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ABSTRACT 

Often, in biological studies, it is necessary to identify an organism’s chromosomes. In some 
organisms the individual chromosomes can be identified by staining procedures while many 
other species have a very large number of chromosomes, often of similar size, which defy 
identification by traditional staining methods. We have devised strategies, based on fluores- 
cent in situ hybridization (FISH), which allow the assignment of a preset number of probes 
to each chromosome without prior chromosome identification. By hybridizing mixtures of 
probes labeled with different colored fluorescent molecules, the chromosomal origin of each 
probe can be determined. 

Key words: FISH, chromosome characterization, experimental design, coupon collector problem, 
mathematical modeling 

1. INTRODUCTION 

HE GENOME PROJECT IS AN EFFORT TO DECIPHER the genetic code of humans and a small number of T experimental organisms including the mouse, fruit fly, yeast and the common bacteria E. coli. A great 
many other species hold fascination for life scientists but are not likely to be analyzed in as much detail 
since their impact on health-related research is not thought to be very high. Yet, genome analysis of many of 
these “orphan” species could provide fundamental information on important biological and evolutionary 
questions. Thus fast and relatively simple methods to investigate genome structure from virtually any 
organism would be of great value. 

Fluorescent in situ hybridization (FISH) is a method of genome analysis that can localize a specific 
DNA sequence to a chromosome (Johnson et al., 1991; Le Beau, 1996; Lichter et al., 1990; Speicher, 
1996). If the genome of an organism is fragmented and individual pieces isolated by recombinant DNA 
cloning, then the original chromosomal location of any fragment can be determined. First, the fragment 
(probe) is fluorescently labeled and then added to a preparation of cells in which the chromosomes remain 
intact. The fragment will anneal (hybridize) to its chromosome of origin and a microscope can be used 
to detect the fluorescent label on a single chromosome. By carrying out FISH with many probes, a large 
number of them can be associated with each individual chromosome. 
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In some organisms the individual chromosomes can be identified by staining procedures and thus probes 
can be localized by FISH to their particular chromosomes with little difficulty. On the other hand, many 
species have a very large number of chromosomes, often of similar size, and may defy identification by 
traditional staining methods. We have devised strategies that allow the assignment of a preset number of 
probes to each chromosome without prior chromosome identification. By hybridizing mixtures of probes 
labeled with fluorescent molecules of different colors, the chromosomal origin of each probe can be 
determined. 

In this study, we formulate a problem involving the assignment of probes to chromosomes using FISH. 
We first formalize the problem and then discuss and analyze three separate solutions. The results of 
assigning probes to chromosomes might be the raw data for the problem of comparing sets of synthetic 
genes. See Ferretti et al. (1996). 

2. PROBLEM DESCRIPTION 

We are given a set of N chromosomes. We want to assign at least m probes to each chromosome. 
Assignments are done by experiments. In each experiment, we use some number of probes. Each probe is 
colored with one of the available colors. Generally, the number of available colors is less than the number 
of probes in an experiment. The colored probes are presented to the N chromosomes. The origin of each 
probe is determined by observation of the occurrences of the colors on the chromosomes. Since there are 
usually more probes than colors, observing a color on a chromosome does not give precise information 
about which probe is on that chromosome. Several experiments may be required to determine which probe 
is on the chromosome. We emphasize that the chromosomes are in no way distinguishable. Observation 
that a probe x is on a chromosome does not tell us which chromosome it is on. All we know is that 
it is on the chromosome of origin for probe x .  We call the method of combining probes and colors in 
an experiment the protocol. The method of collecting information from the experiments we denote the 
strategy. In this study, we present several solutions for the following problem. 

Chromosome Characterization Problem (CCP): Devise a protocol for the experiments and a 
strategy for collecting information from the experiments such that the number of experiments 
required to assign at least m probes to each of the N chromosomes is minimized. 

Since we have no control over the origin of each probe, this problem is naturally a statistical one. 
Our solutions therefore are designed to minimize the expected number of experiments. In what follows, 
we propose and analyze several experimental strategies. Below we assume that each probe in the library 
belongs to a unique chromosome. (If this is false, we discard the probe.) 

We use the following parameters: 

N = Number of chromosomes; 
m = Number of probes to be assigned to each chromosome; 
C = Number of available colors. 

In this paper, we present three strategies to solve the chromosome characterization problem in three 
separate sections. In each section we first give the experimental protocol and simulations. Then we present 
the mathematical analysis for the experimental strategies. Biologists who are interested in the experiments 
can look at the experimental protocol without going into detail about the mathematical analysis. 

3. THE FIRST STRATEGY 

3. I .  The experiment protocol 

We divide the experiments into two jobs. First we assign one probe to each chromosome. Then for 
each fixed chromosome, we assign m - 1 extra probes to the chromosome. In this way, we can assign m 
probes to all the chromosomes. We explain the two jobs in detail next. The strategy is closely related to 
the coupon collectors problem (Feller, 1968). 
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Job 1: One probe per chromosome. First, the experiments are done by analyzing one probe at a time 
until we assign at least one probe to each chromosome. Our protocol uses one color, without loss of 
generality, red. The number of probes per experiment increases as described below. Let k be the number 
of chromosomes that have been assigned one probe. Our strategy is as follows: 

1. Randomly choose a probe and denote it as c1. We call c1 a “success probe.” Set k = 1. 
2. Randomly choose another probe that we call a “sample probe.” Color the k “success probes” and the 

“sample probe.” Put the success probes and the sample probe together into one experiment. 
3. If the probes including the k “success probes” and the “sample probe” belong to k + 1 different 

chromosomes, i.e., the “sample probe” does not belong to the same chromosome as any of the “success 
probes,” we add the “sample probe” to the group of “success probes.” Set k = k + 1. 
Otherwise, discard the sample probe. 

4. Continue from step 2 until k = N, Le., all the chromosomes are assigned one probe. 

Notice that the last few chromosomes take more experimental steps to obtain one probe than the first 
few chromosomes do because a success probe is more difficult to find. We analyze the number of steps 
below. 

Using this protocol, it will be shown that the expected number of experimental steps to finish job 1 for 
N = 25 chromosomes is 95. 

After job 1 is completed, we can distinguish each individual chromosome by its single probe. We take 
advantage of this in the next job. 

Job 2: rn probes per chromosome. In our experiments, we can continue to analyze one probe at a time, 
or alternatively, many probes can be analyzed simultaneously. The economics of scale suggest that adding 
multiple probes simultaneously is much more practical. Given a batch of 1 sample probes, it makes sense 
to analyze the result of all 1 sample probes at once and to either reach a conclusion or decide to continue 
sampling only after all 1 sample probes have been assigned. In this job, our objective is to assign additional 
m - 1 probes to every chromosome. 

We focus our attention on an individual chromosome. All chromosomes will be similarly analyzed. 
Suppose that we consider chromosome i, distinguished by its success probe ci. Color ci with one color, 
e.g., red. We use the following experimental strategy. 

1. Randomly choose 1 new “sample probes” and color them with another color, e.g., green. Put the sample 
probes together with success probe ci in one experiment. If one or more of the sample probes occur on 
the same chromosome as ci, then one chromosome in the experiment will have one red probe and one 
or more green probes hybridized to it. 

2. If we detect exactly one sample probe on chromosome i ,  we can identify it in rlogc(l)l additional 
experiments as explained below. (Notice that we can distinguish between one and several green probes 
on a chromosome because we assume that there wilr be a detectable gap between the positions of 
hybridized probes.) 
Otherwise, discard these sampled probes. 

3. Continue from step 1 until m - 1 extra probes are assigned to chromosome i. 

In step 2, we need to identify the sample probe c, on chromosome i. We evenly divide the 1 probes into 
C groups, and give each of the first C - 1 groups a.different color. The probes in the last group are not 
colored. We color probe ci with the remaining color. One of the C groups must contain c,. We put all the 
colored probes in one experiment to see which group contains c,. If none of the colored sample probes 
belongs to the same chromosome as ci, then c, must belong to the uncolored group. We then discard all 
the probes in the other groups. We repeat this procedure by dividing the chosen group again into C smaller 
groups until we identify c,. In this way, we assign one additional probe to chromosome i in [log, (1)1 steps. 

We repeat this process until we assign m probes to each chromosome. 
It is easy to see that using one color and l = 1 we can also finish job 2. In general, if 1 is too small or 

too large, we will need more experimental steps to obtain exactly one new probe on chromosome i .  Also if 
1 is large, we need more experimental steps to identify the sample probe on chromosome i. Therefore the 
number of probes 1 is the most important parameter in this process. In the Mathematical Analysis (Section 
3.2), we will prove that the total expected number of experimental steps, including job 1 and job 2, is 
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TABLE 1. THE EXPECTED NUMBER OF EXPERIMENTAL STEPS USING THE FIRST 
,%XATEGY TO ASSIGN m = 5 MARKERS TO N = 25 CHROMOSOMES USING c COLORS 

AND I! SAMPLE PROBES 

1 

C 6 7 8 9 10 

2 

3 
No. of steps 906 852 81 1 880 856 

No. of steps 806 752 711 680 756 

1-1 
where p = $ (1 - i) . 

Simulations. Using the above formula we can obtain the expected number of experimental steps using 
C = 2 and C = 3 different colors to assign at least m = 5 probes to N = 25 chromosomes for different 
values of sample probe pooling size 1 (Table 1). 

To see the distribution for the number of experimental steps, we simulate the first strategy. For illustration, 
we take N = 25, m = 5 and C = 3. We choose 1 = 8, 9, 10 in our three simulations. Figure 1 (A,B,C) 
show the histograms for the number of experimental steps. Through simulation results, we find that for 
1 = 8, the mean for the number of experimental steps is 711 and standard deviation (sd) is 47. For 1 = 9, 
mean = 680 and sd = 45. For 1 = 10, mean = 756 and sd = 43. We see that 1 determines the efficiency 
of our experiment, with 1 = 9 being optimal. 

3.2. Mathematical analysis 

In this section, we study the number of experimental steps to assign at least m probes to each chromosome 
using the above protocol. We examine the two jobs separately. Let TI and T2 be the number of experimental 
steps in job 1 and job 2 respectively. 

Job 1: The number of experimental steps TI in job 1 corresponds to the waiting time before a coupon 
collector obtains a whole collection of coupons in the coupon collector’s problem (Feller, 1968). Here 
“coupons” correspond to probes and “figures” correspond to chromosomes. In our first theorem, we give 
results on the expectation, variance, and limit distribution for TI (Feller, 1968; Baum and Billingsley, 1969; 
Klaassen, 1994). 

Theorem 3.1. Let TI be the number of experimental steps in job 1. Then 

I .  The expectation of TI is 
N 

E(T1) = N l/k % N log(N). 
k=l  

2. The variance of TI is 

N 

Var(T1) = N C ( N  - k ) / k 2  x N(n2N/6 - log(N)). 
k=l 

3. AS N + 00, Z = exp(-(TI/N) + log(2N)) converges to an exponential distribution with mean 2. 

Note 1: Even when N is relatively small, such as N ? 10, the approximations in the above theorem 
are still very good. 
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FIG. 1. Histograms for the number of experimental steps using the first strategy after 5000 replications to assign 
m = 5 probes to each of the N = 25 chromosomes using C = 3 colors for sample probe size (A) I = 8, (B) 1 = 9, 
and (C) 2 = 10. 
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Note 2: From Theorem 3.1 (3), we can approximate the distribution of TI by 

FI(t) = PITI < t )  X exp(-N exp(-t/N)). 

The derivation of this approximation is straightforward. 

Job 2: For a fixed chromosome, let X be the number of experimental steps to assign one probe to 
it using the above protocol. Each probe belongs to the chromosome with probability 1 /N .  Because we 
put 1 sample probes in one experiment, the number of sample probes on the chromosome is binomially 
distributed with success probability 1 /N ,  denoted by B(Z, l / N ) .  Therefore exactly one of the Z probes 
belongs to the chromosome with probability Z/N(l - l /N)'- ' .  The number of experimental steps X *  to 
obtain exactly one of the Z probes belonging to the chromosome is geometrically distributed with success 
probability p = Z/N(1 - l /N) ' - ' ,  denoted by G(p) .  It takes rlogc(Z)l experimental steps to identify the 
probe belonging to the chromosome. Therefore 

x = x* + riogc(z)i 

E ( X )  = EW*) + rlogc(oi = V P  + rlogc(oi 

where X *  is geometrically distributed with success probability p .  Therefore 

and 
V a r ( X >  = Var(X*)  = ( 1  - p ) / p 2 .  

Let X i j ,  1 5 i 5 N ,  1 5 j 5 m - 1 be the number of steps to assign the j-th probe to chromosome i 
in job 2. Then according to our strategy, Xi j  are independent identically distributed (iid) random variables 
and have the same distribution as X and 

N m-1 

i= l  j=1 

From the above discussions, we have the following result: 

Theorem 3.2. Let T2 be the number of experimental steps in job 2 and p = a ( 1  - +)'-I.  Then 

1. The expectation of T2 is N ( m  - l ) ( l / p  + rlogc(Z)l). 
2. The variance of T2 is N (m - 1 )  ( 1  - p) /p2 .  
3. As N + 00, (T2 - E(T2))/,/- is approximately N(0 ,  1). 

Let T be the total number of experimental steps to finish our job. Then T = TI + T2 and the expectation 
and variance of T are: 

N 

E ( T )  = E V I )  +.E(T2) = N l / k  + N ( m  - l ) ( l / p  + rlogc(Z)l) 
k = l  

and 
N 

V a r ( T )  = Var(T1) + Var(T2) = N C ( N  - k ) / k 2  + N ( m  - 1 ) ( 1  - p ) / p 2 .  
k = l  

When N is relatively large (such as N p lo),  p can be reasonably approximated by exp (6).  

4. THE SECOND STRATEGY 

4. I .  The experimental protocol 

chromosome. Then we assign m - 1 extra probes to each chromosome. We try here to improve both jobs. 
As in the first strategy, we divide the experiment into two jobs. First we assign one probe to each 
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Job 1: One probe per chromosome. First let us improve job 1. In the first strategy, we put one sample 
probe along with the “success probes” into each experiment. This is reasonable for the first few steps 
because each time we have a high probability of obtaining a new “success probe.” But at the late stage 
of this job, much time is wasted waiting for a new success probe. We can design our experiment in such 
a way so that the number of “sample probes” depends on the number of “success probes” we have 
obtained. Based on a mathematical analysis that we describe below, our improved strategy is as follows: 
Let k be the number of “success probes.” 

1. Randomly choose a probe and denote it as c1. We call c1 a “success probe”. Set k = 1. 
2. Randomly sample L = rlogk,N(A(C))l “sample probes,” where A(C) is the solution for the equation 

x log(x) log(C + 1) + (1 - X)* = 0. 

(A(1) x 0.513, A(2) x 0.364, A(3) 0.294, A(4) x 0.252.) Color all the k “success probes” and 
the “sample probes” with one color. Put them into one experiment to see overlapping patterns. 

3. If the probes including the “success probes” and the “sample probes” belong to more than k chro- 
mosomes, then at least one “sample probe” does not belong to the same chromosome as any of the 
“success probes.” Identify one such probe in rlogc+l(L)l experimental steps (see below). Then add 
it to the group of “success probes.” Set k = k + 1. 
Otherwise discard all these sample probes. 

4. Continue from step 2 until k = N, Le., all the chromosomes are assigned one probe. 

In step 3, to identify one probe that does not belong to the same chromosome as any of the success 
probes, we can evenly divide the “sample probes” into C + 1 groups. Color each of the first C groups 
with a different color and do not color the probes in the last group. Color the k success probes with one 
of the C colors, e.g., red. Put the “sample probes” along with the “success probes” into one experiment. 
If the red probes, including the k “success probes” and the red “sample probes,” belong to more than k 
chromosomes, then one of the red “sample probes” must not be on the same chromosome as any of the 
k “success probes.” Otherwise, if all the red probes belong to k chromosomes and at least one colored 
sample probe with color other than red is on a different chromosome from any of the red probes, then 
the group of probes containing that sample probe can be identified. If the above two situations do not 
happen, the group of uncolored sample probes must contain at least one probe not belonging to the same 
chromosome as any of the k success probes. 

In this way we can identify one of the C + 1 groups containing a sample probe not belonging to the 
same chromosome as any of the “success probes.” Then we evenly divide this group into C + 1 groups 
again. Continue this process until we identify one sample probe not belonging to the same chromosome 
as any of the k success probes. This requires at most rlogc+l(L)l experimental steps. 

Using this strategy, the expected number of experimental steps in job 1 are 63, 54, and 48 using C =1, 
2, and 3 colors respectively for N = 25 chromosomes. Note that in the first strategy, job 1 requires 95 
steps compared to 63 steps in the second strategy using one color, a save of over 30%. 

Job 2: m probes per chromosome. In the first strategy, we usually need to wait a long time to see exactly 
one probe on a fixed chromosome. During the waiting time, the experiments are wasted. To overcome this 
problem, we pool both the ‘‘success probes” and “sample probes” simultaneously. 

As in the first strategy, suppose we have already finished job 1 and labeled each chromosome by a 
“success probe.” Then we assign m - 1 extra probes to each chromosome. Our second strategy is as 
follows: 

1. Randomly choose S < C “success probes” from the set of all the success probes and color each with 

2. Randomly choose L “sample probes” and color them with one color that is different from the colors 

3. Put the S “success probes” and L “sample probes” into one experiment and observe the number of 

4. Identify all the “sample probes” on each of the S labeled chromosomes. This takes at most r rlogc(L/C)l + 1 

a different color. 

used in step 1. 

“sample probes” on each of the S chromosomes labeled by the S “success probes.” 

experimental steps, where r is the number of probes on the chromosome (see Lemma 4.1). 
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TABLE 2. UPPER BOUNDS FOR THE EXPECTED NWBER OF EXPERIMENTAL STEPS 
USING THE SECOND STRATEGY~ 

L 

S 6 7 8 9 10 

For C = 2 
N o .  of steps 1 782 72 1 676 744 716 

For C = 3 1 677 616 572 537 612 
No. of steps 2 468 437 414 13951 485 

aWith success probe pooling size S, sample probe pooling size L and number of available colors C. 

5. Continue from step 2 until k 2 1 of the chosen chromosomes has been assigned at least m probes. 
Remove the success probes for these chromosomes from the set of S success probes. Then randomly 
choose k new “success probes” to replace them. If less than k success probes remain, choose all the 
remaining success probes. 

6. Continue from step 2 until all the chromosomes have been assigned at least m probes. 

Simulations. We used simulations to test the second strategy. Table 2 give upper bounds for the expected 
total number of experimental steps, including job 1 and job 2, to assign m = 5 probes to N = 25 
chromosomes using C = 2 and C = 3 colors and different success probe pooling sizes S and sample 
probe pooling sizes L according to the above protocol. From Table 2 we see that for C = 3, using sample 
probe pooling size L = 9 gives the smallest upper bound for any values of success probe pooling size L. 
For C = 3, S = 2 and L = 9, we only need on average at most 395 steps to finish the job, a reduction of 
about 40% compared to the first strategy which used 680 steps using C = 3 colors. To see the distribution 
for the number of experimental steps, we also give the histograms for the upper bounds for C = 3, L = 9 
and (A) S = 1 and (B) S = 2 (Figure 2A,B). 

4.2. Mathematical analysis 

We study the number of experimental steps in the two jobs separately. 

Job 1: First we develop the formula we used for the sample probe pooling size given that there are k 
success probes. 

Suppose we have already obtained k “success probes.” Then we sample a pool of L probes randomly. 
Each sample probe does not belong to the same chromosome as any of the k “success probes” with 
probability (N - k ) / N  = 1 - k / N .  Because the L sample probes are sampled independently, the number 
of sample probes that do not belong to the same chromosome as any of the “success probes” is binomially 
distributed with success probability 1 - k / N ,  denoted by B(L, 1 - k / N ) .  Therefore the probability that there 
is at least one such probe in the set, of L sample probes is 1 - ( k / N ) L .  The number of experimental steps 
Xk until we see at least one such probe is geometrically distributed with success probability 1 - ( ~ / Z V ’ ) ~ ,  
denoted by G(l-  ( k / N ) L ) .  Once we see at least one such probe, we need rlogc+l (L)] experimental steps 
to identify it, thus gaining a new success probe. Therefore, the number of experimental steps Tk to identify 
a new “success probe” is 

and the expectation of Tk is 

Tk = xk + r1%c+l(L)l 

wk) = E ( x ~ )  + r lOgc+mi  = (1 - (wW1 + r iOgc+mi .  

We want to minimize the expected number of experimental steps in going from k “success probes” to 
k + 1 “success probes.” Differentiating E(T’) with respect to L (thinking of L as a continuous variable) 
we have 

A log(A) log(C + 1) + (1 - A)2 
L log(C + 1)(1 - A)2 (E(Tk))’ = 

where A = ( k / N ) L .  Letting (E(T’) ) i  = 0, we have 
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FIG. 2. Histograms for the number of experimental steps using the second strategy after 5000 replications to assign 
m = 5 probes to each of the N = 25 chromosomes using C = 3 colors for sample probe size L = 9 and success 
probe size (A) S = 1 and (B) S = 2. 

A log(A) log(C + 1) + (1 - A)2 = 0 (1) 

and L = logk/N(A). Because L needs to be an integer, we take L = rlogkIN(A)1 that gives the formula 
we used in the experimental protocol. To emphasize the dependency of L on k, we denote it as Lk below. 

The total expected number of experimental steps in job 1 is 

N - I  N-l N-1 

k= 1 k= 1 k= l  

Job 2: Next, we study the upper bound given in step 4 of job 2. Suppose that we have L probes and 
r of them belong to a specific chromosome. The next lemma gives an upper bound for the number of 
experimental steps to identify these r probes. 

Lemma 4.1. Assume that in a pool of L probes, r of them belong to a speciJic chromosome. Using C 
colors, we can identify the r probes in at most r rlogc(L/C)l + 1 steps. 

Proof. 
(i). The lemma is obviously true for L 5 C. 
(ii). Suppose the lemma is true for L 5 1 - 1 

We prove this lemma by induction on L. 

C. Next we prove that the lemma is true for L = 1 
First we evenly divide the 1 probes into C groups and color each of the first C - 1 groups with a 
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different color. The probes in the last group are not colored. Then color the success probe corresponding 
to the chromosome with the other color. Put these colored probes along with the success probe into one 
experiment to determine the groups containing at least one of the r probes. For each group i containing at 
least one of the r probes, using induction, we can identify the probes in at most ri[logc([l/C1/C)l + 1 
steps, where ri > 0 is the number of probes in group i belonging to the specific chromosome. Therefore 
we can identify all of them in at most 

C (rirlogc(r1/C1/C)1 + 1) + 1 i r r l o g c r w i / C i  + r + 1 i r r logc (w) i  + 1 
i.rj#O 

Steps for 1 > C. rn 

Next we heuristically analyze the number of experimental steps needed to assign m probes to each 
chromosome for S = 1. The analysis for S > 1 is complicated. In each experiment, we sample L 
probes. The number of probes R on the chromosome is binomially distributed with success probability 
1/N, denoted by B(L, l/N). Therefore the probability that there are no probes on the chromosome is 
(1 - l /N)L.  The waiting time to obtain at least one probe on the chromosome is geometrically distributed 
with success probability pl = 1 - (1 - l /N)L, denoted by G(pl). The expected number of steps until 
we obtain at least one probe on the chromosome is l /p , .  Given that there is at least one probe on the 
chromosome, the distribution of the number of chromosomes, R, is 

P{R = klR > 0) = (l /N)&(l - l/N)L-k/pl, k = 1,2,  * . *  L. (3 
Therefore 

L 
E(RIR > 0) = -. 

NPl 
Because we need at most Rrlogc(L/C)l + 1 experimental steps to identify the R sample probes, the 
expected number of steps to identify these probes is at most 

Therefore the total number of experimental steps to assign an average of & probes to the chromosome 
is at most 

.. 

We refer to the set of experiments to find and identify at least one sample probe belonging to the 
chromosome using the above protocol as a round of experiments. Because we want to assign m - 1 probes 
to the chromosome, we need (m - l)/E(RIR > 0) = (m - l)Npl/L rounds of experiments. Therefore 
we need at most 

experimental steps. The expected number of experimental steps to assign at least m - 1 probes to all the 
chromosomes is 

+ rlogc(L/C)l + 
To optimize this strategy, we only need to choose the minimum point L of this function. 

5. THE THIRD STRATEGY 

5. I .  The experimental protocol 

This strategy depends on a new set of ideas. It also attempts to conform to more realistic assumptions 
about the kind of experiments that can actually be performed. In a real experiment, both the number of 
colors and the number of probes should be small. 
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Dealing with overlaps. We begin with a few definitions: 

Definition 5.1. When two colored probes appear on the same chromosome, we have an overlap. When 
the identity of both probes is unknown, we have an unresolved overlap. When we use further experiments 
to identify the unknown probes in an unresolved overlap we are resolving the overlap. 

Definition 5.2. A set of probes is independent if each probe in the set occurs on a separate chromo- 
some. Independent probes cannot overlap. 

In the rest of this section, we will use the following protocols for combining colored probes: 

Protocol 1: An experiment contains 2C probes and C colors, with two probes per color. C of the probes 
are independent. That is, the C probes belong to C different chromosomes and cannot overlap. Let each 
color contain exactly one of these C probes and one other probe. 

An experiment contains 3C probes and C colors, with three probes per color. Also, 2C of 
the probes are independent. Each color contains exactly two of these 2C probes and one other probe. 

Protocol 2: 

The sieve. As in the other strategies, we have two jobs. The first is to assign one probe to each 
chromosome. The next is to assign at least m - 1 additional probes to each chromosome. Assume that we 
have completed job 1 and let M be the set of probes, one per chromosome that we obtained in job 1. 

Our goal is to decrease the number of experiments by: 

1. decreasing the number of probes that we examine, andor 
2. increasing the number of overlaps detected with a single experiment. 

A key idea for the third strategy is that we start with a fixed pool P of probes and use the probes in M 
to sieve through this pool. Following the protocols, we choose either C or 2C “success probes” from M 
and find all the overlaps between the success probes and the pool probes. Then, we resolve the overlaps 
simultaneously. Then, we remove from the pool the pool probes that participated in an overlap. Thus 
we remove all those probes from the pool that fall on the chromosomes labeled by the subset of success 
probes. This constitutes one pass of the pool through the sieve. We perform multiple passes, each time 
with a new set of success probes. Eventually, each of the success probes “catches” all of its overlapping 
pool probes. 

The sieve achieves both points mentioned above. As the pool shrinks, the number of probes we examine 
in each pass decreases. At the same time, the number of overlaps that are detected by an experiment 
increases because as the number of chromosomes represented by probes in the pool decreases, the number 
of expected overlaps per experiment of $xed size increases. 

Let M be the set of probes, one per chromosome obtained in job 1. We will use either protocol 1 or 2. 
Within one experiment, let 

k = the number of probes that can not overlap given the protocol; 

r = the number of probes randomly chosen from the pool. 

In Protocol 1, k = C, and in Protocol 2, k = 2C. In both protocols, r = C. 

The sieve procedure. 

1. Randomly select T pool probes to form a pool P; 
2. Choose k “success probes” from M. In Protocol 1, each color gets one success probe. In Protocol 2, 

each color gets two success probes. Randomly choose r probes from P .  Each color gets one of the 
pool probes. Run an experiment and look for overlaps. Any overlaps that are detected are noted and 
the probes set aside to resolve later. 

3. Repeat step 2 using the same k ‘‘s~ccess probes” and a new set of r probes from P until the probes 
in the pool are exhausted. 

4. Resolve all the overlaps obtained in the repetition of step 2. With Protocol 1, we can resolve one overlap 
using at most 5(C - l)/(C * (3C - 1)) steps on average. With Protocol 2, we can resolve one overlap 
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using at most 4(3C - 2)/(C * (5C - 1)) steps on average as shown in the Mathematical Analysis (5.2) 
section. When an overlap occurs between a pool probe and a “success probe,” remove the pool probe 
from the pool. Do nothing if two pool probes overlap. 

5. Repeat steps 2,3, and 4 using a new set of k “success probes” until all the success probes are exhausted. 

Before we present the third strategy, we explain our intuition. Suppose we start with a pool large enough 
to contain m - 1 probes per chromosome. We could then use the sieve procedure once (with T equal to 
the entire pool size) and achieve job 2. There are two problems with this approach: 

1. In order to have high probability that the pool has m - 1 probes per chromosome would require a pool 

2. In a large pool, a majority of the chromosomes will have many more than the required m - 1 probes. 
larger than necessary most of the time. 

We can solve the first problem by using the sieve procedure several times, each time with a relatively 
small number T of new pool probes. When all of the chromosomes have m - 1 probes we can stop. In 
this way, our procedure (and the analysis) is geared to the expected case rather than the worst case. 

This does not solve the second problem, because we will still have too many probes for many of the 
chromosomes. So let us make a second modification. Each time we run the sieve procedure, we check if 
any of the chromosomes have gathered the required m - 1 probes. For any that have, we remove their 
success probes from the set M .  The next run of the sieve therefore uses a smaller set M .  There is a 
tradeoff here. If we do not use all the chromosomes to screen the T pool probes, then we will have some 
probes in T that never see their success probe. Call these the “lost probes.” The lost probes will persist 
until the end of the procedure and that means that all of the remaining probes in M will have to screen 
them. On the other hand, we are reducing the number of overlaps that we cannot really use (i.e., the 
overlaps involving the lost probes) and resolving the overlaps is expensive. We will show in the analysis 
that the tradeoff works in our favor, making this a good strategy. 

Job 2: m probes per chromosome. We assume that job 1 has been completed. Later, we will show how 
this can be accomplished in the context of performing job 2. 

1. Run the sieve procedure with T randomly sampled probes. 
2. Remove from M the success probes corresponding to those chromosomes that have already obtained 

m - 1 probes. Repeat from step 1 until all the chromosomes have been assigned m - 1 probes. 

We can improve step 4. If two probes from the pool overlap, we can remove one of them and remember 
its representative so that when the representative is assigned to a chromosome, all the other probes it 
represents are also correctly assigned. Such overlaps occur and are resolved and there is no reason to 
throw away this information since by using it we can further reduce the pool size and thus further reduce 
the number of experiments. Because of its complications, though, we will not analyze this modification in 
detail. 

Simulations. We ran simulations to test the third strategy. For job 1, we used the same method as 
in The Second Strategy. In job 2, we used both Protocol 1 (k = r = 3) and Protocol 2 (k = 6,  
r = 3). Table 3 gives the simulated average number of experimental steps, including job 1 and job 
2, to assign m = 5 probes to all the N = 25 chromosomes by assigning T probes per time. From 
this table we see that using three colors and the second protocol, we can finish the job in about 308 
steps by assigning 50 probes per time, a saving about 25% compared to 395 steps using the second 
strategy. 

Figure 3A,B gives the histogram for the number of experiments by assigning T = 50 probes per time 
using the third strategy, with (A) Protocol 1 and (B) ‘Protocol 2 and C = 3. 

Job I again. We return once more to job 1. Here, we show that we do not have to do a preliminary 

Again, let M be the set of success probes. Since we do not perform job 1, we start with M empty. We 
are going to add probes to M until every chromosome has one probe in M .  Then, as in the third strategy, 

, search to find one probe per chromosome. The sieve does this for us automatically. 



GENOME MAP USING FISH 479 

TABLE 3. THE SIMULATED AVERAGE NUMBERS OF EXPERIMENTAL STEPS TO ASSIGN m = 5 
PROBES TO EACH OF THE N = 25 CHROMOSOMESa 

T 

50 100 150 200 250 300 

Protocol 1: k = r = 3 
No. of experiments 381 43 1 466 534 609 700 

Protocol 2: k = 6 ,  r = 3 
No. of experiments 308 348 378 443 494 561 

aUsing the third strategy with T probes a time and Protocol 1 with k = r = 3 and Protocol 2 with 
k = 6 ,  r = 3 .  

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4  
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FIG. 3. Histograms for the number of experimental steps using the third strategy after 5000 replications to assign 
m = 5 probes to each of the N = 25 chromosomes using C = 3 colors using (A) Protocol 1 with k = r = 3 and (B) 
Protocol 2 with k = 6, r = 3. 
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we will remove a probe from M if its chromosome has found an additional m - 1 probes. Note though, 
that no probe is removed from M until every chromosome has one probe in M. 

The idea is the following. We use only pool probes, but some of these become success probes. Suppose, 
without loss of generality, that we are using Protocol 1. We would like to start with a set of k success 
probes and r other probes. But we do not yet have k success probes. So we do the following. 

1. Choose k unused success probes from M. If there are not enough unused success probes in M, choose 
as many as are present. Choose r pool probes. Color as in Protocol 1, except some colors may not get 
their independent probe. Run the experiment and look for overlaps. 

a The experiment contained ? k independent probes. Add the new independent probes to M, mark 
them as unused and complete the round using the first k unused independent probes in M as we 
would a round in the sieve procedure. 

0 We find n < k independent probes. Now, here is the beauty of this technique. It was okay to find less 
than k probes because all the probes in the experiment fell on the n chromosomes represented 
by the n independent probes. In other words, we didn't let any pool probes slip by! Add the n 
independent probes to M, mark them unused and repeat from 1. 

3. After the round is over, that is, after all the pool probes have been screened by this set of independent 

4. If each chromosome has one probe in M then stop. Otherwise, choose a new pool of probes, mark 

2. There are two possible outcomes: 

probes, mark them used. If any probes remain in the pool, repeat from 1. 

every probe in M unused and repeat from 1. 

Once M is full, we continue with the unmodified third strategy, now free to remove probes from M if 
a chromosome finds m - 1 additional probes. 

It is difficult to analyze this modification in detail because we start from different structures for each 
probe pool. Note here that we only need at most k + r probes (= 2k probes for Protocol 1) in each 
experiment, while in job 1 of the first two strategies, we need many more probes at the late stage. The 
overlap information we obtain while completing job 1 can also be used in job 2 to further reduce the 
number of experiments there. 

5.2. Mathematical analysis 

Resolving overlaps. First, we present some theorems about resolving overlaps under Protocol 1 and 
Protocol 2. First note that overlaps occur that do not need to be resolved. In Protocol 1, overlaps between 
probes with the same color do not need to be resolved. 

Protocol 1 

Lemma 5.3. Let an experiment be conducted under Protocol I .  Let an unresolved overlap occur 
between two probes of different colors. Then we can resolve the overlap with 2 probes and I color in two 
experiments. 

Proof. Since one of the four possible combinations is prohibited, we need to resolve only three com- 
binations. Using 2 probes and 1 color, we test each of these combinations. If after the second experiment 
we have not found the overlap, then it is the third combination by default. 

Lemma 5.4. Let an experiment be conducted under Protocol 1. Let the distribution of overlaps between 
probes (of those that can overlap) be uniform. Let an unresolved overlap occur between two probes. Then 
the expected number of experiments to resolve the overlap using 2 probes and I color according to the 
strategy in Lemma 5.3 is 5(C - 1)/(3C - 1). 

Proof. Using 2C probes, there are (*,") possible combinations. Of these (:) occur between independent 
probes and are therefore prohibited, leaving C(3C - 1)/2(= (2F) - (:)). Of these, C occur between 
probes of the same color and require no additional experiments to resolve. The remaining 3C(C - 1)/2(= 
C(3C - 1)/2 - C) occur between probes of different colors and require additional steps to resolve them. 
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With probability 1/3, we can resolve the overlap in one step and with probability 2/3, we resolve the 
overlap in two steps. Therefore the expected number of experiments is 

2 c  3C(C - 1) 5(C - 1) 
3 C - 1  * 

((1/3) * 1 + (2/3) * 2) = C(3C - 1) * O +  C(3C - 1) 
W 

Theorem 5.5. Using C colors and 2C probes, we. can resolve C overlaps under protocol I in two 
experiments. The expected cost to resolve an overlap is ( l /C)  .5(C - 1)/(3C - 1). 

Proof. According to the strategy in Lemma 5.3, we can resolve one overlap in at most two experiments 
using 2 probes and 1 color. Using 2C probes and C colors, we can resolve C overlaps in at most two 
experiments. The expected number of experiments running C overlaps per experiment is ( l /C)  .5(C - 
1)/(3C - 1) from Lemma 5.4. 

Protocol 2 

Lemma 5.6. Let an experiment be conducted under protocol 2. Let an unresolved overlap occur 
between two probes of the same color. Then we can resolve the overlap with 2 probes and 1 color in one 
experiment. 

Proof. There are two possible combinations. Resolving them takes one experiment. 

Lemma 5.7. Let an experiment be conducted under protocol 2. Let an unresolved overlap occur 
between two probes of different colors. Then we can resolve the overlap with 3 probes and 1 color in three 
experiments. 

Proof. Let the unresolved overlap involve the colors RED (R) and GREEN (G). Each color has three 
probes, R A ,  R B ,  Rc, and G A ,  G B ,  G c .  Let R B ,  Rc, G B  and G c  be the independent probes that can not 
overlap. Of the nine possible combinations with 3 probes of one color and 3 probes of another, four are 
prohibited because they are overlaps between independent probes. Thus we have five possible combinations. 
Proceed as follows: 

Experiment 1: Color GA,  RB and Rc the same color. If no overlap occurs, go to experiment 2. Otherwise, 
we have two possible combinations, either G A  and RB or G A  and Rc. These can be resolved with 2 
probes and one color in one additional experiment for a total of two experiments for these combinations. 

Experiment 2: Color R A ,  GB and G c  the same color. If no overlap occurs, then the overlap is between G A  
and R A  by default. (Giving a total of two experiments for this combination.) Otherwise, as above, we 
have two possible combinations, either RA and G B  or R A  and G c .  These can be resolved with 2 probes 
and one color in one additional experiment, for a total of three experiments for these combinations. W 

Lemma 5.8. Let an experiment be conducted under Protocol 2. Let the distribution of overlaps between 
probes (of those that can overlap) be uniform. Then the expected number of experiments to resolve an 
overlap using 3 probes and I color is 4(3C - 2)/(5C - 1). 

Proof. With 3C probes, there are (”) possible combinations. Of these, (2:) occur between independent 
probes and are therefore prohibited, leaving C(5C - 1)/2. In addition 2C occur between probes of the 
same color and require one experiment to resolve. The remainder, 5C(C - 1)/2, occur between probes of 
different colors. With probability 3/5, we resolve the overlap in two experiments and with probability 215 
we resolve the overlap in three experiments. Therefore the expected number of experiments is 

4(3C - 2) 4 c  5c(c - ’’ * (: * 2 +  * 3 = 
C(5C - 1) * + C(5C - 1) ) 5c-1 . 

Theorem 5.9. Using C colors and 3C probes we can resolve C overlaps under Protocol 2 in at most 
three steps. The expected cost to resolve an overlap is 4(3C - 2)/(C(5C - 1)). 

Proof. The proof is the same as for theorem 5.5. W 
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The expected number of experimental steps. Suppose we have TI + T2 +. . . + TN = T pool probes, with 
I;: the number of probes on chromosome i . Given T ,  then ( Tl , T2, . . . , T N )  has a multinomial distribution 
with probability distribution 

where kl + k2 + . . . + k~ = T .  The expectation and variance of q are given by 

E ( T )  = T I N ,  Var(I;:) = ( N  - 1)T/N2.  

Before we analyze the third strategy, let us first give a lemma about the multinomial distribution. 

Lemma 5.10. Let ( X I ,  X 2 ,  . . , X N )  have multinomial distribution, Multinomial ( T ;  p1, p2, . . , p ~ ) ,  
i.e., 

Then 

In particulal; if p1 = p2 = = p~ = 1/N,  then 

Proof. First note that if the numerator is not zero, the denominator cannot be zero either. Therefore 
the above equation is well defined. Let Sj = X,. Then the joint probability distribution of ( X i ,  Sj) 
is given by 

T-11-12 
T !  

11!l2!(T - 1 1  - 1 2 ) !  (zpp) P{Xi = 1 1 ,  sj = I 1  + l 2 )  = 

The joint probability generating function of ( X i ,  Si) is 

f ( x ,  s) = ExXisSj 
= P{X;  = l1, sj = 11 + l~"'S"+'2 

11+125T 

Therefore 
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Next we give a lemma on the expected number of experimental steps to assign T randomly chosen 
probes to 1 chromosomes using the sieve procedure. For simplicity, we use the real number x when the 
ceiling of x should be used. This can cause some problems especially when x is small. But when x is 
large, this does not cause any major problem for our approximation. 

Lemma 5.11. Suppose we Jirst randomly choose T probes from the N chromosomes to form a pool 
of probes P. Then we assign these T probes to 1 randomly chosen chromosomes according to the sieve 
procedure (i.e., using protocol 1 or 2 with k success probes and r probes at a time chosen from pool 
P). Let A be the average number of experimental steps needed to resolve one overlap. Then the expected 
number of experimental steps is 

2: N ( A 1  ( 1  + g) + ; (F - f (; - 1 ) ) )  

Proof. First we fix T I ,  T2, . . , TN,  the number of probes on each chromosome. Randomly choose r 
pool probes from the T pool probes. Then the number of pool probes X out of the r randomly chosen 
probes on a fixed chromosome i is hyper-geometric with probability distribution 

The expectation and variance of X are 

E ( X ) = - ,  r% V a r ( X ) = -  r % (  I - -  :)( I - -  r - 1 )  . 
T - 1  T T 

Therefore the number of pairwise overlaps between these pool probes on chromosome i is 

r(r  - 1)%(T - 1 )  
E(:) = 1/2(EX' - E X )  = 1/2(Var(X)  + (EX)' - E X )  = 

2T(T - 1 )  

The expected number of pairwise overlaps among pool probes on all the chromosomes is N r(r-l)Ti(Ti-l)  2 T ( T - 1 )  . 
On chromosome i ,  the expected number of overlaps between the success probe and the pool probes is 

r % /  T .  Summing over all the selected success probes 1,2,  . . , k, we have the number of overlaps between 
success probes and pool probes 

There are in total T probes and each time we choose r pool probes. Therefore we need T / r  times to 
exhaust all the pool probes. Notice for each randomly chosen r pool probes, the distribution of overlaps is 
the same. Therefore, for the first round, where a round means the process of assigning the probes to the 
selected k chromosomes, the total number of overlaps is 

r 5 / T .  

N k N 
r(r  - l ) % ( %  - 1 )  T (r  - l ) % ( %  - 1 )  

i=l i=l 2T(T - 1 )  )*;=c'+x i=l i==l 2 ( T - 1 )  ' 

In the first round, we also need T / r  experiments to detect the overlaps. Let A be the average number 
of experimental steps to resolve one overlap, then the expected total number of experiments is 

(r  - 1)%(% - 1 )  T k'+c i=l i=l Z ( T - 1 )  r 

N )+-.  
Taking expectation with respect to ( T I ,  T2, 
number of experimental steps in the first round 

T N )  and using Lemma 5.10, we have the expected total 
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After the first round, the pool probes on chromosomes 1,2,  . . , k are assigned to their correspond- 
ing chromosomes. We have s k  = Tk+l + Tk+2 + .. . + TN pool probes left. We screen these s k  pool 
probes with another set of randomly chosen k chromosomes, without loss of generality, chromosomes 
k + 1, k + 2, . . . ,2k. With the same argument as above, for fixed (TI, T2, . . . , TN), the expected number 
of experimental steps to detect and to resolve the overlaps is 

N (r - l )E (E  - 1) )+-.  s k  

r 
i=k+l  i=k+l  

Taking expectation with respect to (TI, T2, ... , TN) and using Lemma 5.10, we obtain the expected 
number of steps in the second round 

r 
+ y = y  k A +  

E S k  T ( N 

i=k+l  

Continuing this process, we find that the expected number of experimental steps in the i + 1st round is 
L(kA N + + ). Because we only want to assign probes on chromosomes 1,2, ,1, we need 1 /  k 
rounds and the total expected number of experimental steps to assign probes to chromosomes 1,2, . . . , 1  
would be 

Given the above two lemmas, we are now ready to analyze the total number of experimental steps to 
assign BT probes to the chromosomes (B an integer 1 1) according to the third strategy. 

Lemma 5.12. The expected number of experimental steps to assign BT probes to the chromosomes 
according to the third strategy is 

B-1 B-1 1 
2 .  

I =o r 
r - 1  

T (A (1 + ?) i =O B(iT) + B(iT) - - B(iT) (F - 1))) , 

where B(iT) = xys2 fY)(l/N)j(l - l/N)iT-j and B(0)  = 1. 

Proof. We first randomly choose T probes and assign them to the N chromosomes. The expected 
number of experimental steps is given by Lemma 5.11 with 1 = N. After that, a chromosome i has not 
been assigned m - 1 probes with probability B(T) = xyi2 (T)(l/N)j(l- l /N)T-j.  The expected number 
of chromosomes that have not obtained m - 1 probes is NB(T). 

Next we randomly choose another T probes and assign them to the NB(T) chromosomes. The expected 
number of experimental steps is given by Lemma 5.11 with 1 = NB(T). After that, the expected number 
of chromosomes that have not obtained m - 1 probes is NB(2T). 

Continuing this process until we assign BT probes to the chromosomes. The expected total number of 
experimental steps is 

In order to study the number of experimental steps to assign at least m - 1 probes to all the chromosomes, 
we need to study the distribution of the stopping time Z for the third strategy. Clearly, (Z 5 i} if and only 
if, using the first iT  probes, all the chromosomes have been assigned at least m - 1 probes. Because the 
number of probes on the chromosomes is multinomial (i T; 1/N, - . , l/N), we have 
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Therefore the expected total number of experimental steps is 

N ”  

I =o 

Divide and conquel: Here we confirm our intuition of the performance of the third strategy. From 
Lemma 5.11 we see that the expected number of experimental steps to assign T probes to all the 1 = N 
chromosomes is a linear function of T. Therefore if we want to assign all BT probes to all N chromosomes, 
separating the probes into several groups does not give any improvement on the expected number of 
experimental steps. But, if our goal (as in the third strategy) is to assign m - 1 probes to each of the N 
chromosomes, we can assign T probes first and then assign another T probes only to the chromosomes 
that have not been assigned m - 1 probes, continuing this process until we screen all the BT probes. The 
expected total number of overlaps using this strategy is 

B-1 
T/r(k + (r - 1)/2) B(iT) 

i=O 

that is less than the total number of overlaps 

if we assign the BT probes at the same time from Lemmas 5.11 and 5.12. The expected total number of 
experiments to detect these overlaps using the separating strategy is 

from Lemma 5.12. Because B(iT) 5 1 and Nx/k - x/2(Nx/k - 1) is increasing in x p 1, we have 

NB(iT)/k - B(iT)/2(NB(iT)/k - 1) 5 N/k - 1/2(N/k - 1) = (N/k + 1)/2. 

Thus the total number of experiments to detect the overlaps would be less than 

that is the total number of experiments to detect the overlaps if we assign the BT probes in a single 
application of the sieve procedure (Lemma 5.11 again). From the above analysis we see the separating 
strategy can decrease both the number of overlaps and the number of experiments. 

6. CONCLUSION 

We have defined the Chromosome Characterization Problem and presented three different strategies for 
its solution. The three strategies have different flavors. The first strategy is the most straightforward and 
requires the most work. This is the most intuitive one and gives one way to solve this problem. The second 
strategy modifies the first strategy by pooling “success probes” and “sample probes” at the same time. By 
suitably choosing the “success probe” pooling size and “sample probe” pooling size, we can drastically 
reduce the number of experimental steps. The design of both strategies is quite easy, but they may be 
difficult to use in practice due to the larger number of probes required in some experiments. The third 
strategy requires the least work and has two main advantages. First, it uses a constant, small number of 
probes in each experiment. Second, many of the experiments can be run at the same time. Its disadvantage 
is that the arrangement and coloring of probes in the experiments are tricky and must be carefully done. 
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