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Editor’s Note. Gian-Carlo Rota-combinatorialist, probabilist, phenomenologist, philosopher, editor, premier lecturer, thesis advisor 
to dozens-died in his sleep about April 18,1999. Born in Vigevano, Italy, on April 27,1932, he came to the United States in 1950 and 
obtained a Ph.D. degree in mathematics under Jacob T. Schwartz from Yale University in 1956. He was a postdoctoral research fel- 
low at the Courant Institute at New York University in 1956-57 and a Benjamin Peirce Instructor at Harvard University in 1957-59. 
In 1959 he took a faculty position at the Massachusetts Institute o f  Technology (MIT), where he remained-except for a stay in 1965-67 
at the Rockefeller University-until his death. 

He had a number o f  visiting faculty positions-among them at the University of Colorado, the University of Florida, the University 
o f  Southern California, the University o f  Paris W, the University of Buenos Aires, the University ofstrasbourg, and the Scuola Nor- 
male Superiore in Pisa. He was a long-time consultant for the Los Alamos National Laboratory and was a Director’s Office Fellow there 
starting in 1971. 

He was the founding editor of the Journal of Combinatorial Theory ( I  966), Advances in Mathematics (1 967), and Advances in Ap- 
plied Mathematics ( I  979), and he remained as editor o f  all these journals until his death. He was, in addition, editor of several book 
series and served on the editorial boards of  a dozen other journals at various times. 

He had more than forty doctoral students (see sidebar) and was a consummate lecturer, eagerly sought as a guest lecturer around 
the world. In fact, his death was discovered on a Monday when he failed to anive for a series of three guest lectures in Philadelphia. 
The AMs honored his extraordinary talents by choosing him as its Colloquium Lecturer for 1998. 

He was a fellow o f  the American Academy o f  Arts and Sciences, a member o f  the National Academy of Sciences o f  the USA, the 
1988 winner o f  the AMs Steele Prize for a Seminal Contribution to Research, and an invited lecturer at the International Congress of 
Mathematicians in Helsinki in 1978. 

Jacob T. Schwartz 
In the recollections of Yale included in his In- 

discrete Thoughts, Gian-Carlo mentions the 1954 
functional analysis seminar at which we met. This 
seminar, in memory yet green, was organized by 
Nelson Dunford and addressed by an outstanding 
group of young researchers, including John Wer- 
mer, William Bade, Robert Bartle, and Henry Hel- 
son. It was a high point of early functional analy- 
sis at Yale: interesting new results were presented 
by their discoverers almost every week. Even 
though he was then in his first graduate year, Gian- 
Carlo’s talents became apparent at once, and he was 
immediately recruited, along with Bartle, Bade, 
and me, as a junior member of the group then 
working on the “Dunford project” that subse- 
quently became Linear Operators. In 1957 Dunford 
decided to take a year’s sabbatical at NYU (New 
York University). Support from the ONR (Office of 
Naval Research) being available, Rota and I were 
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able to tag along for this one-year visit, which 
turned into a three-year stay for Gianco and forty- 
two years for me. Though only a few years older 
than Gian-Carlo, I assumed for the first time the 
ponderous dignity of thesis advisor. This was a pe- 
riod of youthful friendship, punctuated by fre- 
quent risotto Milanese garnished by Asti Spumante 
at Gian-Carlo’s bottom-price, sixth-floor walkup 
apartment in what was then something of a Mafia- 
dominated slum just south of NYU but which has 
since been gentrified. 

The Dunford connection, the general prestige of 
functional analysis at Yale, the ONR contract, and 
the pattern of my own interests led Gian-Carlo to 
an initial specialization in functional analysis. His 
dissertation, “Extension theory of differential op- 
erators I”, appeared in Communications in Pure and 
Applied Mathematics in 1958. (Not untypically for 
papers whose titles bear the fatal Roman digit “I”, 
there never was a “II”.) A series of other papers on 
operator theory followed “Note on the invariant 
subspaces of linear operators”, “On the spectra of 
singular boundary value problems”, “On models of 
linear operators”, “On the eigenvalues of positive 
operators”-all in the period 1958-61. But already 
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Garrett Birkhoff on 
Ordinary Differential Equations was a farewell to 
analysis. Unlike many, he had the courage and cu- 
riosity to move on, with consequences which oth- 
ers will speak of in this memorial. 

Our lifelong friendship made me not only an ad- 
mirer of the depth, scholarship, and sheer energy 
of his mathematical work (and of his ceaseless ac- 
tivities as an editorial entrepreneur on behalf of 
mathematics) but one in awe of his status as the 
ultimate relaxed sophisticate. Gian-Carlo could al- 
ways state with easy authority not only the current 
standing of all the top restaurants in Paris, Rome, 
Boston, and Milan but where to get the hottest 
and best chili in New Mexico and even what local 
hash house had the most unexpected culinary sur- 
prises. I shall miss him greatly. 

Michael Waterman 
”I have never known Stan Ulam to last longer 

than ten minutes of anyone else’s lecture,” Gian- 
Carlo Rota wrote, mimicking the famous and ir- 
reverent first sentence of Chapter 1 of James Wat- 
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son’s The Double Helix Nevertheless, Rota tells of 
meeting Ulam in New York City in 1964 when Mark 
Kac prevailed on Ulam to attend a lecture of Rota’s; 
Ulam made it through twenty minutes before bolt- 
ing, and one need not be an expert on extreme value 
distributions to know that was a rare event. Kac 
and Ulam were great mathematicians born in 
Poland who each came to the U.S. at the beginning 
of World War 11. They both had broad European ed- 
ucations and did not observe boundaries between 
mathematics and other sciences, let alone between 
mathematical subfields. It is natural that they each 
took up with Rota with his multiple languages and 
wide-ranging intellect. 

Soon after New York, Rota was invited to Los 
Alamos National Laboratory, known as the Lab, the 
Hill, the Mesa, and most famously as Santa Fe Box 
1663 during the war, when brilliant men of science, 
physics especially, worked feverishly to create the 
atomic bomb. By 1964 Stan Ulam was one of those 
who retained a regular association with Los Alamos. 
The Lab, at 7,400 feet, is on a mesa top in pon- 
derosa pines just above the pinion-juniper zone. 
The crisp clear air has a distinctive incense of 
cedars, pine, ozone, and sun-baked tuff, and one 
can see for tens of miles. In Santa Fe, thirty-five 
miles distant, is Native American and Caucasian 
culture, with good restaurants and art galleries. 
This exotic high-altitude, sun-drenched locale cap- 
tivated Rota, but surely it was Ulam who kept him 
coming back. One can find each of them writing 
about the other in several places, such as Ulam’s 
Adventures of a Mathematician and Rota’s Indis- 
crete Thoughts. 

Rota soon became part of Los Alamos. He gave 
lectures that were deeply informative, polished 
works of art that made him known throughout 
the Lab. The topics were wide-ranging: differential 
equations, ergodic theory, nonstandard analysis, 
probability, and of course, combinatorics. I at- 
tended the series on nonstandard analysis, and it 
was the equivalent of a course with an approach 
that had not yet appeared in print. These notes exist 
as a Los Alamos report. Over the years Rota helped 
organize several conferences: History of Comput- 
ing in the Twentieth Century (19791, Science and 
the Information Onslaught (19811, and Frontiers of 
Combinatorics (1998). He was made a consultant 
of the Lab in 1966 and Director’s Office Fellow in 
1971. When asked what he did, he said, “I wish I 
knew. I manage to snoop around, and every once 
in a while I pop into the director’s office and have 
a chat with him.” (Rota loved and absorbed gossip 
about mathematicians and scientists!) Director’s 
Fellows could come whenever they chose and could 
stay as long as they wished. For Rota this meant 
at least a week in January (Rota hated Boston win- 
ters even more than New Mexico winters!) and a 
month in the summer. As a Fellow he quickly be- 
came involved with high-level Lab politics. In the 
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late 1970s he was at a dinner party in my home 
when a new director was being chosen. He received 
so many lengthy telephone calls that I feared he 
would not get enough to eat. 

Other than Ulam his closest collaboration at 
Los Alamos was with Nick Metropolis, an elegant 
man who had a long association with the Lab. Me- 
tropolis was educated as a physicist at the Uni- 
versity of Chicago, where he took many mathe- 
matics courses. He had a distinguished career as 
a physicist and pioneer in the development of 
modern computers; he passed away on October 17, 
1999. In wartime Los Alamos he and Feynman re- 
paired Marchant manual calculators to the disap- 
proval of Hans Bethe. In 1945, at von Neuman’s in- 
vitation, Metropolis began to work with the ENIAC, 
and in 1947 he started a computer research group 
at Los Alamos that produced the remarkable se- 
ries of MANIAC computers. At Los Alamos I used 
the MANIAC 11, which was a joy. The MANIAC 111, 
based on significance arithmetic, was built at the 
University of Chicago. For the last twenty years of 
his career, Metropolis worked in mathematics, 
much of it with Rota. One of their major contri- 
butions was in using concepts created for com- 
puters such as binary representation of numbers 
and “carry” operations and applying them to the 
foundations of real numbers. They brought forward 
a new idea, distinct from the usual Peano and 
Dedekind construction. There are four papers on 
those topics. They also studied the lattice of the 
faces of the n-cube, and they gave an explicit de- 
composition of the lattice into a minimal number 
of chains of lattice faces. And they had the good 
fortune to discover a fact missed by all the early 
workers in symmetric functions: that every func- 
tion in three variables is uniquely expressible as a 
sum of a symmetric function, a skew symmetric 
function, and a cycle symmetric function [ 141. The 
underlying idea was extended to n variables in 
several papers, including an introduction of two 
new classes of symmetric functions. 

Innumerable people gave Rota private lectures, 
which he carefully inscribed in one of his heavy 
notebooks. “It’s my job,” he would say with 
pride. It was much more than a passive activity; 
here is an example of one of those exchanges. 
Jim Louck, a Los Alamos physicist, listened to Rota 
lecture in the late 1960s on the set Mm,n(a,  6) of 
m x n matrices with nonnegative integer entries 
having vector row sum a = (a1, az,. . . , a m )  and 
vector column sum 6 = (61, 6z,.. f i n )  with as realized through the Heisenberg algebra of cre- ci ai = cj 6 j  = N -  During the lecture Rota re- ation and annihilation operators. Many physical 
marked that he knew of no physical applications 
Of the set M ~ d a l  6)’ During this Same period 

problems can be modeled in this way because of 
the generality of the property that quantum States physicists were very active in developing explicit 

unitary irreducible representations of the general 
unitary group for physical applications, and one 
of the popular physical models for this theory was 
a collection of independent harmonic oscillators 

can be created from the ground state by the action 
Of the Creation Operators, the ground State itself 
being defined by its annihilation by the action of 
the annihilation operators. The simplest of such 
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models is a system of mn identical 1-dimensional 
harmonic oscillators, which may also be viewed as 
n oscillators, each of which is an m-dimensional 
isotropic oscillator in Euclidean m-space. If the 
total energy of such a system is N energy quanta, 
and the number of these quanta associated with 
the motion of all n oscillators in the i-th direction 
is the nonnegative integer ai, while the number of 
quanta associated with the j-th component oscil- 
lator of each of the m-dimensional oscillators is 
the nonnegative integer f l j ,  then o( and /3 are re- 
spectively the row and column sums of the m x n 
matrix (ai,j)lsism,1sjsn. Here ai,j is the number of 
energy quanta associated with oscillator ( i ,  j )  in the 
set of mn 1-dimensional oscillators. In this way the 
set M m , n ( a ,  /3) enters almost universally into the 
physical theory of quantum systems. It was this ob- 
servation, which emerged after Rota’s lecture, that 
led to thirty years of interactions between Louck, 
L. C. Biedenharn, and Rota. Louck and Biedenharn 
gave many informal presentations on the tensor 
operator theory they had created. “Rota never re- 
ally bought it,” Louck told me, and he and Bieden- 
harn wrote no joint papers with Rota. But when 
Rota’s student W. Y. C. Chen came to the Lab, Rota 
said, “Go to Los Alamos and look up Jim Louck. 
He’s a gold mine for mathematicians.” Chen was 
delighted to find this to be true, and he and Louck 
went on to mine that rich ore in an ongoing series 
of papers. 

Biology is another area that Rota helped along, 
although he did not entirely buy into biology ei- 
ther. (I refer especially to his doubts about Darwin’s 
theory of evolution.) When my first paper on se- 
quence matching was rejected, Rota placed it in Ad- 
vances in Mathematics. It is still being quoted, and 
I (along with Bill Beyer and Temple Smith) have Rota 
to thank for the timely appearance of that paper. 
“There are so few people working on those prob- 
lems,” he said many years later. A few years ago 
David Torney began to give Rota lectures about his 
work that arose in classification of DNA sequences. 
The results were an elegant joint paper on proba- 
bility set functions and help in organizing a con- 
ference. 

It is of course impossible to list all of Rota’s in- 
teractions. Some of the most unexpected (to me at 
least) are those relating to Rota’s interest in phi- 
losophy. David Sharp is a multitalented mathe- 
matical scientist who shared Rota’s passion for phi- 
losophy. Their dialogue “Mathematics, Philosophy, 
and Artificial Intelligence” in Los Alurnos Science, 
No. 12, is fascinating. Rota had a tremendous im- 
pact on students who took his philosophy classes. 
Mark Ettinger and David McComas are two of those 
MIT physics students who went to the Lab because 
of Rota. McComas went on to become director of 
the Center for Space Science and Exploration. 

Rota served on the Advisory Board for Non-Pro- 
liferation and International Security (there is a Lab 

division of that name), but it is next to impossible 
to learn any details. While he did write short clas- 
sified reports on national security issues, they are 
not available to “unclassified eyes”. At Los Alamos 
this activity, just as with almost everything else 
there, has gone under various names, but it is 
often called “the Spook Shop”. It will be many 
years before much more is known. For example, I 
am curious about whether Rota’s relationship with 
the Spook Shop or the National Security Agency 
came first, 

Let me return to Rota’s vital connection with 
Ulam. The fascinating essay “The Lost Cafe”, the 
final version of which appeared as Chapter VI of 
Indiscrete Thoughts, is a sketch of Ulam’s life, with 
details of his health, work habits, mathematical 
abilities, and state of mind; and some of it was far 
from complimentary. “The Lost Cafe” was contro- 
versial at the Lab, with the Ulam family, and else- 
where. “It’s a scandal,” Rota told me with evident 
satisfaction. The editor Palombi writes, “...one 
does not say this kind of thing about great men.” 
I can almost hear Rota use those exact words! I be- 
lieve ”The Lost Cafe” is filled with respect and 
love, but it is radical. Among other things Rota 
writes that Ulam was lazy. I like a remark Carson 
Mark made at a reception at Los Alamos, “Ulam was 
thinking all the time,” and I doubt that Rota would 
have disagreed. I believe Ulam’s widow remains bit- 
ter about the article and has not forgiven Rota, not 
even after his death. And at Los Alamos and else- 
where there are resentments, grudges, and judg- 
ments; although Rota would say, “We should tell 
it like it is,” I have not space to list them here. 

In winter, snowstorms come to northern New 
Mexico, and the following day dawns clear with 
deep-blue sky and subzero temperatures. Every 
snow crystal reflects light, and the vast landscape 
is dazzling. Rota planned a Los Alamos article en- 
titled “The Desert Is Covered with Snow.” It too 
would have dazzled and, just as likely, shocked and 
upset some. We can never know all that we have 
lost, what Gian-Carlo Rota would have revealed to 
us about mathematics and about ourselves. 

Edwin F. Beschler 
Gian-Carlo’s involvement with publishing was 

complex and intense. His motivations, as I per- 
ceived them, were multiple and intertwined math- 
ematical, scientific, intellectual, sociological, po- 
litical. He was at various times author, editor, 
consultant, or advisor to many publishers, some 
of the best known to this audience being 
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Academic Press, Addison-Wesley, Birkhauser, 
Harper and Row, and Springer-Verlag. Some of the 
individuals who benefited from Gian-Carlo’s in- 
sights and initiative, who epitomize the close ties 
between him and the publishing industry, and who 
are well known to many mathematicians attended 
the memorial meeting at MIT on April 30,1999, and 
allowed me to speak on their behalf Klaus Peters, 
who supported Gian-Carlo as founding editor of 
the archival series Contemporary Mathematicians, 
the collected works of leading mathematicians of 
our times; Ann Kostant, who carries on the ad- 
ministration of that series and was my coeditor in 
publication of Gian-Carlo’s award-winning book 
Indiscrete Thoughts; Peter Renz, a mathematician 
and publisher who produced a revision of the in- 
fluential book Discrete Thoughts (coauthored by 
Mark Kac, Gian-Carlo Rota, and Jacob Schwartz) and 
who worked with him in various capacities both 
editorial and mathematical. 

We few are only a small percentage of the pub- 
lishing professionals who were proud to be part 
of Gian-Carlo’s editorial network, a group that in- 
cluded people in the American Mathematical So- 
ciety and such institutional publishers as MIT Press 
and Cambridge University Press, with, in particu- 
lar, the highly acclaimed Encyclopedia of  Mathe- 
matics that Gian-Carlo edited over many years. I 
know they all join me in honoring him as a bril- 
liant writer, sagacious editor, incisive critic, and- 
in addition to all this-a colleague and friend. 

My relationship with Gian-Carlo began in the 
1960s, when I was learning my trade as mathe- 
matics editor at Academic Press, and extended to 
Birkhauser in the late 1980s. Gian-Carlo was one 
of a very small number of close advisors during 
those years of unprecedented growth in scientific 
publications, in particular in mathematical books 
and journals, and even more particularly in the es- 
tablishment of “specialized mathematical jour- 
nals”, a term we can use with some amusement in 
the 1990s when considering their titles: the Jour- 
nal of Algebra, the Journal of Differential Equations, 
the Journal of  Number Theory, and so on. 

Our first enterprise together, which should not 
be surprising, was the Journal of  Combinatorial 
Theory, a publication whose time had come but 
whose birth pangs reflected the divided nature of 
the field itself. The editorial structure of JCT was 
a delicate coalition, given the chaos and lack of di- 
rection of the discipline. An even more delicate task 
arose in the eventual division into Parts A and B, 
a bit of intellectual surgery that saved the journal 
from imminent collapse and that was an un- 
apologetically political move, made possible by 
Gian-Carlo’s commanding position in the field, 
sense of ongoing mathematical history, and stead- 
fast belief in combinatorics. 

Gian-Carlo was also the creative force behind the 
Journal of Functional Analysis. He not only sug- 

gested it but guided and advised me through the 
intricate process of identifying, convincing, and 
bringing together the team of Irving Segal, Ralph 
Phillips, and Paul Malliavin. The continued suc- 
cess of these journals and the numerous others in 
which he played an advisory role is ample testi- 
mony to his vision. 

In those days Academic Press had a faltering 
publication called Advances in Mathematics, which 
was to have been a yearly volume of expository pa- 
pers in mathematics modeled on a successful for- 
mula of such publications in the physical and bi- 
ological sciences. The model was not working, due 
mainly to the long-standing difficulty of writing ex- 
pository articles in mathematics. I asked Gian- 
Carlo’s help, and he offered to take responsibility 
for it, contingent on our transforming it into a 
journal and giving him complete editorial license 
to publish papers on any topic and of any length 
he chose, assisted by an editorial board and any 
necessary refereeing but dependent almost 100 
percent on his personal judgment. The publication 
as it now exists is a successful journal with one of 
the hghest prestige factors in the mathematics lit- 
erature-and a wicked reputation for pithy book 
reviews-backed up by the later Advances in Ap- 
plied Mathematics. It was Gian-Carlo’s particular ge- 
nius that he could transform an intractable set of 
dynamics sheerly by force of his ability to recog- 
nize superior work and his willingness to “break 
the rules” in the interests of publishing it expedi- 
tiously, thus furthering mathematics. He was a 
communicator of the highest degree, and he be- 
lieved in the power of the written word and the ne- 
cessity-even to proliferation-of publishing 
thoughts, ideas, and information. 

In reflecting on my relationship and friendship 
with Gian-Carlo-not always easy in the 1960s, 
but rich and comfortable in the 1990s-I belatedly 
recognized a previously unarticulated erroneous 
assumption I once lived with about the nature of 
his inner forces. His role as “kingmaker” in con- 
structing editorial boards seemed to me Machi- 
avellian, his concept of priority in the publishing 
queue often looked to me quixotic, his directions 
and demands sometimes came across tinged with 
a dictatorial flavor. And this I imagined grew from 
an ego that needed constant nourishment and that 
was a leading motivation for his intense and per- 
sonal involvement in so many editorial and pub- 
lishing initiatives. In the leisure of retirement, from 
the perspective of reexamined years, I have come 
to realize fully how wrong I had been to attribute 
so much to that undeniably present component of 
Gian-Carlo’s persona. I now appreciate more richly 
how much he was motivated by a desire for some- 
thing he simply believed was crucial for mathe- 
matics-expansion of the literature in the hands 
of competent and dedicated people. I profoundly 
wish that I could have the opportunity to tell him 
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The Foundations Papers 
These are the ten papers published by Rota, all with the 
title “On the foundations of combinatorial theory”. All but 
the first have coauthors. Below are the coauthors, subti- 
tle, and year for each of the ten. 
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of this insight into my youthful misjudgment, to 
revisit the days of our stimulating, and sometimes 
stormy, dialogues, and to acknowledge to him my 
mature understandmg of the complementary roles 
we played, as well as to tell him how much he was 
appreciated and how much he will be missed. 

Mathematicians and philosophers share with 
poets a critical dependence on the written word. 
Structure of language, style of discourse, nuance 
of expression are the tools with which their ideas 
are made manifest, given form, and communi- 
cated. Gian-Carlo Rota was a mathematician and 
a philosopher, and the richness of his writing in 
these fields was known to both communities. I 
like also to think of him as a poet-not in a for- 
mal sense, since to the best of my knowledge he 
never wrote a poem-but in the larger sense of a 
person who expresses himself with imaginative 
power and beauty of thought, even when many of 
these thoughts were sardonic reflections on peo- 
ple, ideas, institutions, and the general condition 
of humanity. His sense of humor was biting and 
deep-and full of truth. And his modes of ex- 
pression poetic in a fundamental sense of the 
word. 

Richard P. Stanley 
Hermann Weyl has described Cayley’s devel- 

opment of invariant theory as “[coming] into ex- 
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istence somewhat like Minerva: a grown-up virgin, 
mailed in the shining armor of algebra, she sprang 
forth from Cayley’s jovian head.” A similar state- 
ment could be made about the work of Gian-Carlo 
Rota on the foundations of combinatorics. Though 
led into combinatorics by his work on functional 
analysis (as briefly explained by Jacob Schwartz in 
his segment above), Rota’s work on combinatorics 
was from the beginning a completely fresh com- 
bination of innovation and synthesis. His first 
paper in this area had the audacious title ”On the 
foundations of combinatorial theory, I. Theory of 
Mobius functions”. The title was by no means pre- 
tense; it was the first in a series of seminal Foun- 
dations papers that lifted the subject of combina- 
torics from disrepute to eminent respectability. 

Foundations Iestablished partially ordered sets 
(posets) as a fundamental concept in combina- 
torics. Its tremendous influence remains unabated 
to this day. The primary object of study of Foun- 
dations I is the Mobius function of a poset (with 
suitable finiteness properties). It is the function 
p : Z(P) - Z, where 

Z(P)={(X,y)€PxP: xsy}, 

defined recursively by 

p(x,x) = 1, for all x E P 
1 p(x,t)=o, ifx < y i n P .  

Rota was the first to realize that the Mobius 
function was a fundamental invariant of posets and 
not just an enumerative tool. Of special concern 
is the Mobius inversion formula for posets, a vast 
generalization of the classical Inclusion-Exclusion 
Formula and the classical Mobius inversion formula 
of number theory. It asserts that iff  and g are func- 
tions from P to some abelian group related by 

t :xstsy 

f(Y) = 1 9(x) 
xcy 

(where it is assumed that this sum has finitely 
many terms for all y E P), then 

As Rota points out, the first coherent version of 
the Mobius inversion formula for posets is due to 
Louis Weisner and later, independently, to Philip 
Hall. Rota remarks that “strangely enough, however, 
these authors did not pursue the combinatorial im- 
plications of their work; nor was an attempt made 
to systematically investigate the properties of 
Mobius functions.” It took an exceptional imagi- 
nation to carry out exactly such a unification and 
systemization, as well as great courage to proceed 
in such an unfashionable direction. 

Foundations I planted many seeds that have 
produced bounteous fruit. If Ci(X, y) is the number 
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of chains x < XI < - < X i + l  < y in P between x 
and y, then a formula of Philip Hall asserts that 

shows how a coherent theory of generating func- 
tions can be based on the incidence algebra of a 
poset. Why, for instance, does one encounter in 

Y )  = 1 (-l)ici(x, y). 
ir-1 

This formula shows that p ( x , y )  is the (reduced) 
Euler characteristic of a certain abstract simplicial 
complex, the complex of chains between x and y. 
Moreover, if the closed interval [x, y] is a lattice (a 
poset for which any pair of elements have a least 
upper bound and greatest lower bound) and A is 
the set of atoms (minimal elements of the open in- 
terval (x, y)) of [x, y ] ,  then the subsets of A whose 
least upper bound is not y form another simpli- 
cial complex A(A). A formula of Louis Weisner can 
be interpreted as saying that p(x, y) is the reduced 
Euler characteristic of A(A). The realization of Rota 
that the Mobius function of a lattice could be in- 
terpreted as an Euler characteristic in two differ- 
ent ways immediately raises a host of topological 
questions and gave rise to the subject of topdog- 
ical combinatorics, which has now achieved a high 
level of sophistication. See, for example, the recent 
survey [21. 

The discussion in Foundations Zconcerning geo- 
metric lattices played a significant role in the re- 
vitalization of matroid theory, with many further 
contributions appearing in Foundations ZZ and its 
subsequent elaboration [7] ,  both written jointly 
with Rota’s student Henry Crapo. The concept of 
matroid, originally due to Hassler Whitney, is an 
abstraction of linear algebra: one specifies that 
certain subsets of a set S are “independent” (an ab- 
straction of linear independence). The only con- 
dition on the independent sets is that for any sub- 
set T of S all maximal independent subsets of T 
have the same cardinality. Again, Rota was exactly 
on target in realizing intuitively the immense con- 
tributions that matroid theory could make to com- 
binatorics and other branches of mathematics. For 
instance, deep connections between matroid the- 
ory, topology, and algebraic geometry pervade the 
two books [3, 151. 

Foundations IZZ-WZZ are concerned primarily 
with enumerative combinatorics and played an 
important role in the subsequent development of 
this area. Foundations III (with R. Mullin) and WZZ 
(with D. Kahaner and A. Odlyzko) are concerned 
with “finite operator calculus”, an exceptionally el- 
egant recasting and generalization, based on lin- 
ear algebra, of the nineteenth-century subject of 
“umbral calculus”. In particular, the formal simi- 
larities between the differentiation and difference 
operators dldx and A are demystified and vastly 
extended. As with the other Foundations papers, 
the finite operator papers have stimulated much 
further research. 

Foundations VI, entitled “The idea of generating 
function”, is a direct sequel to Foundations I and 

enumerative combinatorics generating functions 
of the type 

but never 

Foundations Wis the only paper I ever wrote jointly 
with Gian-Carlo (and also Peter Doubilet), a price- 
less experience that I regret can never be repeated. 
Foundations WZ(written jointly with Peter Doubilet) 
was devoted to enumerative aspects of symmet- 
ric functions and anticipated the prodigious role 
that symmetric functions would later play in com- 
binatorics. (See, for instance, Chapter 7 of [20].) 
Rota returned to symmetric functions in Founda- 
tions X,  the last of the Foundations papers. 

Foundations Wand V, written jointly with Jay 
Goldman and George Andrews respectively, fore- 
saw what is now a thriving cottage industry within 
mathematics and mathematical physics-the the- 
ory of q-analogues (or, in more stylish terminol- 
ogy, “quantum” mathematics). In general, if A, is 
the q-analogue of some object A,  then in some 
sense i t  should be true that A = A 1  or 
A = limq-l A,. The theory of q-analogues began in 
the work of Euler and Gauss with the lowly facto- 
rials and binomial coefficients and now extends to 
such objects as the Gamma function, the Lagrange 
inversion formula, and a host of algebraic struc- 
tures typified by semisimple Lie algebras (via the 
theory of quantum groups). 

The remaining Foundations paper to be dis- 
cussed is LX(with P. Doubilet and J. Stein), entitled 
“Combinatorial methods in invariant theory”. It 
was the first of over twenty papers by Rota and his 
collaborators as part of a monumental effort to 
bring the moribund subject of classical invariant 
theory into mainstream mathematics. Further dis- 
cussion of this aspect of Rota’s work appears in 
the segment by David Buchsbaum and Brian Tay- 
lor. 

All but the first Foundations paper were jointly 
written. In fact, twelve different persons served as 
collaborators for these nine papers. For Rota math- 
ematics was a social endeavor, and he generously 
shared both his time and his creativity with any- 
one who partook in his enthusiasm for beautiful 
mathematics. Combinatorics, and indeed all of 
mathematics, has become a poorer subject with the 
passing of such a singular leader. 
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David A. Buchsbaum 
Although I met Gian-Carlo Rota in the late 195Os, 

it was not until the summer of 1990, when we met 
by chance in Rome, that we decided to get together 
fairly regularly once we were back in the Boston 
area, for it was in Rome that we discovered that in 
our own very different ways we were interested in 
and working on very closely related problems. Per- 
haps this should not have been too surprising, 
given that in the late 1970s his paper with Doubilet 
and Stein [lo] had given tremendous impetus to 
the work that Akin, Weyman, and I were engaged 
in. And Gian-Carlo had always had a soft spot for 
homological algebra (hence, in part, the name of 
his long-running seminar, “Syzygy Street”). In ad- 
dition to these affinities, we both shared a love for 
what we liked to call multilinear algebra, although 
many might say that considering Hopf algebras, su- 
peralgebras, homotopy, and cohomology theory as 
“multilinear algebra” is stretching the meaning of 
the term a bit. 

Working together fairly regularly from the fall 
of 1990 until Rota’s death last April, we got to know 
each other pretty well. It was during this period that 
I experienced firsthand his gentleness, kindness, 
intellect, and passion for mathematics of all kinds. 
I also learned to appreciate his work on the straight- 
ening formula and invariant theory. It was in con- 
nection with the straightening formula that our tra- 
jectories first significantly intersected. 

David A. Buchsbaum and Brian D. Taylor 
This segment of the article contains a descrip- 

tion of some of Gian-Carlo Rota’s work on the 
straightening formula and invariant theory. 

The Straightening Formula and the First 
and Second Fundamental Theorems 
In The Classical Groups Hermann Weyl considered 
vector invariants of the special linear, orthogonal, 
and symplectic groups. He described explicitly the 
generators of the various rings of invariants along 
with the relations between them. These descrip- 
tions constitute the first and second fundamental 
theorems of invariant theory. Since Weyl consid- 
ered only fields of characteristic 0, it was natural 
to ask how much of this work remains valid for 
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fields of arbitrary characteristic. For the special lin- 
ear group, J.-I. Igusa proved the appropriate the- 
orems in 1954. Then, in the early 1970s, Rota and 
various collaborators came up with an extraordi- 
narily simple and powerful way to achieve the 
same results [8, lo]. Their method introduced sev- 
eral fundamental tools for worlung with polyno- 
mials in the entries of a matrix. 

First, they found a symbolism for products of 
minors, which they called bitableaux In their no- 
tation the determinant of the minor indexed by 
rows i l , .  . . , ik and columns j1,. . . , jk of a matrix 
X is written as a biproduct, 01.. . ik I j 1 .  . . J k ) ,  

multiplied by a sign factor of ( - 1 ) ( 2 ) .  They 
described a product of minors by stacking biprod- 
ucts vertically. The product (3 1 1 3 4) (2 I 1) is 
written as the bitableau ( ; ‘ I  ;4) .This is ,up 

k 

x3.3 x3,4 . x*,l of I x 1 , 3  x 1 . 4  1 to sign, the product 

determinants. The sign appearing in front of each 
minor is part of a system of sign rules that Rota 
and his collaborators established to simplify cal- 
culations with biproducts. For ease of definition, 
however, we have stripped the remaining rules 
from the bitableaux appearing in this presentation. 

Second, using this symbolism, they introduced 
the idea of standard bitableaux, namely, those 
bitableaux (D I E )  whose component Young dia- 
grams, D and E,  strictly increase across rows and 
weakly increase down columns. They then proved 
that, assuming the entries of X to be algebraically 
independent, these bitableaux form a basis of the 
polynomial algebra over the integers generated by 
the entries of X .  

In the above example the bitableau was built 
out of nonstandard Young diagrams, but 

3 1  3 4  ( 2  1 )=-(:“I ; 4 )  sinceweareeffec- 

tively just switching two rows in a determinant. 
Nevertheless, the right-hand Young diagram re- 
mains nonstandard. Applying the identity 

1 3  3 4  1 3  1 4  1 3  1 3  
( 2  11 )=-L 1 3  ) + ( 2  1 4  ) 

+ (1 2 3 I 1 3 4) 

expresses the original bitableau as a linear com- 
bination of standard ones. 

The expression of a polynomial as an integer lin- 
ear combination of standard bitableaux was given 
by repeated application of identities similar to 
those in the preceding example, and this algo- 
rithm was referred to as straightening. In the in- 
troduction to [8] Rota said that the straightening 
algorithm was the result of a train of thought “de- 
veloped most notably by Alfred Young, and the 
Scottish invariant theorists.” 
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In [lo] the authors use straightening 
to provide the first characteristic-free 
proof of the first fundamental theorem 
for an rn x d matrix under the action of 
invertible d x d matrices. They prove 
that the (quasi) invariant polynomials 
in the matrix entries consist of all ho- 
mogeneous linear combinations of de- 
terminants of d x d matrix minors. In the 
language of bitableaux, this is all linear 
combinations of bitableaux 

of some fixed number of rows k. Rota’s 
interest in this problem stemmed from 
the view of these invariants as describ- 
ing the incidence relations of a set of rn 
vectors in d-space, that is, the incidence 
relations of a “representable matroid. 
With other collaborators in [8] Rota gen- 

Attending a meeting in honor of A. Carsia, Taormina, Sicily, July 1994. 
Left to right: C. Procesi, 1. Macdonald, X. Viennot, R. Stanley, C. Andrews, 
C.-C. Rota, C. Creene, A. Bjorner, A. Carsia. 

eralized the preceding result to describe the inci- 
dence relations between rn vectors in d-dimen- 
sional space V, no longer in terms of a fixed basis 
for V, but in terms of rn “covectors” in V*. The re- 
sulting version of the first fundamental theorem 
describes invariants as linear combinations of 
bitableaux, each with the same number of rows and 
with each row of length d. 

In the preceding situations, the second funda- 
mental theorem is given constructively by the 
straightening law. The relations between invariants 
are generated by the straightening relations and 
by the vanishing of biproducts longer than d. 

The straightening formula is one of the most sig- 
nificant contributions of multilinear algebra to 
combinatorial and constructive methods. We sam- 
ple below a few of the many analogues to and ap- 
plications of the straightening formula. 

In the middle to late 1970s straightening laws 
for the algebra of Gramians and Pfaffians (the case 
of invariants for the orthogonal and symplectic 
groups respectively) were given by De Concini and 
Procesi, and applications to the geometry of Pfaf- 
fian varieties were developed by Abeasis and Del 
Fra. 

Formanek and Procesi applied the techniques in- 
troduced in Doubilet-Rota-Stein [ 101 for their proof 
that the general linear group is geometrically re- 
ductive. This is a special case of a conjecture of 
Mumford solved independently and contempora- 
neously by Haboush in 1975. 

Pommerening in the early to mid-1980s de- 
scribed a class of subgroups of the general linear 
group whose algebra of invariants is spanned by 
standard bitableaux. This allowed him to show 
that these algebras are finitely generated and thus 

to prove that various rings of invariants are gen- 
erated by a finite number of elements. He thus pro- 
vided a positive answer for Hilbert’s Fourteenth 
Problem for various nonreductive subgroups of the 
general linear group. 

In addition to the applications of straightening 
to invariant theory, the representation theory of 
the general linear group can be studied entirely in 
terms of modules spanned by bitableam. In this 
formulation the straightening law has been used 
by Brini and Barnabei, Brini and Teolis, Boffi, 
Clausen, and others to provide characteristic-free 
versions of such standard tools in representation 
theory as the Littlewood-Richardson formula and 
the branching rule. The application of the straight- 
ening law over arbitrary ground rings played a 
crucial part in the program-begun in the early 
1980s by Akin, Buchsbaum, and Weyman-of un- 
derstanding the representation theory of the gen- 
eral linear group as it relates to resolutions of de- 
terminantal ideals outside of characteristic 0. It is 
in this context that the work in [4, 51 developed. 
Applications of these techniques to finding inter- 
twining numbers can be found in works of Buchs- 
baum with Akin and with Flores. 

The standard basis theorem for bitableaux was 
reformulated in the late 1980s and early 1990s by 
Brini and Teolis, who applied their generalization 
to the study of Z-forms for the universal enveloping 
algebra of the general linear group. 

A long-standing desire of Rota’s, to obtain a 
description of the Robinson-Schensted-Knuth (RSK) 
bijection between monomials and pairs of Young 
diagrams in terms of straightening, was achieved 
by Leclerc and Thibon. They formulated the prob- 
lem in a quantized algebra of functions on 
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matrices to which Huang and Zhang had already 
extended the straightening law. Applying the the- 
ory of crystal bases, they derived a description of 
the RSK bijection from the q = 0 term in the ex- 
pansion of a monomial under straightening. 

Because of the variety of situations in which the 
straightening formula presents itself and turns 
out to be extremely useful, the notion of an “algebra 
with straightening law” (ASL) was developed. This 
was a concept due essentially, and initially, to 
De Concini (in collaboration with Eisenbud and 
Procesi) and, independently, to K. Baclawski. It has 
proved to be a powerful tool in establishing the 
Cohen-Macaulay property for many classes of al- 
gebras of general interest. 

Two key properties of straightening that are 
generalized in the formal notion of an ASL are: 

Straightening is always applied to a pair of ad- 

The top (or longer) row weakly increases in 

For determinantal ideals, this implies that a 
polynomial is in the ideal generated by all k x k mi- 
nors of X if and only if the bitableaux in their ex- 
pansion all have top row of length at least k. Not 
surprisingly then, the straightening law is a key tool 
in the study of determinantal ideals; indeed, this 
is precisely what was studied in [SI, albeit in slightly 
different language. Bruns and Vetter’s Determi- 
nantal Rings is an excellent source for this field. 

Invariant Theory and the Symbolic Method 
Binary Forms and Symmetric Tensors 
One of the popular approaches to invariant theory 
today links invariants to algebraic transformation 
groups and then uses the machinery of modem al- 
gebraic geometry and algebraic group theory. In 
this regard, too much cannot be said concerning 
the influence of W. V. D. Hodge. But Gian-Carlo’s 
approach was inspired by his study of the works 
of algebraists of the last century and the first part 
of this one (e.g., P. Gordan, A. Capelli, and A. 
Young). In [ 161 he says: 

[Tlhe program of invariant theory, from 
Boole to our day, is precisely the trans- 
lation of geometric facts into invariant 
algebraic equations expressed in terms 
of tensors. This program of translation 
of geometry into algebra was to be car- 
ried out in two steps. The first step 
consisted of decomposing a tensor al- 
gebra into irreducible components 
under changes of coordinates. The sec- 
ond step consisted in devising an effi- 
cient notation for the expression of in- 
variants for each irreducible 
component. 

jacent rows. 

length after straightening. 

In his work on the second step, Rota was led to 
the study of a technique developed by the 

invariant theorists of the nineteenth century: the 
symbolic method. In [161 he interpreted their use 
of this device in the following way: 

The hidden purpose of the symbolic 
method in invariant theory was not sim- 
ply that of finding easy expressions for 
invariants. A deeper faith was guiding 
this method. It was the expectation that 
the expression of invariants by the 
symbolic method would eventually 
guide us to single out the “relevant“ or 
“important” invariants among an infi- 
nite variety. 

Whether or not this was indeed the deeper pur- 
pose for developing the symbolic method, the fact 
is that it soon becomes clear to anyone working 
with invariants that their polynomial expressions 
are extremely complicated. To deal with this prob- 
lem, the symbolic method was devised and used 
to both describe invariants explicitly as well as to 
handle important theoretical problems, such as fi- 
nite generation. But over the past hundred years, 
standards of rigor and exposition have changed, 
and new ideas were called for. In [ 131, “On the in- 
variant theory of binary forms”, the authors re- 
construct and remodel, in elementary terms, 
P. Gordan’s work on this topic. In their develop- 
ment two ideas are central: first, the symbols are 
elements of a commutative algebra where gener- 
alizations of bitableaux and straightening are valid; 
second, a linear transformation, called the ”umbral 
operator” (after Sylvester), from this algebra to 
the usual polynomial algebra, translates facts about 
the symbols into explicit formulae for invariants. 
The umbral operator is the natural generalization 
to invariant theory of methods Rota first applied 
in [ 171 to make rigorous the “representative nota- 
tion” developed by Blissard and popularized by Bell 
and Riordan for calculating with sequences of 
numbers. 

Consider the simplest nontrivial example. Take 
a quadratic polynomial in two variables (a quadratic 
binary form), b(x1, xz) = azx: + u1x1xz + aox;. We 
want to consider properties of this polynomial 
that do not depend on the choice of coordinates, 
and in particular we want to describe such prop- 
erties by the vanishing of polynomials in the co- 
efficients of b. Suppose we impose a linear change 
of coordinates and write b(xl+ cxz, xz). This is 
equivalent to replacing the coefficients ao, 01 ,  and 

with alc + a0 + azc2, a1 + 2azc, and a2 respec- 
tively. In present-day notation, if g acts by change 
of variables on a quadratic, b(x1, XZ), we define the 
action of g on a polynomial p in the coefficients 
of b(x1,xZ) to be p evaluated on the coefficients 
of g-I(x1, XZ). So when p is invariant (up to scalar 
multiples) under this action, the quadratic forms 
on which p vanishes must share some properties 
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. . . - -  

that are invariant under linear change of coordi- (3) - 
nates. 

The symbolic method (or umbral operator) is in- . .  

= u (a$: + a:B:-2alaZBlBz) - troduced to make the above situation more 
amenable to direct manipulation and computa- 
tion. Consider the polynomial ring in variables 
X I ,  x2 with coefficients in k[orl, a2, PI, B21. Rota de- 

Applying the rules defining above gives us 

fined an umbral operator, U, to be a k[xl,xz]-lin- (4) m,oa0.2 + ao.2a2.0 - 2 a l . l ~ l . 1 ,  
ear map on this ring such that 

U((aCixl+ ~ ( 2 x 2 ) ~ )  = b ( X 1 , X z )  

= U((BlXl+ B2x2)2) 

and U(MN) = U(M)U(N) whenever M, N are mono- 
mialsinxl,xz, a 1 , a z , B 1 , B z  andthepairMand 
N share none of the variables a1, az, B1,Bz.  If we 
write ai,j for ~ ( a : d ) ,  we can compute 

b ( X 1 , X Z )  = U(OclXl+ a2xd2 
= a2,ox: + 2a1,lxlxz + a0,2x2 

2 (2) 

to see precisely how Rota encoded the ill-defined 
notion of a nineteenth-century “lowering operator” 
into U; the new coefficients are related to the old 
by ( : ) U i , j  = ai. Further employing this notation, 
one calculates 

U((a1(x1 + CXd+ o(ZX2)2) 

= U((a1x1 + (a2 + COrl)X2)2), 

so that the change of variables X I  - X I  + cx2 be- 
comes a change of variables in the umbrae, 
a2 - 012 +ca1. 

Following through with this reasoning, Rota 
showed that if a polynomial p(a1, a2) is invariant 
under linear changes of variable in the ai’s, then 
U ( p ( a 1 , ~ ~ ) )  is invariant under the action that 
change of variables induces on the coefficients of 
a quadratic binary form. Indeed, this result holds 
for polynomials p(a1, a2, B1,/?2) invariant under 
application of the same change of variables to the 
pair 011, a2 and the pair B1,Bz .  Think of the poly- 
nomials p as being on variables arrayed in a ma- 
trix whose rows are indexed {a,j3} and whose 
columns are indexed by { 1,2}. We are now look- 
ing for polynomials in the matrix entries invariant 
under linear action from the right. 

But these are precisely the invariants written 
down in [lo] and discussed in connection with (1) 
above! So, for instance, U(cx B I 1 2) is an invariant. 
Of course, U(a B I 1 2) = UCB a I 1 2) since a, B 
behave identically under U, and, further, 
U(aj3 I1 2 ) = U ( - ( a B  I1 2)).Thus,bylinearityof 
U this invariant is 0. The next simplest invariant 
we can construct is 

which, on comparison with (2), we find to be twice 
the discriminant. So the invariant in (3) and (4) van- 
ishes on the coefficients of b(x, y )  in (2) precisely 
when b(x, y) is a perfect square. 

The above constructions are independent of 
characteristic and generalize to polynomials in 
more than two variables. In characteristic 0 one ob- 
tains all invariants in this fashion. In the preced- 
ing example this lets us verify that the discrimi- 
nant is the only invariant of quadratic polynomials 
in two variables. More precisely, the (graded) ring 
of (quasi) invariants in the coefficients under 
change of variables is generated by the discrimi- 
nant. The application of the umbral operator and 
another variant of the straightening law in [13] 
provides an explicit construction for a finite set of 
such generators in the case of binary forms. 

One could reasonably ask what happens if we 
compute U(a B I 1 212 when U ( a l x l +  ~ Z X Z ) ~  = 
b(x1,xz) and U(Blxl+ B ~ x 2 ) ~  = c(x1,xz) for some 
quadratic binary forms b, c. By the same reason- 
ing as above, this is a joint invariant of b and c, 
and it turns out to be the simplest example of the 
“a polar covariant”. This covariant was applied by 
Sylvester to finding canonical forms of homoge- 
neous polynomials. This technique is itself covered 
and refined in [ 131; extensions to forms in more 
than two variables are given in [ 111 (although in- 
variant theory is not explicitly used here). Appli- 
cations to finding the ranks of symmetric and 
skew-symmetric tensors can be found in recent 
work of R. Ehrenborg. 
Gian-Carlo and the Letterplace (Super)algebra 
As Gian-Carlo loved to relate, the idea of the ”let- 
terplace (super)algebra” was suggested to him in 
a conversation with R. Feynman. The idea is very 
simple: in order to handle complicated multihnear 
algebra, a multiplicative algebra is defined by dou- 
ble variables (letters and places), subjected to cer- 
tain suitable commutation properties. 

This simple trick makes it possible to treat 
many seemingly disparate situations in a unified 
way. As an example, relying on the straightening 
law and interpreting the results about the letter- 
place superalgebra on appropriate homogeneous 
subspaces, one obtains as special cases the prin- 
cipal results: 

of ordinary representation theory of the sym- 
metric group; 
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of the representation theory of GL(n) and Sn 
on the space of homogeneous tensors of order 

of the theory of Berele-Regev on the actions of 
the general linear Lie superalgebra pl(r,  s) on 
a space of &-graded tensors on the algebra of 
polynomial functions on the space, which is a 
direct sum of a space with itself. 

The superalgebra version of Rota’s work began 
with Doubilet and Rota’s extension of the straight- 
ening law to exterior algebras of letterplaces [91. 
The extension to more general superalgebras was 
performed by Grosshans, Rota, and Stein in their 
monograph [ 121, where the letterplace superalge- 
bra plays a central role in the invariant theory of 
mixed skew-symmetric and symmetric tensors. 
The Symbolic Method for Skew-Symmetric 
Tensors 
With classical constructive techniques it is in prin- 
ciple possible to find invariants for any represen- 
tation of GLn(C). However, Gian-Carlo felt that 
this technique did not provide an effective ex- 
pression of invariants. The classical symbolic 
method extends to the representation of GLn(C) 
on symmetric tensors without much difficulty 1121. 
Consequently, Grosshans, Rota, and Stein turned 
their attention to the representation of GLn(C) on 
skew-symmetric tensors. Here the appropriate de- 
finitions of the symbols and umbral operator were 
less evident, but they found that the general steps 
in formulating the symbolic method for binary 
forms remain valid for skew-symmetric tensors. 
They encoded the symbols as elements in a (non- 
commutative) letterplace superalgebra with 
bitableaux and straightening and then found the 
appropriate umbral operator. The result was a 
truly effective method for expressing the invariants 
of skew-symmetric tensors [12]. 

For example, let w be a skew-symmetric tensor 
of degree 2 in the exterior algebra on four gener- 
ators. It is easy to verify that w can be written as 
a product of two degree 1 elements if and only if 
w2 = 0. Rota and his collaborators observed that 
if one starts by the suggestive notation of a(z)b(2) 
for the product, where a and b are “letters” asso- 
ciated with the tensor w, then one can apply an um- 
bral operator to the superalgebra bitableau 
( ~ ( ~ ) b ( ~ )  I 1 2 3 4) and recover the Grassmann con- 
dition. More explicitly, we expand (a(2)b(2) I 1 2 3 4) 
inside the exterior algebra generated by the let- 
terplaces to get 

n; 

(a(2) I 1 2)(b(2) 1 3 4) + (a(2) I 1 4)(b‘2’ I 2 3) 
- (a(2) 1 1 3)(b‘2’ I 2 4). 

Then we apply the umbral operator, U, to “lower 
indices” and get 

where ai,j .= bi,j is the coefficient of the basis ele- 
ment i j in w. In characteristic 0 one can write 
any invariant or even any joint covariant of sym- 
metric and skew-symmetric tensors in this fash- 
ion. For example, an element w of the exterior al- 
gebra on n generators can be written as a product 
of linear terms precisely when the letters a and b 
both represent w and when the covariant repre- 
sented by 

a(k)b(2)C(n-k-2) 1 2 . . . ( b(k-Z)d(n-k+Z) 1 1 2 ... :) 
vanishes irrespective of the tensors that c and d 
represent. 

For further exposition and more complicated ex- 
amples of these techniques, the reader can consult 
[6 ,12,19]  and the work of Howe and Huang in the 
mid-1990s describing the invariants of an arrange- 
ment of four subspaces. 

One of the keys to understanding invariants 
produced by the supersymmetric symbolic method 
is the Grassmann-Cayley algebra. This was devel- 
oped by Rota and his colleagues in various works, 
notably [lo, 11, as a system of computation with 
subspaces of a vector space. The application to in- 
variants of arbitrary skew-symmetric tensors can 
be found in [ 121. Indeed, Grosshans pointed out to 
the authors that Rota’s interest in skew-symmet- 
ric tensors arose from his interest and research into 
the Cayley-Grassmann algebra. He offered the fol- 
lowing quote from the work of Csurka and Faugeras 
in computer vision: 

The Grassmann-Cayley algebra intro- 
duced in the 1970’s by Rota and his 
collaborators [[l], as well as [12]] is a 
modern version of the Grassmann al- 
gebra. During the last few years it has 
regained interest because of its wide ap- 
plicability to “effective projective geom- 
etry”. . .and computer vision. The reason 
is that it can be seen as an algebra of 
geometric incidence relations.. . 

The interested reader is well advised to consult the 
third chapter of Sturmfels’s Algorithms in Invari- 
ant Theory for a cogent account of the theory and 
computational applications of the Grassmann-Cay- 
ley algebra, but we include the following brief 
paragraph to illustrate the point. 

Consider a triple (colt wz, w3) of degree 2 ele- 
ments of the exterior algebra generated by three 
variables, and let a, b, c be letters associated with 
these tensors. The previous discussion implies 
that 

a(2)b 1 2 3 
( b C ( 2 )  I 1 2 3 )  

is an invariant of these three tensors. Since any ho- 
mogeneous tensor in an exterior algebra generated 
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by three variables can be written as a product of 
degree 1 tensors, this invariant can equally well be 
considered an invariant of three lines in projective 
space. The Grassmann-Cayley algebra directly 
rewrites the above invariant as w1 A wz A w3, 
where, subject to technical conditions on nonde- 
generacy, A can be read as intersection. Thus this 
invariant vanishes precisely when the three lines 
meet in a common point. 
Cap& Operators and Superalgebras 
Another substantial reformulation done by Rota in- 
volved the work of A. Capeh. The action of the gen- 
eral linear Lie (super) algebra on the letterplace al- 
gebra by Capelli operators was introduced as a 
combinatorial tool in [lo], was developed in [81, and 
has been the point of departure for the reformu- 
lation of Capelli’s method of auxiliary variables by 
Brini and Teolis. In intuitive terms, the idea of 
Capelli consisted of adding to a polynomial alge- 
bra “supplementary variables” by application of cer- 
tain derivations, called polarizations, and then re- 
moving these variables by further polarization. 
This procedure allowed for the simplification of the 
combinatorial complexity of many proofs in the 
theory of invariants and in representation theory, 
e.g., the famous “Capelli Identities” found in Weyl’s 
book. This was due to the metafact that a polar- 
ization operator constructed as above via the aux- 
iliary variables is shown to have the same action 
on the original algebra as some operator con- 
structed via polarizations that does not contain the 

longs to the action of the universal enveloping al- 
gebra of the general linear Lie algebra and with care 
can be constructed to belong to the algebra gen- 
erated by the action of the general linear group (or 
of some subgroup). A typical example is the de- 
scription by Weyl of the classical Capelli operator 
as a true determinantal operator in the “pseudo 
polarizations” (Weyl’s terminology). 

In the final analysis, Capelli’s method suggests 
the idea of treating, via polarizations with respect 
to auxiliary variables, questions of symmetry in a 
kind of virtual mode. Since Capelli did not have the 
notion of superalgebra at hand, his method proved 
effective for treating the problems of symmetry but 
was less effective for those involving skew-sym- 
metry, which is equally important in studying the 
representations of the classical groups. 

The strength of Rota’s idea of passing to the su- 
peralgebra shows up clearly in this setting. Here 
the auxiliary variables have a Z2-grading, possibly 
different from the original variables. We can now 
consider the action, as a Lie superalgebra, of 
(super)polarizations on both the new and the aux- 
iliary variables. T h s  permits the Capelli method 
to work in the same way for symmetry and skew- 
symmetry. 

For example, both the permanent and determi- 
nant of a generic matrix can be regarded as 

I auxiliary variables. This operator then naturally be- 

Rota with Rotafest organizers, April 1996. Back, left to right: 
R. Ehrenborg, D. Loeb, A. disucchianico, N. White. Front: Rota, 
R. Stanley. 

polarizations of virtual monomials, as can the 
Schur and Weyl modules. More generally, the sym- 
metrized determinantal Young bitableaux, fairly 
complex combinatorial objects that are basic in rep- 
resentation theory, can also be treated as the image 
under polarizations of virtual bracket monomials. 

The same method can be applied to the umbral 
map for skew-symmetric tensors and to various 
symmetrization operators of some importance: 
Capelli operators, generators of the Schur alge- 
bra, Young symmetrizers. All of these operators 
can be represented, by means of the virtual su- 
peralgebra method originated by the ideas of Rota, 
as monomials in the polarizations, thereby sim- 
plifying enormously the combinatorial study of 
their actions. 

We close with a combined application of su- 
persymmetry and Capelli operators. Consider the 
superalgebra bitableau a ’ *), which is 
an element of an exterior letterplace algebra. The 
superalgebra version of the standard basis theo- 
rem says that this must be a constant multiple of 
the bitableau (g  I ) . Polarizing the positive 
letters a and b to negative letters XI, xz and y1, y2 
in the first, unstraightened, expression yields 

(;; ;I ; ;) - (Q X l Y l  y2l 1 2  2 )  

-(z$;)+(z$;)- 
Applying the same polarizations to the second ex- 
pression above (the straightened bitableau) yields 
the identity 
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for some constant c. Now consider a 2 x 2 array 
of vectors in Q2, each of whose rows lists a basis 
for Q2. From the preceding identity, together with 
the fact that c turns out to be nonzero, it is easy 
to see that the entries in each row can be per- 
muted so that each column also indexes a basis. 
This kind of technique may also be applied for 
larger arrays; the only substantial difficulty is that 
c becomes extremely difficult to compute. This 
computation led to Rota’s famous Basis Conjecture: 

Take any n2 vectors in Qn and arrange 
them in an n x n array. If each column 
forms a basis, then the entries can be 
permuted inside the columns so that 
each row also forms a basis. 
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