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ABSTRACT 

A iimdamentdly new moIec&r-biology tech- 
nology in constructing restriction maps, Optical 
Mapping, has been developed by Schwartz et al. 
(1993). Using this method restriction maps are 
constructed by measuring the relevant fluorescence 
jnt&ty and length measurements. However, it is 
&&tilt to directly estimate the restriction site lo- 
C&XI.S of single DNA molecules based on these 
optical mapping data because of the precision of 
length measurements and the unknown number of 
true restriction sites in the data. We propose the 
use of a hierarchical Bayes model based on a mix- 
ture model with normals and random noise. In 
this model, we explicitly consider the missing ob- 
servation structure of the data, such as the o&n- 
tation of each molecule, the allocation of each cut- 
ting site to one of the normal distributions, and 
an indicator variable of whether an observed cut 
site is true or false. Because of the complexity 
of the model, the large number of missing data, 
and the unknown number of restriction sites, we 
use Beversible-Jump Markov chain Monte Carlo 
(MCMC) to estimate the number and the loca- 
tions of the restriction sites- The study is highly 
computer-intensive and the development of an ef- 
ficient algorithm is required- 

1 introduction 

Restriction maps are one of the most fundamen- 
tal data structures in molecular biology- However, 

the construction of a restriction map of a DNA 
molecule from fragment length data has proven 
difllcult to automate. In addition to the time and 
expense required in running gel electrophoresis, 
the computational part of restriction mapping is 
not easy. Even ignoring length-dependent mea- 
surement errors, the double digestion problem is 
known to be Nl?-hard (Goldstein and Waterman, 
1987) and there are often multiple solutions, only 
one of which is biologically relevant (Schmitt and 
Waterman, 1991). Recently an innovative new ap- 
proach has been developed, Optical Mapping, that 
can produce ordered restriction maps using fluo- 
rescence microscopy (Schwartz et al., 1993). In 
this version restriction maps of individual molecules 
are constructed by measuring the relevant fluores- 
cence intensity and length measurements. 

First, restriction maps are constructed by imag- 
ing restriction endonuclease cutting events in single- 
stranded DNA molecules from yeast chromosomes 
with fluorescence microscopy. Cut sites appear as 
gaps that increase as the DNA fragments relaxed. 
Theu for each molecule these gaps are rescaled 
within a unit interval (Figure 1). Thus, from this 
method data can be collected for the ordered re- 
striction maps (fluorescence images) of thousand 
molecules in a few hours, up to 500 Kb in size 
currently with resolution about 200-250 basepairs 
-(Schwartz et al., 1993). nom these (orderd) cut 
sites we try to estimate the number and locations 
of restriction sites of a molecule. Notably, the mea- 
surement errors of these optical mapping data ap- 
pear to be independent of length. Therefore, the 
advantage of this new technology is to eliminate 
the imprecision and expense in time and money 
of gel electrophoresis for determining the number 
and locations of restriction sites. 

There are several complications in directly con- 
structing a physical map from this kind of optical 
mapping data. For each molecule usually a few 



cut sites are observed from among ah (unknown) 
restriction sites. Furthermore, there are false cut 
sites that appear with an unknown rate, and in 
some cases the orientation of each molecule from 
the fluorescence images is unknown. This has been 
studied with several di&rent approaches, such as 
the pioneering Bayesian caIcu.Iation of the model 
probability of the data by Anantharaman et al. 
(1997) and subsequent work by Dan?& and Wa- 
terman (1997). However, the statistical problem 
of how to rigorously estimate the number of un- 
known restriction sites K has not been resolved. In 
addition to the difIicuIty of the unlmown number 
of restriction sites, there is muhimodahty of the 
likelihood function due to unknown orientations 
of molecules. We here propose a fuII construction 
of a hierarchiczd Bayes model by expJ.icitly de-f& 
ing the missing structure of the data. Because of 
the complexity and the presence of a large nm- 
ber of missing data, we use Markov chain Monte 
Carlo (MCMC) techniques to infer the parame 
ters (e.g., Besag et aL, 1995; Smith and Roberts, 
1993; Thompson, 1995). First, at a fixed K we es- 
timate separately the locations of the restriction 
site-s, their relevant variances, and the constant 
rate of random noise. Then for an unknown K 
we use the reversible-jump MCMC technique sug- 
gested by Green (1995) and Richardson and Green 
(1997). Our model may appear a bit complex 
at the first glance. However, the hardest prob- 
lem of applications of this technology is estimat- 
ing the number of restriction sites. The comphca- 
tions of our model aII arise from our desire to apply 
the powerful modern simulation methods such as 
MCMC to this central problem, since no analytic 
counterpart is tractable. Such methods invariably 
lead to making rigorous models for aspects of the 
problem that are often left implicit and unspecihed 
such as the difIerent Iikehhood spaces for differing 
numbers of sites where the numerical vahms of the 
likelihoods are not comparable. 

2 The Model 

Suppose that for molecule i = 1,. . . , M we observe 
n; cutting sites 2i.1,. . _ , x;,~~, that are rescaIed to 
he within a unit interval. Notably, the orienta- 
tion of these molecules are unknown; so the true 
location of each cut site is either x;,, or 1 - xi,j 
depending on the orientation. For our statistical 
construction we consider a mixture model with 
normals and a random noise. Let an integer K 
be the number of the restriction sites. Cut sites 
corresponding to the k-th restriction site are ob- 
served as a normal distribution with mean 0k and 
vanance a& k = 1,. . . , K. For i = 1,. . . , M let 
the indicator variable wi for the orientation of the 

0 + [sequence length) + 1 

Figure 1: X DNA, BamH I Enzyme Data. Each 
row represents a molecule cut by the enzyme. 

molecules be distributed as 

wi N Be~~~~dli(f)( 

with zero being for the current values xi,, and one 
for the reverse (l-x;,j), ah M independent of each 
other. Let viz be the index variable for false cuts 

V<,j N B~~di(l -P)l 

where p is the constant fraction of random noise, 
and vi,js are aII independent of each other for i = 
1 ,..., M and j = l,..., ni. Then, given W; and 
viz, let the allocation variable ui,j have probabil- 
ities 

IPr{ui,j=k}=br;, (k=l,...,K,61+...+sK=l)r 

aII independent of each other. FinaUy, conditional 
on w;, Vi,jr u;,j, &j, and Oui,jr let 

Yij N C 
Uniform(O, l), v;,j = 0 
NoITxA(O~~,~, o$~), vi,j = 1 

ah independent of each other, where y;,,, given wi, 
are the (true) cut site afterknowing the orientation 

yj,j = ( xi2jl Wi = 0 
l.-Xij, Wi= 1. 

We note that in our modeling only the xi,j’s are 
observed and all wi,vi,j,ui,l, j = l,...,n;, i = 
1 2---f M are missing. So, the parameters of inter- 
est are 
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r=(e~,..-,B~,6~,---,6~,~ ,..., c&p) andthe 
missingdataarem=(uij,vi,j,PV;)fori=l,...,M 
and j = l,..., n;. Thus, the joint probability of 
the observed (z) and mksiug data (m) is lPr(z, m ] 
Y> 

= Pr(2z 1 m,y)lE%(u)Pr(v)TPr(w) 

where v;,j and vi;- are different depending on the 
orientation; SO are ui,j and uz,i. 

Under the Bay&m paradrgm we consider in- 
dependent prior distributions on the parameters as 
follows: the order statistics of iid K Uniform(O,l) 
variables for B = (19, ,-.., f?~), Beta(a,/3) for p, 
I’(<,v) (Gamma) for a’, and Diichlet(q, . . . . n) 
prior for (6, , _ _ _, 6~). (For simplicity we use the 
same notation of the order statistics as those of the 
uuiform Mliables Bk, and unless explicitly men- 
tioned, we assume the former from now on.) The 
estimated mixture is sensitive to the choice of the 
parameters in I’(& v), so that we need to consider 
another hyper prior distribution for 4 (Richard- 
son aud Green, 1997). Fixing ,$ = 2, we choose a 
T’(g, h) distribution for Y with g = 0.2 and h = 40 
for lb&t (119 molecules, 401 cut sites). Under 
several assumptions about our modeling on opti- 
cal mapping, such as fake cut rate (less thau 15%), 
resolution of optical mapping (ok < .05), and pro- 
portion of cut sites allocated to each restriction site 
(max pi i L5 min pi), some hyper prior parameter 
values are to be changed based on the size of each 
data set. For instance, if the number of cut sites 
is N, we use g = N/10, a = N/4, fl= 2.25N, and 
g = N/lo. 

Then the joint posterior distribution a(y,m ] 
2) of the missing data and the parameters is pro- 
portional to 

lPr(z,mIy)x K!pa-‘(l-p)B-l X 

x (1) 

3 Markov Chain Monte Carlo 

3.1 Basic Updating 

Since a direct inference on the model is rather diffi- 
cult, weutilize Markov chain Monte Carlo (MCMC), 
a recent statistical simulation technique (Smith 
and Roberts, 1993; Thompson, 1994). This tech- 
nique enables us to sample both the parameters 
and missing data directly from a complex (large 
dimensional) likelihood function known up to con- 
stant. To do this we need to derive each full con- 
ditional distributions of the missing data aud the 
parameters. First, given the orientation wi, we 
jointly update ui,j and ui,j- Note that the condi- 
tional distribution of oi,jl given ui,j, is completely 
deterministic. Given wi and the parameters, the 
joint conditional distribution of Ui,j aud ui,j has 
probabilities: 

r0 = lF%fUi,j = 0, Ui,j = 0 1 rest] = C p, 

rk = lF%[Ui,j = k, Ui,j = 1 1 rest] (2) 
= c (1 - P)bk ewe- hi - ek)2 3, 

&i&k 24 

wherek:= l,...,Kandro+rl+..-+r~= 1 
with some constant c. Since some false cuts may 
become true cuts as the orientation is flipped, and 
vice versa, we a&rally sample both it (for ui = 
0) and uzj (for wi = 1); the values for uzj and VW 
then follow from ZIP and uij. 

The conditional distribukion of wi, given the 
others, is proportional to 

Thus, WU~ is updated from a Bernoulli trial with 
probability 

qo = 

= 

q1 = 

= 

lPr[Wi = 0 1 rest] 

IIt 
(1 -P)b. + 

C “’ I”‘*’ 
j Pa+ *,i 

ed-& u$(zi,j - B,+ )‘) and 
utj hi 

lP+Ui = 1 I rest] 
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where qo + q1 = 1 with some constant c. 
After deciding the orientation we set ui,, (and 

vi,,) to be either u:~ (v&) or UU (vcj) depending 
on w,. Also note that even though we describe 
the updating of u,v, and w separately, these are 
jointly sampled in our actual updating. 

The conditional distribution Of ok, k = 1,. . . , K, 
is derived as a doubl&runcated normal, the exact 
form being found by compZeting the square. Let 

L ni 

zk=&Fx$!id I(ui,j=k) 
a=1 j=l 

the mean of the points in the k-th component, 
where i& = xi cjI(u;> = k) with I(Ui> = k) 
being the index variable whether or not the (U)- 
th observation is class&d into the k-th subpopu- 
&ion. Then the conditional distribution of ek is 
proportional to 

exp { -($.$ff} 

if it!& > 0. Born this we see that the ok's are 
conditionally independent given the missing data, 
and their distribution is a double-truncated nor- 
mal subject to ok-1 5 ok 2 &, k = 1, _. . , K 
(e. = 0, OK = 1 for notation), with meau zk and 
Wl-ianCe CJ$it&. 

Due to conjugacy, the full conditional distribu- 
tion of weight 6 remains in the form of Dirichlet 
where 

(&,...,aK-1) NDirichlet(g+Ml,...,rl+MK). 

The update of p is simply derived as a Beta dis- 
tribution with parameters 6r = N- ci cj vi> +a 

mdfi=C;xjvi,j+P- 
The conditional distriiution of uL2 is propor- 

tional to 

thatisagamma distribution with parameters (q+ 

t) ad (cu,j,k(Y;j-ek)2/2+v)- 

Finally, the dyperparameter v is updated by I’(t+ 
9, ck u;2 + ‘1. 

3.2 Reversible Jump for Number of Restriction 
Sites 

Since the number of restriction sites is unknown, 
we need to devise an updating scheme that al- 
lows us to jump between two models with dif- 
ferent numbers of restriction sites. This cannot 

be achieved by the standard MCMC approach in 
the previous section because we need to jump be- 
tween two state spaces with different dimensional- 
ity, for which the existence of common dominating 
measure is not generally ensured. Green (1995) 
and Richardson and Green (1997) proposed the 
reversible-jump chain, a way to circumvent these 
difhculties by introducing some auxiliary indepen- 
dent variables for balancing the dimensionality. Sup- 
pose that a move based on transition q is proposed 
from z = (y,na) to a point z’ = (y’,m’) for both 
parameters and missing data, with z’ in a higher- 
dimensional space. The dimension-matching be- 
tween them cau be accomplished by drawing inde- 
pendent random vector t having the same degree 
of freedom as the difference of the dimensionality 
between the two state spaces of z and z’. Then, 
we effectively set an invertible detm . ‘stic rela- 
tioIl&ip z’= z’(z, t). Note that the reverse of the 
move (from z’ to (z, t)) can be implemented by us- 
ing the inverse transformation of the relationship. 
The acceptance probability of the move from z to 
z’ is the Metropolis-Hastings ratio r (MH; Hast- 
ings, 1971) as 

where q(-,-) is the probability of the transition 
q, p(t) is the probability density function of t, 
and .7,1(,,~) is the Jacobian of the transformation 
from (z,t) to z’. To make au efficient jump be- 
tween the two different spaces, we need to de- 
vise a “goodn transition q and invertible relation- 
ship z’(z,t). Since the move between two spaces 
with a large difference of dimensionality is hard 
to achieve, we only consider the move adding or 
removing one component of the mixture (corre- 
sponding to one restriction site) at a time. We 
here propose a split-combine transition. 

To increase K we split one of existing compo 
nents into two, and to decrease K we combine two 
adjacent components into one. A transition can be 
constructed by the following two steps. First, de- 
cide to add one component with probability oK, or 
remove one with probability 1 - UK. In our study 
weuseaK=.5ifl<K<Kmax,aK=OifI(= 
Km=, and OK = 1 if K = 1, with a sufficiently 
large, pre-determined Kmax. Next, choose which 
site is to be split or which pair of adjacent sites is to 
be combined. Since the component having a larger 
number of cut sites allocated is more likely to be 
split into two (similarly, two adjacent components 
having fewer cut sites allocated are more appro- 
priate candidates to be combined), we give differ- 

ent weights asp; = &,k = l,...,K for 
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1 , _ _ . , K - 1 for wmbkne. These addition or deIe- 
tion schemes wiII be effective under the assumption 
that there are about the same number of cut sites 
observed at each true restriction site. (However, 
it has been observed from experimental data that 
if two restriction sites are very close, the sum of 
the numbers of cut sites observed in the two sites 
is slightly less than twice of the average number of 
cut sites of the other restriction sites.) 

For combine, after choosing two adjacent com- 
ponents to combine according to probability pl;, we 
match the Oth (weights), lst, and 2nd moments of 
the new component to those of the two current 
ones chosen to combine. We merge alI cut sites 
of the two sekcted components into the new one 
and caIcuIate the parameters for the new combined 
component as 

For split, in addition to choosing a component 
to split with probability pi, we need to introduce 
three independent random variables tr , tz, and ts 
to match the dimensions of the two spaces; these 
are aII generated from Beta(2,2) in our study. Then, 
using these generated v&es, we construct an in- 
vertible function z’ = Z’(pk*, Ok* ,dk*, tl, t2, t3) Sab 
is@ng the relationship in (4). We, for example, 
set: 

We now need to reallocate the cut sites belonging 
to the k’th component into the new k-th and k+l- 
th components amdogous to (2). That is, we assign 
each cut site into one of the two components with 
probabihties rk and rk+l as in (2) subject to rk + 
rk+l = 1. ?‘hen the hm ratio in (3) for the split 
move reduces to 

where $$$ is the posterior probability ratio of 
(2) for the new point z’ against the old point z, 
p(t) = p(tl, te, ts) is the product of three indepen- 
dent density functions of Beta(2,2), Pauoc is the 
probability that this park&r allocation is made, 

and J4Qw;tt) I I = .&$$&- The MH rai 

tio for the combine move can be calculated as the 
reciprocal of (6) with some obvious substitutions. 
h this me 6k*,pk*,QZk. ,tl,h and ts should be 
back-caIcuIated from (4) and (5). 

4 Results 

For our example we have used a data set from 
Fig.1, which has five (true) restriction sites. In this 
case we have implemented our MCMC algorithm 
with two different starting points of the number of 
restriction sites-two and eight. The case started 
with two restriction sites leads us quicIdy to the 
true number of restriction sites (five), and the mean 
estimates of our MCMC sample precisely captured 
their true locations. Unfortunately, starting with 
eight restriction sites, we ended at six restriction 
sites, creating a false restriction site between the 
true first and second ones; however, the other five 
restriction sites were correctly estimated (Table 1). 
We believe the reason why we have more restric- 
tion sites than the true map (when started with 
eight) is that since the orientations of molecules 
are initiaUy unlmown, we created a false restriction 
site where the gap between two adjacent (true) re- 
striction sites is large. This may have occurred 
by clustering single-cot sites and noise in the early 
stage of our MCMC run, and the algorithm may 
not be able to remove this in later iterations. There- 
fore, to overcome such multimodality, we believe 
it is better to start with a smaII nmber of re- 
striction sites. In Table 1 we can see that our 
MCMC run has stayed at the true number of re- 
striction sites (five) for most of the time (frequency 
99.71%). Their true locations were also accurately 
captured by their MCMC mean estimates from the 
MCMC sample with five restriction sites. 

f 
Z(+) (I--K+l) Pk = mill (1, - 
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Figure 2: MCMC estimates of restriction sites for 
X DNA Data. 

noise rl r2 r3 r4 r5 
2 (freq 0.12%) 

v : .084 ,228 -687 
mean: -126 -604 

3 (freq 0.15X) 
v : -082 .I94 -530 -192 
mean: .I33 -497 .869 

4 (freq 0.02%) 
v : -087 -185 -372 -160 -194 
mean: -133 -498 .715 .862 

5 (freq 99.71%) 
v : .I00 -168 .188 .185 -169 .187 
mean: -123 .462 -584 .713 -856 

Table 1. Meau estimates and frequencies of the 
MCMC sample for X DNA Data. The MCMC run 
started from two restriction sites. 
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