
,

where et,k = ∑
ν∈I ′ (a − p)E(Yν) = (a − p)(n− 2t + 2)(m− 2t + 2)E(Yν).

The proof for this theorem is quite straightforward (the extra term in the upper bound is from
end effects). Thus, we can approximate E(W(t, k)) by neglecting the edge conditions. With
this approximation, we state the following distribution approximation for W(t, k).

Theorem 4.2. LetW(t, k) = ∑
ν∈I Xν be the number of de-clumped matching regions of type

(t; k) and λt,k = E(W(t, k)). Then b1 and b2 for {Xν}ν∈I are bounded as

|P(W(t, k) = 0)− e−λt,k | ≤ b1 + b2

≤ 2(2t + 1)λt,k(n ∨m)pt,k
+ nm(2t + 1)t2k(Ck(n+m)p(3/2+3c)t +Dk(2t + 1)p(1+2c)t ).

We can approximate λt,k by et,k in Theorem 4.1 when t is large. The distribution ofW(t, k)
will be approximated by the Poisson distribution using the Chen–Stein method, and then we
derive the estimation of the probability that W(t, k) = 0 from the distributional result. To
approximate the distribution of W(t, k), we need to show that the two quantities b1 and b2
are small when n, m are big. The proof for this theorem is similar to the proof of the exact
match model. Only the combinatorial result of the components is a little different, since we do
not count the mismatches in a component. This difference does not change the proof much.
When k, the number of mismatches, is fixed, the terms related to k can always be absorbed as
a constant factor in the approximation. The following is the combinatorial lemma.

Lemma 4.2. Let Y νi and Yµj be the two dependent variables defined in this section and suppose
that iν − iµ �= jν − jµ. All the fragments in the two matching regions are separated into
connected components. Let xr , r = 2, . . . , 2t + 1, denote the number of r-components. Then

2t+1∑
r=2

xr(2(r − 1)) = 4t − 4k.

Figure 11 shows an example of the resulting components from two imperfect matching
regions.
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One difference from the exact match model in the imperfect match model is the selection of
t , the asymptotic centring constant, to keep the λt,k away from 0 and ∞. In analogy with the
discussion of Arratia et al. (1986), we let

t = log1/p(nm)+ k log1/p log1/p(nm)+ s, s > 0.

Thus, pt = (nm)−1(log1/p(nm))
−kps . Therefore,

λt,k ≈ (a − p)(n− 2t + 2)(m− 2t + 2)

(
t

k

)
(1 − p)kpt−k

≈∞ nmpt tk(1 − p)kp−k

= (nm)(nm)−1 tk

(log1/p(n))
k
ps−k(1 − p)k

= tk

(log1/p(nm))
k
ps−k(1 − p)k

is bounded away from 0 and ∞, since t/ log1/p(nm) → 1 as n, m → ∞. Now, we can derive
a corollary from Theorem 4.2 as we did in the exact match model.

Corollary 4.1. Under the same conditions on the relative growth rate of n, m in the exact
match model and letting t = log1/p(nm) + k log1/p log1/p(nm) + s, s > 0, there exist C,
γ > 0 such that

|P(W(t, k) = 0)− e−λt,k | ≤ C(log nm)−γ .

4.2. Approximate distribution of Sk
n,m

In the previous section, we studied the approximate distribution of observing a window of
size t including k mismatches. Fixing the number of mismatches, k, allowed in a window, the
distribution of Skn,m is studied in this section. We wish the approximate distribution of W(t, k)
to derive the tail probability of Skn,m and have the following theorem.

Theorem 4.3. Let Skn,m denote the length of maximum matching regions between A and B of
length n, m with at most k mismatches. Under the conditions on the relative growth rate of n,
m, k and t described in the last section, there exist C1, γ1 > 0 such that

|P(Skn,m < t)− e−λt,k | < C1(log nm)−γ1 .

This result does not follow exactly as in the exact matching case. To derive this result from
the previous results about W(t, k), we fix the window size t and find the distribution of the
maximum number of matching pairs in all the windows of size t . LetMt denote the maximum
number of matching pairs in a window of size t . It is obvious that {Mt < t−k} ⊂ {W(t, k) = 0}.
The inequality is due to the existence of windows with more than t − k matching pairs.

Lemma 4.3. If there exists ν ∈ I such that Yν = 1, then there exists ν′ ∈ I such that Xν′ = 1,
which implies that W(t, k) > 0.

The lemma states that the existence of a matching region of type (t; k) implies the existence
of such a clump. Before we start the proof, for ν = (iν, jν), µ = (iµ, jµ) ∈ I , we define a
partial order relation, ν < µ if iµ − iν = jµ − jν > 0.
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Proof. If Yν = 1 for ν ∈ I , then Xν = 1 or there exists ν > ν1 ∈ I such that Yν1 = 1 from
the definition of Xν . If Xν = 1, then we are done; otherwise, Yν1 = 1 implies that Xν1 = 1
or Yν2 = 1 for some ν1 > ν2 ∈ I . Repeating this discussion, we obtain a strictly decreasing
index series ν, ν1, ν2, · · · ∈ I such that Yνi = 1. Since the index set has lower bound (1, 1), the
strictly decreasing index series stops at some νh ∈ I , such that Yνh−l �= 1 for 1 ≤ l ≤ t − 1,
which implies that Xνh = 1.

The next theorem shows the difference of the probability between observing no window of
size t with k mismatches and observing no window of size t with k mismatches but observing
a window of size t with less than k mismatches.

Theorem 4.4. Let Mt and W(t, k) be defined as above, then

0 ≤ P(W(t, k) = 0)− P(Mt < t − k) ≤ C2(log nm)−γ2 ,

where C2, γ2 > 0 are two constants.

Proof. The first inequality is obvious since {Mt < t−k} ⊂ {W(t, k) = 0}. WhenMt ≥ t−k,
there exists at least one window with no more than k mismatches. If this window has exactly k
mismatches, from Lemma 4.3 we know thatW(t, k) > 0. To haveW(t, k) = 0 andMt ≥ t−k,
each window should have more or less than k mismatches and at least one window with less
than k mismatches, say the window at ν = (i, j). Let Nt(ν) be the number of matching pairs
in a window of size t starting at ν, which is then greater than t − k. The window starting at
ν − 1 has at most one less matching pair than the window starting at ν, so Nt(ν − 1) ≥ t − k.
In the case of equality, we can derive W(t, k) > 0 from Lemma 4.3, hence strict inequality
holds. We keep moving the window left by one pair until we reach the smallest possible index,
and obtain 


Nt((1, 1)) > t − k, if i = j,

Nt ((i − j + 1, 1)) > t − k, if i > j,

Nt ((1, j − i + 1)) > t − k, if i < j.

So, ifW(t, k) = 0 andMt ≥ t−k, at least one of the windows with at least one 1 in the starting
point, as shown above, has more than t − k matching pairs. Thus,

P(W(t, k) = 0 and Mt ≥ t − k) ≤ (1 + n− t +m− t)P(Nt ((1, 1)) > t − k)

≤ 2(n ∨m)
k−1∑
l=0

pt,l ≤ 2C(k)(n ∨m)tkpt ,

since
k−1∑
l=0

pt,l =
k−1∑
l=0

(
t

l

)
pt−l (1 − p)l ≤

k−1∑
l=0

tkpt
(

1 − p

p

)l
≤ C(k)tkpt ,

where C(k) is a constant depending on k and p. Under the relative growth rate of n, m and
λt,k , λt,k ≈∞ nmtkpt is bounded away from 0 and ∞ as in Section 3.2,

C(k)(n ∨m)tkpt ≈∞

{
(nm)ρ(nm)−1 = (nm)ρ−1, ρ ≥ 1

2 ,

(nm)1−ρ(nm)−1 = (nm)−ρ, ρ < 1
2 ,

with 0 < p < 1, which goes to zero when n,m → ∞. So there exist C2, γ2 > 0 such that

P(W(t, k) = 0)− P(Mt < t − k) ≤ C2(log nm)−γ2 .
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Combined with Theorem 4.1, the tail probability ofMt can be approximated by the following
theorem.

Theorem 4.5. Under the same conditions on the growth rate of n,m and t as in Corollary 4.1,
there exist C1, γ1 > 0 such that

|P(Mt < t − k)− e−λt,k | ≤ C1(log nm)−γ1

under certain conditions for the relative growth rate of n,m and t as described in Theorem 4.3.

This can be proved easily, since

|P(Mt < t − k)− e−λt,k | ≤ |P(Mt < t − k)− P(W(t, k) = 0)| + |P(W(t, k) = 0)− e−λt,k |
≤ C(log nm)−γ + C2(log nm)−γ2

≤ C1(log nm)−γ1 ,

for some C1, γ1 > 0.
Now we return to the distribution of Skn,m. For any t , we have the following equivalences:

Skn,m < t ⇐⇒ there is no window of size no smaller than t with k or fewer mismatches

⇐⇒ there is no window of size t with k or fewer mismatches

⇐⇒ Mt < t − k.

Therefore,
P(Skn,m < t) = P(Mt < t − k),

and Theorem 4.3 is proved through Theorem 4.5.

5. Open problem

Since mutations occur in DNA sequences, it is possible that a mutation might create a new
cut site or make an existing cut site disappear. When a cut site is mutated into a non-cut-site, the
two fragments from the cut site in the restriction map of the DNA sequence before the mutation
merge into one big fragment in the restriction map of the DNA sequence after the mutation. A
mutation causing a new cut site divides one fragment including the new cut site into two smaller
fragments. To make our results more powerful and useful, we consider this kind of mutation
in restriction map matching. This matching is considered in a general form in the algorithms
of Huang and Waterman (1992).

The mutation of a cut site might result in the merge of two restriction fragments to one
fragment or vice versa, so we allow a few merge-matches in a matching region as depicted
in Figure 12. A merge-match is defined to occur when the sum of lengths of two adjacent

Map 1

Map 2

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6

A9

B7 B8

Figure 12: An example of a matching region of length 5 including 2 merge-matches, A3 =∇ B3 + B4
and A6 + A7 =∇ B7.



Local matching of random restriction maps 353

fragments differs from the length of the corresponding fragment by no more than σ . Three
fragments are involved in a merge-match. A mutation in a cut site might induce a merge-match.

For fixed t and k, a matching region of length t is defined as a long run of t matching
fragment pairs except for at most k merge-matches between two restriction maps. The authors
undertook a study of this type of matching regions, wishing to obtain similar results to those
obtained for exact matchings and imperfect matchings. Because the merge-match brings greater
complexity to the combinatorial analysis in the study, no good results have yet been obtained.
The statistical results for this more complicated matching will be more powerful in detecting
significant similarity between maps.

For practical application, we recommend simulation studies as in Waterman and Vingron
(1994). At the basis of that work was a decomposition of the scoring parameter space into
linear and logarithmic growth. The corresponding generalization of Arratia and Waterman
(1989) could be established for map matching.

Appendix A. Proof of Lemma 3.2

To show the relation between p and p3, we compute them from the exponential distribution
first:

p = P(A1 =∇ A2) = P(|A1 − A2| < σ)

=
∫ σ

0

∫ x+σ

0
λe−λxλe−λy dydx +

∫ ∞

σ

∫ x+σ

x−σ
λe−λxλe−λy dydx

=
∫ σ

0
λe−λx(1 − e−λ(σ+x)) dx +

∫ ∞

σ

λe−λx(e−λ(x−σ) − e−λ(x+σ)) dx

= (1 − e−λσ )+ 1
2 e−λσ (e−2λσ − 1)+ 1

2 (e
λσ − e−λσ )e−2λσ

= 1 − e−λσ ,

and

p3 = P(A1 =∇ A2 and A2 =∇ A3)

= P(|A1 − A2| < σ and |A2 − A3| < σ)

=
∫ σ

0

∫ x+σ

0

∫ x+σ

0
λe−λxλe−λyλe−λz dzdydx

+
∫ ∞

σ

∫ x+σ

x−σ

∫ x+σ

x−σ
λe−λxλe−λyλe−λz dzdydx

=
∫ σ

0
λ−λx(1 − e−λ(x+σ))2 dx +

∫ ∞

σ

λe−λx(e−λ(x−σ) − e−λ(x+σ))2 dx

= eλσ
∫ σ

0
(1 − e−λσ−λx)2 d(1 − e−λσ−λx)

+ (eλσ − e−λσ )2
∫ ∞

σ

λe−λxe−2λx dx

= 1
3 eλσ ((1 − e−2λσ )3 − (1 − e−λσ )3)+ 1

3 (e
λσ − e−λσ )2e−3λσ

= 1
3 eλσ ((1 − e−2λσ )3 − (1 − e−λσ )3)+ 1

3 e−λσ (1 − e−2λσ )2.
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Next, p3 is written in terms of p. Since p = 1 − e−λσ , e−λσ = 1 − p, and then

p3 = 1

3(1 − p)
((1 − (1 − p)2)3 − p3)+ 1

3 (1 − p)(1 − (1 − p)2)2

= (1 − (1 − p)2)2

3

(
1 − (1 − p)2

(1 − p)
+ (1 − p)

)
− p3

3(1 − p)

= (p2 − 2p)2

3

1

(1 − p)
− p3

3(1 − p)

= p2

3(1 − p)
((p − 2)2 − p) = p2

3(1 − p)
((p − 1)2 + 3(1 − p))

= p2( 1
3 (1 − p)+ 1) = p3/2√p( 1

3 (1 − p)+ 1) = p3/2h(p),

where

h(p) = √
p( 1

3 (1 − p)+ 1) = √
p( 4

3 − 1
3p).

To show that p3 < p3/2, we only need show that h(p) < 1 for 0 < p < 1. Consider the
derivative of h(p):

h′(p) = 4
3

1
2p

−1/2 − 1
3

3
2
√
p = 2

3
√
p
(1 − 3

4p) > 0, when 0 < p < 1,

so h(p) is increasing in (0, 1), and h(p) < h(1) = 1 when 0 < p < 1. Therefore, p3 < p3/2

and there exists a constant c > 0 such that p3 = p3/2+3c. From the above, we have

p3 = p2( 1
3 (1 − p)+ 1) > p2,

which implies that
3
2 + 3c < 2, that is c < 1

6 .

Now, we can conclude that

p3 = p3/2+3c, where 0 < c < 1
6 .

Appendix B. Proof of Lemma 3.3

It is obvious that the event {A1 =∇ A2 and A2 =∇ A3 and . . . Ar−1 =∇ Ar} is included
in the event {A1 =∇ A2 and A2 =∇ A3, A4 =∇ A5 and A5 =∇ A6, . . . }. To show the
inequality for pr , the upper bound for the latter is found,

pr = P(A1 =∇ A2 and A2 =∇ A3 and . . . Ar−1 =∇ Ar)
≤ P(A1 =∇ A2 and A2 =∇ A3, A4 =∇ A5 and A5 =∇ A6, . . . )

= P(A1 =∇ A2 and A2 =∇ A3)P(A4 =∇ A5 and A5 =∇ A6) · · · .

Above, the r fragments are divided into small distinct groups with three fragments in each
group, except that the last group might have fewer than three fragments. We will discuss three
cases. Let r = a, mod 3, and a = 0, 1 or 2. We discuss the three cases separately.
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Case 1. For a = 0,

pr ≤ P(A1 =∇ A2 and A2 =∇ A3) · · · P(Ar−2 =∇ Ar−1 and Ar−1 =∇ Ar)

= p
r/3
3 ≤ p

r/3
3 p−(1/2+c).

Case 2. For a = 1,

pr ≤ P(A1 =∇ A2 and A2 =∇ A3) · · · P(Ar−3 =∇ Ar−2 and Ar−2 =∇ Ar−1)

= pk3 = p
r/3
3 p

−1/3
3 = p

r/3
3 p−(1/3)(3/2+3c) = p

r/3
3 p−(1/2+c)

Case 3. For a = 2,

pr ≤ P(A1 =∇ A2 and A2 =∇ A3) · · · P(Ar−4 =∇ Ar−3 and Ar−3 =∇ Ar−2)

× P(Ar−1 =∇ Ar)

= pk3p = p
r/3
3 p

−2/3
3 p = p

r/3
3 p−(2/3)(3/2+3c)p = p

r/3
3 p−(1+2c)+1

= p
r/3
3 p−2c ≤ p

r/3
3 p−(1/2+c),

since c < 1
6 , then 2c < 1

3 <
1
2 + c.

Combining the above results, we obtain

pr ≤ p
r/3
3 p−(1/2+c) < (p3/2+3c)r/3p−(1/2+c) = p(1/2+c)(r−1).
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