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ABSTRACT

A fundamentally new molecular-biology tech-
nology in constructing restriction maps, Optical
Mapping, has been developed by Schwartz et al.
(1993). Using this method restriction maps are
constructed by measuring the relevant fluorescence
intensity and length measurements. However, it is
difficult to directly estimate the restriction site lo-
cations of single DNA molecules based on these
optical mapping data because of the precision of
length measurements and the unknown number of
true restriction sites in the data. We propose the
use of a hierarchical Bayes model based on 2 mix-
ture model with normals and random noise. In
this model, we explicitly consider the missing ob-
servation structure of the data, such as the orien-
tation of each molecule, the allocation of each cut-
ting site to one of the normal distributions, and
an indicator variable of whether an observed cut
site is true or false. Because of the complexity
of the model, the large number of missing data,
and the unknown number of restriction sites, we
use Reversible-Jump Markov chain Monte Carlo
(MCMC) to estimate the number and the loca-
tions of the restriction sites. The study is highly
computer-intensive and the development of an ef-
fident algorithm is required.

1 Introduction

Restriction maps are one of the most fundamen-
tal data structures in molecular biology. However,

the construction of a restriction map of a DNA
molecule from fragment length data has proven
difficult to automate. In addition to the time and
expense required in runming gel electrophoresis,
the computational part of restriction mapping is
not easy. Even ignoring length-dependent mea-
surement errors, the double digestion problem is
known to be NP-hard (Goldstein and Waterman,
1987) and there are often multiple solutions, only
one of which is biologically relevant (Schmitt and
Waterman, 1991). Recently an innovative new ap-
proach has been developed, Optical Mapping, that
can produce ordered restriction maps using fluo-
rescence microscopy (Schwartz et al., 1993). In
this version restriction maps of individual molecules
are constructed by measuring the relevant fluores-
cence intensity and length measurements.

First, restriction maps are constructed by imag-
ing restriction endonuclease cutting events in single-
stranded DNA molecules from yeast chromosomes
with fluorescence microscopy. Cut sites appear as
gaps that increase as the DNA fragments relaxed.
Then for each molecule these gaps are rescaled
within a unit interval (Figure 1). Thus, from this
method data can be collected for the ordered re-
striction maps (fluorescence images) of thousand
molecules in a few hours, up to 500 Kb in size
currently with resolution about 200-250 basepairs
(Schwartz et al., 1993). From these (orderd) cut
sites we try to estimate the number and locations
of restriction sites of a molecule. Notably, the mea-
surement errors of these optical mapping data ap-
pear to be independent of length. Therefore, the
advantage of this new technology is to eliminate
the imprecision and expense in time and money
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of gel electrophoresis for determining the number
and locations of restriction sites.

There are several complications in directly con-
structing a physical map from this kind of optical
mapping data. For each molecule usually a few
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cut sites are observed from among all (unknown)
restriction sites. Furthermore, there are false cut
sites that appear with an unknown rate, and in
some cases the orientation of each molecule from
the fluorescence images is unknown. This has been
studied with several different approaches, such as
the pioneering Bayesian calculation of the model
probability of the data by Anantharaman et al.
(1997) and subsequent work by Dantik and Wa-
terman (1997). However, the statistical problem
of how to rigorously estimate the number of un-
known restriction sites K has not been resolved. In
addition to the difficulty of the unknown number
of restriction sites, there is multimodality of the
likelihood function due to unknown orientations
of molecules. We here propose a full construction
of a hierarchical Bayes model by explicitly defin-
ing the missing structure of the data. Because of
the complexity and the presence of a large num-
ber of missing data, we use Markov chain Monte
Carlo (MCMCQ) techniques to infer the parame-
ters (e.g., Besag et al., 1995; Smith and Roberts,
1993; Thompson, 1995). First, at a fixed K we es-
timate separately the locations of the restriction
sites, their relevant variances, and the constant
rate of random noise. Then for an unknown K
we use the reversible-jump MCMC technique sug-
gested by Green (1995) and Richardson and Green
(1997). Our model may appear a bit complex
at the first glance. However, the hardest prob-
lem of applications of this technology is estimat-
ing the number of restriction sites. The complica-
tions of our model all arise from our desire to apply
the powerful modern simulation methods such as
MCMC to this central problem, since no analytic
counterpart is tractable. Such methods invariably
lead to making rigorous models for aspects of the
problem that are often left implicit and unspecified
such as the different likelihood spaces for differing
numbers of sites where the numerical values of the
likelihoods are not comparable.

2 The Model

Suppose that for molecule i =1, ..., M we observe
n; cutting sites zi,1,- .-, Zin;, that are rescaled to
lie within a unit interval. Notably, the orienta-
tion of these molecules are unknown; so the true
location of each cut site is either z;; or 1 —z:,;
depending on the orientation. For our statistical
construction we consider a mixture model with
normals and a random noise. Let an integer K
be the number of the restriction sites. Cut sites
corresponding to the k-th restriction site are ob-
served as a normal distribution with mean 8x and
variance 6%, k = 1,...,K. Fori=1,...,M let
the indicator variable w; for the orientation of the
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Figure 1: A DNA, BamH I Enzyme Data. Each
Tow represents a molecule cut by the enzyme.

molecules be distributed as
wi ~ Bemoulli(%),

with zero being for the current values z;,; and one
for the reverse (1—z;,;5), all M independent of each
other. Let v; ; be the index variable for false cuts

v;,j ~ Bernoulli(1 — p),

where p is the constant fraction of random noise,
and v; js are all independent of each other for i =
1,...,M and j = 1,...,n;. Then, given w; and
v;,7, let the allocation variable u;; have probabil-
ities

Priuj=k}=0, (k=1,..., K014+ -+éx = 1),

all independent of each other. Finally, conditional
on wi, ¥i,j, %i,j, 0'3,'.,5, and 8y, ;, let

N Uniform(0, 1), v, =0
yii~1{ Normal(aui,j,di‘-.j), vi;j=1

all independent of each other, where y; ,, given wi,
are the (true) cut site after knowing the orientation

w; =0
w; = 1.

o= f T

Yij = { 1 -5,
We note that in our modeling only the z; ;’s are
observed and all w;,vij,tiy, § = 1,...,mi, t =
1,..., M are missing. So, the parameters of inter-
est are



Y= (91,..-,6}{,61,---,5}{,0’?,...,0’?{{,}]) and the

missing data are m = (u;,j,v:,j,wi)fori=1,..., M
and 7 = 1,...,n;. Thus, the joint probability of
the observed (z) and missing data (m) is Pr(z, m |

7)

= Pr(z|m, ‘y)IPr(u)IPr(U)IPr(w)

M n;

= T {2 et & fesl s
\/2_710',,‘ 20%

=1 j=1 53

"’s 3 2 1—vg 1—w;

”::: (1 —p)Thipt =75 } %
(Q—zi5—0s )

[ L exp{
\Y 27"0'11:’5 203? .

1,3
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6"‘;'_-,' (1- p)hip hi
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where v;,; and v]; are different depending on the
orientation; so are u;,; and uf ;.

Under the Bayesian paradigm we consider in-
dependent prior distributions on the parameters as
follows: the order statistics of $id K Uniform(0,1)
variables for § = (61,...,0%), Beta(e, ) for p,
T'(¢,v) (Gamma) for of, and Dirichlet(s, ...,n)
prior for (81,---,0x). (For simplicity we use the
same notation of the order statistics as those of the
uniform variables 8, and unless explicitly men-
tioned, we assume the former from now on.) The
estimated mixture is sensitive to the choice of the
parameters in I‘({, v}, so that we need to consider
another hyper prior distribution for o7 (Richard-
son and Green, 1997). Fixing £ = 2, we choose a
T'(g, k) distribution for v with g = 0.2 and h =40
for Ib.dat (119 molecules, 401 cut sites). Under
several assumptions about our modeling on opti-
cal mapping, such as false cut rate (less than 15%),
resolution of optical mapping (ox < .05), and pro-
portion of cut sites allocated to each restriction site
(max p; j 1.5 min p;), some hyper prior parameter
values are to be changed based on the size of each
data set. For instance, if the number of cut sites
is N, we use 7= N/10,a = Nf4,8 = 2.25N, and
g=N/10.

Then the joint posterior distribution =(y,m |
z) of the missing data and the parameters is pro-
portional to

Pr(z,m|y)x K!p*'(1~-p)* ! x

X 3 251—«"'
n—1”(°’k)
1 (s 25 ) < o

k=1
T(Kn) v 1h%e™v
T%(n) T(g)
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3 Markov Chain Monte Carlo

3.1 Basic Updating

Since a direct inference on the model is rather diffi-
cult, we utilize Markov chain Monte Carlo (MCMC),
a recent statistical simulation technique (Smith
and Roberts, 1993; Thompson, 1994). This tech-
nique enables us to sample both the parameters
and missing data directly from a complex (large-
dimensional) likelihood function known up to con-
stant. To do this we need to derive each full con-
ditional distributions of the missing data and the
parameters. First, given the orientation w;, we
jointly update u;,; and v;j. Note that the condi-
tional distribution of v;,;, given u; j, is completely
deterministic. Given w; and the parameters, the
joint conditional distribution of u;; and v;; has
probabilities:

ro = Pruij=0,v;j=0]rest] =c p,
re = Prluij =k,vi; =1|rest] 2)
A=)k (vi5—0x)’
€ *p{- Zak b

V2rok

where k = 1,...,Kandro+r1+---+rg =1
with some constant c. Since some false cuts may
become true cuts as the orientation is ﬂipped, and
vice versa, we actually sample both u}’ J (for w; =
0) and u; (for w; = 1); the values for v}’ ; and v}
then follow from uf 75 and u,

The conditional’ d15tnbut10n of wi, given the
others, is proportional to

H( 1 - p)ou,; Jois ¢ -—%—”u”vi.j(yi.i—eu;,;‘)z
p‘\/2_7ra'u, g

Thus, w; is updated from a Bernoulli trial with
probability

go = [Pr[w;=0]rest]

exp{—zT :l,’j(x",:i -

‘,J

Prfw; =1 | rest]
(1-p)s,

8,+)°} and
L%

— ' ’ t'
- H( p\/2—1w u=. ) 7
'11
exp{— 01— i — 0 V),
Ui '



where gp + g1 = 1 with some constant c.

After deciding the orientation we set u;,, (and
vi,5) to be either uf, (vf,'J) or u;; (v;;) depending
on w,. Also note that even though we describe
the updating of u,v, and w separately, these are
jointly sampled In our actual updating.

The conditional distribution of 8, k= 1,..., K,
is derived as a double-truncated normal, the exact
form being found by completing the square. Let

L =n;
T = Mikzzyi,: I(ui; =F)

i=1 j=1

the mean of the points in the k-th component,
where M = Z:. Zjl(ui'j = k) with I(Ui,j = k)
being the index variable whether or not the (4,7)-
th observation is classified into the k-th subpopu-
lation. Then the conditional distribution of 8 is
proportional to

(6x — zx)?
P {_ 21:72/]1;1: }

if My > 0. From this we see that the fi’s are
conditionally independent given the missing data,
and their distribution is a double-truncated nor-
mal subject to Ox—1 < O < Or41, b =1,..., K
(8o =0, 8x =1 for notation), with mean F; and
variance o7 /Mx.

Due to conjugacy, the full conditional distribu-
tion of weight § remains in the form of Dirichlet
where

(51,...,5}{_1) ~Dirich1et(n+M1,...,n+Mx).

The update of p is simply derived as a Beta dis-
tribut:ion with parameters ¢ =N—3_, > . vij+a
and B=3".3 vi;+B-

The conditional distribution of 0';2 is propor-
tional to

that is a gamma distribution with parameters (y,f+
§) and (3, 4w — 06)*/2+7).

Finally, the hyperparameter v is updated by I'(¢+
92,05 +h).

3.2 Reversible Jump for Number of Restriction
Sites

Since the number of restriction sites is unknown,
we need to devise an updating scheme that al-
lows us to jump between two models with dif-
ferent numbers of restriction sites. This cannot
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be achieved by the standard MCMC approach in
the previous section because we need to jump be-
tween two state spaces with different dimensional-
ity, for which the existence of common dominating
measure is not generally ensured. Green (1995)
and Richardson and Green (1997) proposed the
reversible-jump chain, a way to circuamvent these
difficulties by introducing some auxiliary indepen-
dent variables for balancing the dimensionality. Sup-
pose that a move based on transition g is proposed
from z = (v,m) to a point 2’ = (¥',m’) for both
parameters and missing data, with 2z’ in a higher-
dimensional space. The dimension-matching be-
tween them can be accomplished by drawing inde-
pendent random vector ¢ having the same degree
of freedom as the difference of the dimensionality
between the two state spaces of z and z'. Then,
we effectively set an invertible deterministic rela-
tionship 2z’ = z'(z, ). Note that the reverse of the
move (from 2’ to (z,t)) can be implemented by us-
ing the inverse transformation of the relationship.
The acceptance probability of the move from z to
z' is the Metropolis-Hastings ratio r (MH; Hast-
ings, 1971) as

W(zll.‘l:) (z', z)
7(z]x) q(g, z') p(t) [Toenll @)

where g(-,-) is the probability of the tranmsition
g, p(t) is the probability density function of ¢,
and Js(z;4 is the Jacobian of the transformation
from (z,t) to z’. To make an efficient jump be-
tween the two different spaces, we need to de-
vise a “good” transition g and invertible relation-
ship z’(z,t). Since the move between two spaces
with a large difference of dimensionality is hard
to achieve, we only consider the move adding or
removing one component of the mixture (corre-
sponding to one restriction site) at a time. We
here propose a split-combine transition.

To increase K we split one of existing compo-
nents into two, and to decrease K we combine two
adjacent components into one. A transition can be
constructed by the following two steps. First, de-
cide to add one component with probability ax, or
remove one with probability 1 — ax. In our study
weuseag =.51f1< K < Kmax, ax =0if K =
Kmax, and ax = 1 if K = 1, with a sufficiently
large, pre-determined Kmax. Next, choose which
site is to be split or which pair of adjacent sites is to
be combined. Since the component having a larger
number of cut sites allocated is more likely to be
split into two (similarly, two adjacent components
having fewer cut sites allocated are more appro-
priate candidates to be combined), we give differ-

ent weights as pl = —gmk—p,k = 1,...,K for

myte-dmy
k=

min {1,

1(mi+mi,,)
e Come A

split and px = 7



1,...,K —1 for combine. These addition or dele-
tion schemes will be effective under the assumption
that there are about the same number of cut sites
observed at each true restriction site. {However,
it has been observed from experimental data that
if two restriction sites are very close, the sum of
the numbers of cut sites observed in the two sites
is slightly less than twice of the average number of
cut sites of the other restriction sites.)

For combine, after choosing two adjacent com-
ponents to combine according to probability px, we

match the 0B {weights), 15t, and 229 moments of
the new component to those of the two current
ones chosen to combine. We merge all cut sites
of the two selected components into the new one
and calculate the parameters for the new combined
component as

Ope = Or+0Oks1
Spefre = Okbk+Ort10k41 @
Sk (63 +02.) = k(B +07)+

6x41(6341 + 0241)

For split, in addition to choosing a component
to split with probability p}, we need to introduce
three independent random variables #;,%2, and #3
to match the dimensions of the two spaces; these
are all generated from Beta(2,2) in our study. Then,
using these generated values, we construct an in-
vertible function z’ = 2'(ug+, Ok* , Oks, t1, b2, £3) st~
isfying the relationship in (4). We, for example,
set:

O = t10%>
Or41 = (1 —t1)0xe
O = Ope — a'kotg\/h/(l—tl) (5)

Or31 = ke + oretrn/(1— 1) /12
2 _ts(1—8)

Pt SE— 2.

O = t (s 5%
= A0

—

‘We now need to reallocate the cut sites belonging
to the k*th component into the new k-th and k--1-
th components analogous to (2). That is, we assign
each cut site into one of the two components with
probabilities rx and rx41 as in (2) subject to rx +
tx+1 = 1. Then the MH ratio in (3) for the split
move reduces to

r = min{y, FCE) _(—ax)
' w(z|z) ax pi p(t) Pettoc

b (6)

] le (ak Wk ,c:,t)
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where %Z?IILE))' is the posterior probability ratio of
(2) for the new point 2’ against the old point z,
p(t) = p(t1,%2,t3) is the product of three indepen-
dent density functions of Beta(2,2), Paitoc is the
probability that this particular allocation is made,

o3 (1—t3
20d | Toray 2| = pomigyals- The MH ra-
tio for the combine move can be calculated as the
reciprocal of (6) with some obvious substitutions.
In this case dke, ik, 0% ,t1,22 and ¢ should be
back-calculated from (4) and (5).

4 Results

For our example we have used a data set from
Fig.1, which has five (true) restriction sites. In this
case we have implemented our MCMC algorithm
with two different starting points of the number of
restriction sites—two and eight. The case started
with two restriction sites leads us quickly to the
true number of restriction sites (five), and the mean
estimates of our MCMC sample precisely captured
their true locations. Unfortunately, starting with
eight restriction sites, we ended at six restriction
sites, creating a false restriction site between the
true first and second ones; however, the other five
restriction sites were correctly estimated (Table 1).
We believe the reason why we have more restric-
tion sites than the true map (when started with
eight) is that since the orientations of molecules
are initially unknown, we created a false restriction
site where the gap between two adjacent (true) re-
striction sites is large. This may have occurred
by clustering single-cut sites and noise in the early
stage of our MCMC run, and the algorithm may
not be able to remove this in later iterations. There-
fore, to overcome such multimodality, we believe
it is better to start with a small number of re-
striction sites. In Table 1 we can see that our
MCMC run has stayed at the true number of re-
striction sites (five) for most of the time (frequency
99.71%). Their true locations were also accurately
captured by their MCMC mean estimates from the
MCMC sample with five restriction sites.
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Figure 2: MCMC estimates of restriction sites for
A DNA Data.

noise rl r2 =3 14 Y5
2 (freq 0.12%)

v : .084 .,228 .687
mean: .126 .604
3 (freq 0.15%)

v : .082 .194 .530
means: .133 .497
4 (freq 0.02%)

w T .087 .185 .372
mean: .133 .498

5 (freq 99.71%)
: .100 .168 .188

.123 .462

.192
-869

.160
.715

.194
.862

.185
.584

.169 .187
.713 .856

v
means:

Table 1. Mean estimates and frequencies of the
MCMC sample for A DNA Data. The MCMC run
started from two restriction sites.
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