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Whole genome amplification is important for multipoint mapping by sperm or 
oocyte typing and genetic disease diagnosis. Polymerase chain reaction is not suitable 
for amplifying long DNA sequences. This paper studies a new technique, designated 
PEP-primer-extension-preamplification, for amplifying long DNA sequences using 
the theory of branching processes. A mathematical model for PEP is constructed and 
a closed formula for the expected target yield is obtained. A central limit theorem 
and a strong law of large numbers for the number of kth generation target sequences 
are proved. 
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1. Introduction 

The polymerase chain reaction or PCR is a method that allows biologists in the 
laboratory to produce a large number of identical copies of a specific DNA molecule 
from as few as one molecule (Saiki et al. 1985, 1988; Mullis and Faloona 1987). PCR 
is widely used in almost all branches of biological studies including human genetics, 
forensic science and cancer research. A key to understanding the importance of 
PCR is that most experimental procedures require IO' to 108 identical molecules. 
For a survey of applications of PCR, see Arnheim et al. (1990a, b), White et al. 
(1989), Erlich and Arnheim (1992). 

PCR uses certain features of DNA replication. Thus we begin with some basic 
knowledge about DNA and its replication mechanisms. DNA is a double-stranded 
sequence formed by two purines (adenine(A) and guanine((;)) and two pyrimidines 
(thymine(T) and cytosine(C)) that are called buses. Each strand is composed of a 
linear' sequence of these four bases which are connected by chemical bonds (called 
phosphodiester bonds). Every base in one strand pairs with another base in the 
other strand according to the following rules: adenine(A) can only pair with 
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thymine(T), and guanine(G) can only pair with cytosine((=). Because of this specific 
base pairing, if the sequence of one chain is known, that of its partner is also known. 
The opposing strand is referred to as complementary. Each strand of DNA has an 
orientation; one end is the 5’ end and the other is the 3’ end. The complementary 
strand has a reciprocal orientation. Figure l(a) gives an example of a double- 
stranded DNA molecule with its orientations. Although the bond between each pair 
is quite weak, each DNA molecule contains so many base pairs that two strands 
bind strongly. The two strands never separate spontaneously under normal con- 
ditions. If, however, DNA is exposed to high temperatures, so many base pairs fall 
apart that the two strands separate into two single-stranded sequences. This process 
is called denaturation. This is the basis of the polymerase chain reaction. Figure l(b) 
shows two single-stranded DNAs denatured from the double-stranded DNA. 

DNA can replicate or reproduce itself. In DNA replication, the double-stranded 
DNA first separates into two single-stranded DNAs. Enzymes called DNA 
polymerase use these single-stranded sequences as templates to synthesize two new 
double-stranded molecules. Because of the specific base pairing, the newly synthesized 
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strand is complementary to the original strand. This is another feature that is used in 
the polymerase chain reaction. 

The principle of PCR can be outlined as follows. First a region of interest is 
chosen. This region is called a target (Figure 1). The nucleotide sequence of the 
target DNA may be unknown, but sequences of short stretches of DNA on either 
side of the target must be known. Knowledge of these sequences is used to design 
two oligonucleotide primers which are single-stranded sequences of DNA (each 
usually 20 nucleotides long) that are complementary to these short stretches read 
from the 5' ends. The double-stranded DNA molecules are heated to high 
temperatures so that the double-stranded DNA molecules are separated completely 
into two single-stranded sequences, i.e. they are denatured. The single-stranded 
sequences generated by denaturing are used as templates for the primers and the 
DNA polymerase. Then the temperature is lowered so that the primers anneal to 
the templates. Because DNA sequences can only grow from 5' to 3', the primers are 
oriented so that the 3' end of each primer directs toward the target sequence. This 
process is called annealing. The temperature is raised again to the temperature that 
is optimum for the polymerase to react. Because DNA polymerase can make 
phosphodiester bonds between nucleotides to form a long chain, the DNA 
polymerases use the single-stranded sequences as templates to extend the primers 
that have been annealed to the templates. The extension products of the primers are 
long enough so that they include the sequences complementary to the other primer. 
Therefore primer binding sites are generated on each newly synthesized DNA 
strand. This process is called polymerase extension. 

The three steps, DNA denaturing, primer annealing and polymerase extension, 
form a PCR cycle. After the first cycle of PCR the number of DNA sequences that 
contain the target is doubled. If one cycle is followed by another, the newly 
synthesized strands are separated from the original strands and all these single- 
stranded sequences can be used as templates for the primers and DNA polymerase. 
Thus each cycle essentially doubles the number of molecules containing the target 
sequence. After n PCR cycles, we can get a theoretical maximum of 2"-fold 
amplification. Unfortunately, in the experiment not all cycles are perfect, Le. not 
every template can make a complete copy. Sometimes primers do not anneal to the 
templates, or even if primers anneal to the templates the primers might not be 
extended beyond the position of the primer on the opposite strand. In that case the 
templates do not make complete copies. We can suppose a fraction E of molecules 
make a complete copy. E is called the efficiency of PCR. Under the above 
assumptions, the number of PCR products forms a branching process. A branching 
process model has been used by Krawczak et al. (1989), Weiss and von Haeseler 
(1995) and Sun (1995) to study the mutations in PCR. 

Two problems make it hard to use PCR to amplify very long DNA molecules such 
as entire chromosomes, which in humans are about 108 bases in length. All the DNA 
encoding an organism is called the genome. For humans, the collection of 
chromosomes is the genome. For efficient language, we simply refer to amplifying 
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genomes in this paper. One problem is that the Tu9 polymerase usually used in PCR 
cannot extend the primers long enough to cover the whole genome. The length of 
the Tu9 polymerase extension is around 1000-2000 bases, far shorter than 10' bases. 
Another problem is that we must know the exact nucleotide sequences flanking the 
target we want to amplify so that we can use this information to design the primers 
used in PCR. In order to overcome these difficulties, a new method called 
primer-extension-preamplification (PEP) has been proposed to amplify the whole 
genome (Zhang et al. 1992). The goal of this method is to amplify the whole genome 
simultaneously. The idea of this new technology is roughly the same as that of PCR, 
except that we use random primers instead of a fixed pair of primers. PEP can be 
contrasted with PCR in that the aim of the former is to amplify all DNA sequences 
in a sample whereas in the latter only one specific genomic sequence is the target. 
Thus PEP is a whole genome amplification method and it can be used to select those 
genomic sequences that bind specific proteins (Kinzler and Vogelstein 1989), to 
prepare DNA probes for FISH (Ludecke et al. 1989, Telenius et al. 1992), and to 
permit multiple PCR analysis on very small samples such as single cells (Zhang et af .  
1991, Kristjansson et al. 1994) or molecules (Dear and Cook 1993). The mechanism 
and the realization of this technique is now described in more detail. 

The whole genome to be amplified is sampled and random primers of a certain 
length are prepared. In the reported experiment, Zhang et af. (1991) chose all 
segments of 15 bases long as primers. Theoretically the random primers are 
composed of all the primers of 15 bases long with 4lS possibilities. The whole 
genome and the random primers together with the Tu9 polymerase are put into the 
test tube. The mixture is heated to near boiling so that the whole genome is 
separated completely into two strands. This is called denaturing. Then the 
temperature is lowered to a certain level so that random primers randomly anneal to 
the single-stranded DNA. This is called annealing. The third step is to raise the 
temperature again to the level that is optimum for the Taq polymerase to extend the 
primers that have annealed to the single-stranded DNA. This is called polymerase 
extension. For example we add the 4-base primer 5'-CTCA-3' to the sequence below 
to obtain 

5'-CGTATGACTGATGCTGAGTAGTCTGA3' 
e . . .  

3'-ACTC-5'. 

Polymerase can extend this primer in the 3' direction and we obtain 

5'-CGTATGACTGATGCTGAGTAGTCTGA3' .................. 
3'-GCATACTGACTACGACTC-5'. 

Because we have a random number of primers annealing to the template, it may 
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happen that the extension product of one primer meets another primer or primer 
extension in front of it. In this case, the extension product replaces the sequence it 
meets leaving a nick in the sugar-phosphate backbone between them from the 
processivity of the Tuq polymerase. Mathematically we can think of a nick as a gap 
between two sequences. For example two primers 5’-CTCA-3’ and 5’-AGAC-3’ 
anneal to the following sequence and are extended by 18 bases. The extension 
product of 5’-AGAC-3’ is 5‘-AGAmACTCAGCATCAGT-3‘ which replaces the 
primer 5-CTCA-3’ and its extension. Only 5‘-CATACG-3’ is left for the extension 
of primer 5’-CTCA-3’ and there is a nick or gap (the ‘ 1 ’  in the complementary 
strand) between the two extension products: 

5’-CGTATG ACTGATGCTGAGTAGTCTGA-3‘ ...... .................. 
3’-GCATAC I TGACTACGACTCATCAGAJ’.  

Denaturing, primer annealing and polymerase extension form an experimental 
cycle. In the second cycle of PEP, first we denature again. This time we get the 
original sequence and a random number of shorter sequences. In the annealing step, 
primers can anneal to the original sequence and to all the new shorter sequences. At 
the last step we use polymerase to extend the primers. This process is repeated for n 
cycles. Finally, we obtain a large number of short sequences from the original 
genome. Suppose there is a region of interest, and we want to know how many 
intact copies have been made of this specific region. We are also interested in what 
proportion of the genome has been amplified at least a certain number of times. 
Whole genome amplification has two goals. The first is to increase the total amount 
of DNA significantly (yield). The second is to insure that the amplification is not 
biased. Ideally all of the sequences of the original molecule should be amplified to 
the same extent. 

In the rest of this section we construct a mathematical model for PEP. We only 
consider the single-stranded model. That is, we think of the genome as single- 
stranded. The results for expected numbers can be doubled if we consider the 
double-stranded case. Because the genome is usually very long, we model it as the 
real line. Primers are quite short compared to the genome so we model the primers 
as points. Primers anneal to the single-stranded sequence according to a Poisson 
process with parameter A. For each annealed primer, the polymerase extends the 
primer by length L directed from 5’ to 3‘. If the extension of one primer meets 
another primer or its extension, it replaces the original one leaving a nick or gap 
between them. Figure 2 shows the mechanism of PEP using these assumptions and 
notation. 

Suppose we have a special region of interest called the target. This target can be 
modeled as a fixed interval on the real line. We use T to denote both the target and 
the target length and the meaning should be clear in context. The DNAs that 
contain the target T are called T-DNAs. Figure 3 shows the mechanism of 
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Figure 2. Mechanism of PEP. PI, p2, and P3 anneal and are extended by length L 

- 

generating intact T-DNAs. We call the original sequence the 0th generation T-DNA. 
In order that we get a T-DNA from the original one there must be a primer (Pl)  in 
an interval of length L - T at the 3’ end of the target so that its extension contains 
the target. There should be no primers in another interval of length T, otherwise 
their extension products replace the product of primer P1, destroying the target, and 
no T-DNAs are made. There might be primers in another interval of length L - T 
since their products shorten the product of P1 but do not destroy the target. Under 
the above conditions a T-DNA is generated. We call it the first generation T-DNA. 
The first generation product as shown in Figure 3 can, in another cycle, generate 
another T-DNA called the second generation T-DNA. Inductively a kth generation 
T-DNA can generate a (k  + 1)th generation product as shown in Figure 4. Let Y’, 
and r‘, be the lengths of a kth generation T-DNA at the 3’ and 5’ ends beyond the 
target. Notice that r‘, = Y’,+l while usually Y’, 2 This mechanism is a 

I I I I 

Generation k+l 5’ w I 1 I - 3 ’  
I 

I 
I 
I 
I i y;+, i : . y:+, 

Figure 4. The formation of a (k + 1)th generation T-DNA from a kth generation T-DNA 
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multitype branching process (Harris 1963). The type of a sequence is (p, Y3)-the 
lengths of the sequence at 5' and 3' ends beyond the target. In all, we have the 
following parameters: 

T = length of the target; 
L = length of the primer extension; 
A = annealing rate of the primers; 
n = number of PEP cycles. 

Let X ;  and T, be the number of kth generation T-DNAs and the total number of 

(a) What is ET,? What is the growth rate of ET, with respect to n? 
(b) What is the characteristic function and variance of X;? 
(c) Can we prove a central limit theorem and law of large numbers for X;? 
In this paper, we concentrate on the mathematical aspects of the analysis. The 

biological applications of our results are reported in a separate paper (Sun et al. 
1995). 

The organization of this paper is as follows. In Section 2 we study the distribution 
of (Yi, Y:), EX;, ET,, and their limiting behavior. In Section 3 we study the 
characteristic function and variance of X $  We also prove that a central limit 
theorem and a strong law of large numbers hold for X $  Section 4 extends the results 
to the case that L is random. Section 5 handles a related experimental approach 
known as tagged PCR (T-PCR). 

T-DNAs respectively. We are interested in the following problems. 

2. Expected number of products 

In this section we study the expected and limiting behavior of the number of 
T-DNAs after n PEP cycles. Recall that the whole genome is modeled as the real 
line, primers as points, and primers anneal to the genome according to a Poisson 
process with parameter A. The target Tis an interval on the real line. Any segments 
that contain the target T are called T-DNAs. The original genome is called 0th 
generation T-DNA and the T-DNAs directly generated from 0th generation T-DNA 
are called first generation T-DNAs and so on. (E, Yz) are the lengths of the kth 
generation T-DNAs at the 5' and 3' ends respectively beyond the target T. For 
different kth generation T-DNAs, they will have different values for (E, Y:). They 
have the same distribution and we use this generic notation. Let X;( l )  and T,,(l) be 
the number of kth generation T-DNAs and the total number of T-DNAs with length 
greater than T + 1, 0 S 1 S L - T after n PEP cycles. Under the above notation we 
have the following results. (In the following, we denote A ( x )  = A(L - T - x) .  
Theorem 1 gives the joint density of (E, Yz) and the marginal densities.) 

Theorem 1. ( i )  The joint density function of (E, Y;) is 
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where k = 2, 3,4, - - , A = A ( x  + y ) ,  in the sense that, for any subset B c {(x,  y )  : x  > 
0, y >O, x + y  < L -  T} ,  

( i i)  Y i  and Y ;  have the same marginal density function. I f  we denote their common 
marginal density function by fk(x), we have 

- A ( T + x )  h(X) = h e  , 

where O<x < L - T, k = 2, 3, 4, * in the sense that 

p(YS, > x }  = P(Y: > x }  = [-'&(s) ds. 

This theorem asserts that statistically the 3' and 5' end lengths are indistinguish- 
able; their distributions are the same. Theorem 2 gives an explicit formula for the 
probability that there exists a kth generation T-DNA of length at least T + 1 at the 
kth cycle. This probability plays an important role in Theorem 3. Part (ii) also gives 
the expected length of a kth generation T-DNA. 

Theorem 2. ( i )  Let Pk(1) be the probability that there exists a kth generation 
T-DNA at the kth cycle with length greater than T + 1. Then 

P,(l) = (1 + Al)e-A(T+') - e-AL, 

Pk(1) =- e (e-z(l + AI) - e-A(')) dz, k h 2. 
e-NT+O LAW Z k - 2  - z  

(k - 2)! 

(ii) Let Y, be the length of a kth generation T-DNA at 3' or 5' end beyond the 
target T. Then, given that the kth generation T-DNAs exist, the expectation of Yk is 

e-hL 

E(&)=- (eA('-') - 1 - A(L - T ) ) ,  
Pl(O)A 

e-AL 
[(') Z k - 2  e - 2  (eA(0)-z - 1 - A(0)  + Z )  dz, k 2 2. 

E(Yk) = P,(O)A(k - 2)! 

The following theorem gives an explicit formula for the expected number of kth 
generation T-DNAs after n PEP cycles and the limit behavior of the expected total 
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number of T-DNAs as n tends to infinity. It is important to note that T,(l) increases 
neither linearly nor exponentially with respect to n. The rate of increasing is 
approximately exp ( 2 m ) .  

Theorem 3. ( i )  Let XZ(1) be the total number of kth generation T-DNAs rvith 
length greater than T + 1. Then 

JWv) = (Z)Pk(l). 

( i i )  (Asymptotic result.) For fixed n and 1, the maximum point K ,  of E X ; ( [ )  with 
respect to k satisfies 

K ,  5 [dnA( l )  + + ( A ( / )  + 1)'- - $A( / ) ]  + 1, 

where A(I) = h(L - T - 1) .  

cycles. Then 
Let T,(l) be the total number of T-DNAs with length greater than T + 1 rifter n 

The annealing rate of primers certainly has a major effect on the final products. If 
the annealing rate is low, few primers anneal to the single-stranded genome and thus 
few PEP products are made. On the other hand if thc annealing rate is too high. too 
many primers anneal to the genome and their extension products shorten each 
other. Many short strands are generated and few complete targets are made. The 
optimal annealing rate is important in the design of experiments. In the following we 
give some illustrative figures about the expected number of T-DNAs. In all these 
figures we use L = 1O00, T = 250. Figure 5 shows the expected number of second 
generation T-DNAs after 20, 30, 40, and 50 cycles. Figures 6 and 7 show the total 
number of T-DNAs after 20 and 40 cycles respectively. From these figures we see 
the phenomena described above. Also we can find the optimal annealing rate under 

'00 

150 

100 

50 

0 
0.001 0.004 0.006 0.008 0.01 

Annealing rate Annealing rate 
Figure 5. The expected number of second genera- 

tion T-DNAs after 20, 30, 40, and 50 cycles 
Figure 6. The total expected number of T-DNAs 

after 20 cycles 
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Figure 7. The total expected number of T-DNAs 
after 40 cycles 

Figure 8. The expected number of kth generation 
T-DNAs as a function of generation after 50 cycles 

with A = 0.002 

the above conditions. Figure 8 shows the expected number of kth generation 
T-DNAs as a function of generation number k with A = 0.002. From this figure we 
see EX; first increases and then decreases with respect to k. The maximum is at 
k = 7 .  The upper bound given in Theorem 3(ii) is 8. The upper bound in the 
theorem gives an accurate estimate of the maximum generation number. A 
remarkable fact about PEP is that the expected number of target DNAs is neither 
polynomial nor exponential. The growth rate is about exp (e2vnA(L - T)). 

In order to prove the theorems we first prove a lemma that plays a crucial role in 
the following proofs. 

Lemma 1. Let and Yi be the lengths of the kth generation T-DNA at the 5' and 
3' ends beyond the target T. Then (E, Yi) has a density function fk(x, y )  in the sense 
of Theorem 1 and fk(x, y )  depends only on x + y for any k 2 2 and x > 0, y > 0, 
O < X  + y < L -  T. 

Proof. We prove this lemma by induction. 
(a) To prove this lemma, it is enough to study the marginal distributions of E 

and Y:. For later use, we derive the joint distribution for (E, Y:) here. We refer to 
Figure 9. For k = 1, in order that we can get a first generation T-DNA with {E Zx,  

! Y j  T x 1 LT-y T+x+y 
3' 

I b u1 
I 

3' I-5' 

Figure 9. The mechanism by which a first generation T-DNA with {G Zx, Y: Z y }  is generated 
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Y: I y }  where x > 0, y > 0, x + y < L - T, there must be a primer P1 in the interval 
(x, L - T - y ]  so that its extension product covers both x and -y .  There must be no 
primers in the interval ( L  - T - y ,  L + x ]  otherwise their extension products shorten 
the product of P1 through x and no products with {E Z x ,  Y : 2 y }  are made. 
Therefor e 

P{E I x ,  Y: Z y }  = P{Zl primer in (x ,  L - T - y )  and 

0 primers in ( L  - T - y ,  L + x ) }  

= (1 - ,-A(L-T-y-x) A(T+x+y) )e- 

, x + y < L - T .  - - e - A ( T + X + y )  - e - A L  

Next we calculate P{E + Y: = L - T, Y: I y } .  Look at Figure 10. In order that we 
can get a first generation T-DNA with length L and Y: Z y ,  there must be a primer 
in (0, L - T - y ]  and to the right of this primer of length L there are no primers so 
that the product of the primer is of length L. Let Z be the distance from L - T - y 
to the first primer to the left. Then Z is exponentially distributed with parameter A. 
Given Z = z, {E + Y: = L - T, Y: Z y }  happens if and only if there are no primers 
in ( L  - T - y ,  2L - T - y - z ]  with probability Thus 

Therefore, 

and 

he-Aze-A(L-z) d Z 
= r-T-y 
= he-"(L - T - y ) ,  O<y < L - T. 
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We see that and Y: have the same density function 

(b) Now we prove that the lemma is true for k = 2. Note that the first equality 
comes from the experimental mechanism. 

e-A(x’-.r)he-A(T+x’+y) dx’  rT-y = P { Y : 1 y ,  Y : z x } -  

Therefore the density function of (G, Y:) is 

and the lemma is true for k = 2. 
(c) Suppose the lemma is true for k, Le. fk(x + c, y - c )  = f k ( x ,  y )  for any c such 

that 0 5 x + c 5 L - T, 0 S y - c d L - T. Then by the mechanism of PEP (Figure 4) 
we have 

L-T-y 
he-A(x’-x) (2) f k ( y ,  x ’ ) d x ’ ,  x + y  S L - To 

Thus for any c as above we have 

he- A(x’-(x +c)) M Y  - C, x’) dx‘ 

he --A(.? - x )  f k ( y ,  z )  d z  (by induction) 
= rT-y 

Therefore fk(x, y )  depends only on x + y for any k 1 2 .  
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Proof of Theorem 1. From Lemma 1 we can define Hk(x + y)  =fk(x, y), where 
x > O ,  y > O ,  x + y < L -  T. From (2) we have 

- A(x' -x) 
= rT-y M Y ,  x ' )  dx' 

Let gk(r) = e-"'Hk(r). Then 

~ 2 ~ -  h(T+x +y) 

- - + Zk-le-2Z dz). (k - l)! 

Now (i) of Theorem 1 is proved. 

calculations, and Theorem 1 is proved. 
From fk(x)  = Jk-T-Xfk(x, y) dy, we can easily prove (ii) of Theorem 1 by careful 
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Proof of Theorem 2. First we calculate 

According to Theorem 1 we know 

and 

From Theorem 1 it is easy to see that 

yk-2e-2A~ dy 
(k - 2)! 

(k - 2)! I, Ake-AT L-T-I L-T-y 

=- yk-2e-2Ay d y i  e-h dx 

From the above equations and Theorem 1 it is easy to see that (i) of Theorem 2 
holds. By almost the same method we can prove (ii) of Theorem 2. 

Proof of Theorem 3. We prove this theorem by induction on k. 
(a) k = 1. At each cycle, the original DNA strand generates a first generation 



Whole genome amplification and branching processes 643 

T-DNA of length greater than T + Z with probability Pl(Z). Let Zi, i = 1,2,  * * , n, be 
the number of first generation T-DNAs of length greater than T + 1 generated by 
the original DNA strand. Then X? = Zl + Z2 + * * . + I,, where I, ,  Z2, - - - , Z, are i.i.d. 
with distribution P{Zl = 1)  = Pl(Z), and P{I, = 0) = 1 - & ( I ) .  Therefore 

EX? = EZ1+ EZ2 + * * * + EZ, = d' l (1) .  

(b) Suppose the assertion is true for k - 1 and for any n. Then for k, we have 
XZ = X",-' + Z[lX:, where XZ-' is the number of kth generation T-DNAs with 
length greater than T + 1 generated by the original DNA after n - 1 cycles, and Z;Z: 
is defined by 

zn-1- 0, if a. does not generate al, 
number of kth generation T-DNAs generated by al, k - 1 -  { 

where a. denotes the original DNA and a1 denotes the first generation T-DNA 
generated directly from cro after the first cycle. Then 

EZZII: = E(E(Z:I: I Y:, E)) 
= (; 1 :)EPk-l(Y:, E)(O = ( Z  1 : ) P k ( o ,  

where Pk(x, y ) ( l )  denotes the probability that there exists a kth generation T-DNA 
with length greater than T + 1 at the kth cycle when r', = x ,  Yi = y. Finally 

EXE=EXE-'+(ZI:)Pk(l) 

=((:::)+(:_':)+- - .+(::;))Pk(Z) 
= (;)Pk(l)* 

By induction, (i) of Theorem 3 is true. 
From Theorem 1 (i) and integration by parts it is not difficult to verify that 

(3) 
OD (2'(1+ AZ) - l)Ak+i-l(Z) A(2L-T-I) 

(k + i  - l ) !  
Pk(l) = e- 

It is easy to prove that 

s 1,  ( k ?  l )Ak( l )  (;Mk-l(o - - (n - k)A(O 
k! / (k - l ) !  k(k + 1 )  

iff 

(4) k Z [dnA(l) + $(A(l)  + 1 ) z -  $(l +A( / ) ) ]  + 1 'fMn, 

where '%f' means 'define'. From (3) for any k lM, , ,  we have ( k : l ) P k + l ( l ) l  
(;)Pk(l). Thus the maximum point does not exceed M,. From (3) it is easy to see 
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that there exist constants c and C which do not depend on k such that 

k - 1  

c- 
(k - l)! - 

By T , ( I )  = (;)Pk(l)  we have 

From Stirling’s formula and (4) we get 

Therefore 

and (ii) of Theorem 3 is proved. 

3. The characteristic function, variance and limit theorems 

In Section 2 we studied the expectation of X; and T,,. This study gives the average 
number of kth generation sequences in a large number of experiments. It does not 
tell us the distribution of X; and T,. The distribution of X; and T, is important in 
answering questions such as the probability that the target is replicated at least Mk 
times by kth generation T-DNAs and so on. Because of the complicated mechanism 
of PEP, it is hard to get the explicit distribution of X; and T,. In this section, we 
study the characteristic function of X;. Of course the characteristic function gives us 
all the information about the distribution. By using the characteristic function, we 
obtain a recursive formula for calculating the variance of X; and prove that a central 
limit theorem and strong law of large numbers hold for X:. The limit theorems can 
be used to get an approximate probability that the target is replicated at least Mk 
times by kth generation T-DNAs. Before we state the theorems, we need some 
notation. Let X;(x, y )  denote the number of kth generation T-DNAs after n PEP 
cycles when the original DNA satisfies = x, Y: = y ,  Pk(x, y )  be the probability 
that. we get a kth generation T-DNA after k cycles when Y z = x ,  Y ’ , = y ,  and 
g;(t; x, y )  be the characteristic function of X;(x, y ) .  Throughout this section, we 
assume that x + y  < L - T. Then we have the following theorems. 
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Theorem 4. (i) The characteristic function g;(t; x ,  y )  of X;(x, y )  satisfies the 
following recursive equation 

g ; ( r ; x ,  y )  = + (I - e-Ay)e")", 

Y 

g;(t;x, y )  = fi (e-*." + I gi : ' , ( t ;x , ,  x)Ae -.\(Y-xi) dx 1), n, k = 2 , 3 ,  * * e .  

j = k  0 

(ii) The variance of X;(x,  y )  satisfies the following recursive equation: 

Var (X?(x ,  y ) )  = ne-'Y(l- e-Q), 

Var ( X i ( x ,  y ) )  = p Var (Xi:l,(xl, x))Ae-A(y-X1) dx 1 
j = k  0 

dx, k = 1,2, - . 1 r,(x) = - 
( k  - I)! 6 

Theorem 5. (Central limit theorem.) Under the conditions of Theorem 4, for any 
fixed k 2 I, 

is asymptotically normal as n + t ~ .  

Theorem 6. (Strong law of large numbers.) Under the conditions of Theorem 4, 
for any fixed k B 1, 

almost surely. 

Because of the dependence among the PEP products, it is hard to get the exact 
distribution of XZ.  From the recursive formula in Theorem 4 we can get the 
variance of X[t.'Then from the central limit theorem we can get the approximate 
distribution of X;. 

Proof of Theorem 4. Suppose now the original DNA satisfies the condition 
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Differentiating (5) twice, letting t = 0 and noting that 

(gi : l l ( t ;x ,y) ) : l r=O= iEX{I1l(x, y )  = i($l\)Pk-l(x, y ) ,  

we get 

Thus 

Var (Xg(x, y ) )  = i r Var (X',-_',(xl, x))Ae-A(Y-xl) dx 1 
j = k  0 

In order to derive P&, y )  we note that, by the mechanism of PEP, the 5' and 3' 
ends can be thought of as being shortened independently k times according to a 
Poisson process with parameter A. The density h & y )  of the 3' end after the kth 
shortening satisfies the following recursive equation: 

hl(s ,  y )  = Ae-"(Y-S), 0 < s < y. 

By induction on ( 6 ) ,  we can prove 

In exactly the same manner, we can prove 
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Note. Once we have Theorem 4, we can obtain the characteristic function and 
variance of X; by the following formulas: 

where ~ ( x , .  yl) is the distribution of (y i ,  Y:) and Pk = Pk(0) as we obtain in Section 
2. The proof of the above formulas is the same as that of the above theorem and we 
omit the proof here. 

In order to prove Theorems 5 and 6, we first prove two lemmas. Lemma 2 gives 
the growth rate of Var (X;) as n tends to infinity for any fixed k. In the following we 
denote a, = O(b,) if 

0 < lim inf - S lim sup -< =, an an 
n-r b, n-x b, 

Lemma 2. I f  0 < x  + y < L - T, then for any fixed k h 1 ,  

Var (X;(x,  y)) = O(n2k-1) .  

Proof: We prove by induction. (i) For k = 1, the result is obviously true. 
(ii) Suppose the result is true for k, then from Theorem 4 we have 

By induction the lemma is true. 

Lemma 3. For any 

we have 

&(s: x ,  y )  = exp (iEX;(x, y)s  - 3s’ Var (x;(x, y)) + n”-’o(s2)). 

Proof: Again the proof is by induction. (i) For k = 1, 

g;(sj x9 Y )  = (Qi(x, y )  + S ( x ,  y)eL‘Y’ 
= exp (n log (Ql(x, y) + Pl(x, y ) ( l  + it - is2 + o(s2)))) 

= exp (n(iPl(x, y )  - $s2pl(x, y) - t ~ : ( x ,  y)s2 + o(s2))) 

= exp (iEX;(x, y )  - $s2 Var (x;(x, y)) + no(s2)), 

where Ql(x,  y) = 1 - Pl(x ,  y). Thus the lemma is true for k = 1. 
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(ii) Suppose the lemma is true for k, then for 

S S  t =.(-) 1 
v v a r  (X;+I(x, Y)) n k f i  

it is obvious that when n is sufficiently large, 

Therefore by the assumption and Lemma 2 we have 

+j2*-'o(s2))A exp (-A(y - xl)) dx,  1 

=E exp (i(i)Pk+l(x, y)s - $s2[Var (Xi(xl, x) )A  exp (-A(y - xl)) dxl 
j = k  

= exp (%X;(X, y)s - $2 Var (x;(x, y)) + nZk+'o(s2)). 

By induction the lemma is true. 

Proof ofthe central limit theorem. (Theorem 5 . )  Next we use the above lemmas to 
prove the central limit theorem. Let 
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= exp ( - & t 2  + o(1)). 

Therefore 

n - s  lim f Y ; ( x , y ) ( f )  = exp (-it2) 

and Theorem 5 is proved. 

Proof of the strong law of large numbers. (Theorem 6.) 

By the Borel-Cantelli lemma, 

(7) 

almost surely. Because X:(x, y )  is increasing with respect to n, we have 

xyqx,  y )  5 XZ(X, y )  s xpGl+l)2(x,  y ) .  
Thus 

Letting n + w, using (7) and noting 
( r y )  (q+ 1 )*) 

= 1, lim - = lim 
n-*m (It) n-m (It) 
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we have 

almost surely and Theorem 6 is proved. 

Next let us consider the total number of products of the first k generations. We 
have the following result. 

Theorem 7. Let Sz(x, y )  be the total number of products of the first k generations 
after n PEP cycles when fi  = x, Yi = y ,  i.e Sz(x, y )  = Xl(x ,  y ) .  Then 

almost surely and 

is asymptotically normal. 

Proof: (i) By Theorem 6 for any 0 5 i c k 

Thus 

almost surely. 
(ii) By Lemma 2, for any 0 S i < k 

Thus 

By Slutsky’s theorem (Durrett 1991) and Theorem 5 we have that 

is asymptotically normal. 
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Note. Theorems 5, 6 and 7 still hold if we replace X;(x, y) by Xz(l), the number 
of kth generation T-DNAs with length at least T + 1. The proofs are almost the 
same but are more involved. We omit the proofs here. 

Once we have the above theorems we can approximate the probability that a 
target of length Tis covered by at least Mk kth generation T-DNAs in the following 
way. From Theorem 3 we can get EX;. By the inductive formula in Theorem 4 we 
can calculate Var (X;). Then from Theorem 5 we have 

This approximation is good only when k .is small. Simulation studies show that for 20 
PEP cycles, this approximation is only good for k = 1 or 2. It is hard to get any limit 
distribution for T,. Simulations show that the variance of T, is very large compared 
to its expectation. So a central limit theorem cannot hold for T,. For the probability 
that a target is replicated at least M times, we can resort to simulations. In our 

' simulation, we use L -  lO00, T=250, n =20, M =60, and the annealing rate 
changes from 0 to 0.01. The simulations show that the above probability increases at 
first with the annealing rate until the annealing rate is 0.002. When the annealing 
rate is between 0.002 and 0.004, the above probability is around 94%. Then it begins 
to decrease as the annealing rate increases. At annealing rate 0.01, the above 
probability is only around 40%. This again shows the important role played by the 
annealing rate. From the above discussions, we see that in the design of PEP 
experiments, experimental conditions should be carefully arranged to obtain the 
maximum number of products and maximum coverage. 

4. Random length case 

In previous sections we assumed that both the length of the Tuq extension and the 
annealing rate are constants. This may not be true in reality. The length of the Tuq 
extension can vary from one reaction to another. In that case we can model L as a 
random variable. In the amplification of the whole genome, some regions may be 
easier to amplify than others. This is presumably caused by the fact that primers do 
not anneal with a constant rate. In that case we can model the primers as an 
inhomogeneous Poisson process. Because we lack the information about the DNA 
sequences we want to amplify, it is impossible to know the primer annealing rate. 
Thus we still assume primers anneal to the whole genome according to a 
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B x 
I 1 

homogeneous Poisson process. In this section we relax the condition that the length 
of the Tug extension is a constant. Let now the length 2 o f  the Taq extension be a 
random variable having a continuous distribution function F(x). Our main result of 
this section is Theorem 9, which shows that approximately &(I) increases at most 
like exp (2dAn(E2?- J:+‘~(S) ds)). On the other hand, from the lower bound we 
see K(1) increases at least like exp (2 exp (-AE2?/2)q2An(E2’- JOf”9(s) ds) )  
which is much faster than linear. We still use the above notation. First we give a 
lemma which is similar to Lemma 1. 

Lemma 4. Suppose the length 9 of the Tag extension has continuous distribution 
function F(x). Then P{Yi  1 x,  Yz 1 y }  depends only on x + y for x > 0, y > 0. Let 
9 ( x )  = 1 - F(x) ,  

PI P2 

- 

H ( x , y ) = h ~ 9 ( T + t ) e x p ( - A [ 9 ( s - x ) d s  X 

rr L I 

and F,(x + y )  = P { z  1 x ,  Y: h y}.  Then Fk(x) satisfies the following recursive 
equation: 

Ds 

F,(x) = I A 9 ( T  + t )  exp (-A[ 9 ( s  - x )  ds)  dt = H(x, =), 
X 

X 

&+dx)  = -I H(x, y )  d F ( y ) ,  k 1 1, 
X 

and &(x )  is continuously differentiable. 

Proof: We refer to Figure 12. In order that we have a first generation T-DNA 
with {G 1 x,  Y i  1 y} ,  there must be a primer P1 to the right of A whose extension 
covers A and B, and to the right of P1 there are no primers whose extensions cover 
A. Let the position of P1 be 9. Note the number N l ( s )  of primers in (x,  s] whose 
extensions cover A and B is an inhomogeneous Poisson process with rate 
A s (  T + s + y )  at s (Ross 1971). Therefore 

X 

P { 9  5 t }  = P{N,(t, m) = 0) = exp ( - A 1  9( T + s + y ) ds). 

l y i  T I 

I 1 3 ’ l  1 I I 5‘ 

Figure 12. The mechanism by which a first generation T-DNA with {Y: 2 x ,  Y;  2 y} is generated in the 
random length case 
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Thus the density function of 9 is 

fdt) = A 9 (  T + t + y) exp ( I  -A 9( T + s + y) h). 

Given { 9 =  t}, the number N2(s) of primers in (t, s] whose extensions cover A but 
not B is an inhomogeneous Poisson process with rate A(9(s  - x )  - 9( T + s + y)) at 
s. Therefore 

Using the law of total probability and (8) and (9) we have 

P{y: 2 x ,  Y: 2 y) = [ P{N& 03)  = 0 1 3 = r}f&) dr 
X 

= [ h s ( T  + t + y) exp 
X 

= [ A9(T + f + y) exp (-A[ 9 ( s )  ds) dt 
I - X  

= [ h 9 ( T  + t + x + y) exp -A 9 ( s )  ds) dt. 

Therefore g,(x, y ) = P{ 2 x ,  Y: B y} depends only on x + y and f i ( x )  = P{ Yi  2 x,  
Y: h 0) is continuously differentiable from (10). Suppose gk(x, y) = f'{c h x ,  Y i  2 
y} depends only on x + y  and is continuously differentiable. Then by a similar 
argument to that above we have 

( 6  

P{y',+l 2 x ,  G + l  z y }  

= 11 [ r' h9(T  + t + y )  exp (-A[' 9 ( s  - x )  ds 1 1  dt dgk(x' ,  y') 

= 11 [[ '*B(T+t+y)exp (-Ai:: 9 s )  ds) d t ]  dg,(x', y') 

y ' z x , x ' z y  

y ' z x . x ' z y  

(I1) = 11 [['-' A9(T + t + x + y) exp (-A['-' 9 ( s )  ds) dt ]  dg,(x', y') 
y ' P x , x ' z y  

= 11 [[' A9(T + t + y )  exp (-A[' 9 ( s )  ds) dr] dgk(x',y' + x )  

= 11 [ [' A9(T + t + y) exp (-A[' 9 ( s )  ds) dr] dg, (x' + y, y '  + x ) .  

y'z0,X'ay 

y'zo.x'+o 
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Because & ( X ,  y )  depends only on x + y ,  we see that g,+,(x, y )  also depends only on 
x + y .  

From (11) we have 

& + l ( X )  = P{Y-: h x ,  Y-: L 0) 

= -1 [ [ A 9 ( T  + t )  exp (-A[ %(s - x j  ds dt dF,(y). ) I  
Using induction and (12) we can prove that Fk(x) is continuously differentiable. The 
lemma is proved. 

Although we have a relatively simple recursive formula for &(x),  unlike the 
constant length case we do not have an explicit formula for Fk(x). In the following 
we want to compare F,(x) when the length 2'of the Taq extension is random with 
Ff"(x) = P{y', Lx,  Yi 2 0) when the length of extension is a constant E 2  The 
following theorem gives a relationship between &(x)  and F r ) ( x ) .  

Theorem 8. Suppose E T <  x .  Let Fk(x) be defined as above and F r ) ( x )  = P{Y: L 
2 0) when the length of tlir Trrq extension is a constant EL? and the tcrrget length x ,  

is 0. Then for any k 2 1, 
T i  r T + x  

exp(-(k - l)AE)Ff)(I 0 s ( r ) d t ) C & ( x ) C e x p ( A E a F f ) ( /  0 9 ( f j d t ) .  

Let fk(x) = -F;(x). Then for ariy k 2 1, 
k - 1  

%(s)ds)  . 

ProoJ: We prove the theorem by induction. First we prove the bounds for Fk(x). 
For the constant length case, from Section 2 we see 

F;"(x) = exp ( -Ax)  - exp (-AELf), 0 < x < E% 
and 

(13) 
E 2  

F f j 1 ( x )  = I Ff"(y)A exp ( - A ( y  - x ) )  dy, 0 < x < Ed%: 
X 
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Now we prove the upper bound. Note that 

H(x,  y )  = p A9(T + t) exp (-A[ 9 ( s  - x) ds 
X 

d p A9(T + t) exp (-A[ 9 ( T  + s) ds) dt 
X t 

= 1 - exp (-A[ F(T + s) h). 
X 

Let y + 00 and from (10) we have 

F,(x) S 1 - exp (-A[ A9(T + s) ds) 

= exp (A,,"' 9 ( s )  ds)(exp ( - A [ + x  9 ( s )  ds) - exp ( - A E a )  

T + x  

S exp (AEMF';'(l  9( t )  d t ) .  

Therefore the upper bound is true for k = 1. Suppose the upper bound is true for k. 
Then from (12) we have 

d -[ (1 - exp (-A[ 9 ( T  + s ) d s ) )  d F k ( y )  

= l F & ( y ) h 9 ( T + y ) e x p ( - A I T f y 9 ( s ) d s ) d y  T + x  

(induction) 

S exp (Mar A9(T + y ) F P ) ( [ + '  9 s )  ds) exp ( 9 ( s )  d s )  d y  
X 0 

(u = JT+y 9 ( t )  d t )  
E44 

= exp ( A E a l  AFf ) (u )  exp (-A(u - 6" F(s) d s ) )  du 
I,T"fp(s)dr 

(equation (13)) 

= exp ( h E 2 ) F ~ ~ ! , (  0 9( t )  dr) .  

I By induction the upper bound is true for any k. 
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Now let us prove the lower bound. First note 
Y 

H(x, y) = Ag(T + t )  exp (-A[ 9 ( s  - x )  ds) dt 
X 

= [ AP(T + t )  exp (-A[ .F(T +s) ds) 
X 

(14) = r A 9 ( T  + t )  exp (-A[ 9 ( T  + s) ds) 
X 

T+x  

=exp(-Ad S(s )ds) ( l -exp ( -AIT: ds) ) .  

Letting y + 03 we have 
T + x  

F&) 1 F l " ( b  9(s)  ds). 

That is, the lower bound is true for k = 1. Suppose the lower bound is true for k. 
Then 

(equation (14)) 

m 

= exp ( - A E a I  X A9(T + y ) F , ( y )  exp ( - A r + y  9 ( s )  ds) dy 
T + x  

(induction) 
m 

1 exp (- k A E a [  X A 9 (  T + y )Fp) (  r" 0 9 ( ~ )  ds )  
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(equation (13)) 
T + x  

Zexp(-kAEY')Pfi,(/ 0 S ( s ) d s ) .  

By induction the lower bound is true. 

have 
Next we prove the upper bound for fk(x) .  Note that, for any fixed y and x 5 y, we 

- - Z f ( x , y ) =  d - - [ [ A 9 ( T + r ) e x p ( - A [ 9 ( s - x ) d s  d 
dx dx x 

=A%(T+x)exp 

+ A A 9 (  T + t )  exp (-A[ 9 ( s  - x )  ds ( 9 ( t  - x )  - 9 ( y  - x ) )  dt 6 

+ A 9 ( t  - x )  exp (-A[ 9 ( s  - x )  ds 
X 

= A9(T + x ) .  

Let y + x we have f i ( x )  5 A9(T  + x ) .  The upper bound is true for k = 1. Suppose 
the upper bound is true for k, then 

(induction) 

By induction the inequality is true. Theorem 8 is proved. 
Next we study the total number T,,(l) of T-DNAs with length at least T + 1. The 

following theorem contains our main result of this section, which gives lower and 
upper bounds for the growth rate of T',(l). 

Theorem 9. ( i )  Let Pk(l) be the probability that there exist a kth generation T-DNA 
with length at least T + 1 at the kth cycle and fk (x)  = -(d/dx)F,(x). Then Pk(l) = 
F,(O + & ( I ) .  
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(ii) The expected number of kth generation T-DNAs with length at least T + 1 after 

(iii) Let Tn(l) be the total number of T-DNAs with length at least T + 1 after n 
n PEP cycles is ( z )Pk( l ) .  

cycles. Then 

S 2 dA/:+, 9 ( s )  ds. 

Proof: (i) First note that 

Pk(1) = P{Yi  + Y: 2 I }  

= P{Y:Zl ,  Y : z o } +  P ( O < E < l ,  YZ+ Y i Z l }  

= Fk(l) + P{O < Y: < 1, Y: + Y: h I } .  

Since fk(x) = -F;(x) ,  we have 

d2 
dx dy - P,{E 2 x,  Y: Z y }  = Fl(x + y )  = -f;(x + y ) .  

Therefore 

P{O<Y5,<1, Y:+ Y : 2 1 } =  - 11 f ; (x  +Y)dXdY 
O C X C l ,  x +ya1 

Thus 

(15) 

and (i) is proved. 
(ii) The proof of (ii) is the same as that of Theorem 3(i). 
(iii) Similar to the proof of Theorem 3(ii) we can prove, for any B Z 0, 

log (i (“,)Bk/k!) 

G = 2*, k = l  lim 
n-- 
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and there exist constants c and C which do not depend on k such that 

A ~ ( E ~ -  I ) ~  s FF'(1) s c A ~ ( E ~  - 
C 

k! k! 

From Theorem 8 and (15) we have 
n R 

k = l  k = l  

The theorem is proved. 

As for the characteristic function, variance and limiting behavior of Xz(x, y)-the 
kth generation T-DNAs after n cycles when r', = x ,  Yi = y, we have the following 
results. 
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Theorem 10. Let Xz(x ,  y )  be the number of kth generation T-DNAs afier n cycles 

( i )  The characteristic funcrion gz( t ;  x ,  y )  of Xz(x ,  y )  satisfies the following recursive 
when E = x ,  Y: = y. Then we have the following. 

equation: 
g w ;  x ,  y )  = (1 - S b - 9  y )  + S ( x ,  y)ei')n, 

where 

P(x1,y, I x , y ) = P { y : z x l ,  Y : z y l  I Y i = x ,  Y i = y )  

= r A9(T + t +yl)exp ( - h [ 9 ( s  - x , )ds )  dt, 
XI 

and 

Pl(x, y )  = P(0,O I x ,  y )  = [ A9(T + t )  exp (-A[ 9 ( s )  ds)  dt. 

n, k = 2,3,4-  * ,  

where 

(iii) The central limit theorem and strong law of large numbers as in Theorems 5 
and 6 still hold. 

The proof of this theorem is almost the same as in Section 3 and is omitted. 

5. Whole genome amplification with T-PCR 

In previous sections we studied PEP and proved that the expected total number of 
T-DNAs that contain a fixed target T increases as ecG, where c is a constant and n is 
the number of PEP cycles. Experiments show while PEP does amplify the DNA 

I 
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3' 5: 3' 

from a single cell, the amount of amplification cannot be detected on ethidium 
bromide stained gels after 50 PEP cycles (Zhang et al. 1992). A new method was 
proposed by using tagged random primers (Grothues et al. 1993). The principle of 
this technique is described as follows. Tagged random primers (Jeffreys er al. 1991) 
with a random 3' tail that can bind to arbitrary DNA sequences, and a constant 5' 
head (the tag) for the subsequent detection of the incorporated primers, are 
synthesized first. In the first step, n 2 2  PEP cycles are done using these tagged 
random primers. In the first cycle, the 3' tails of the tagged random primers anneal 
to the single-stranded sequences and the Taq polymerase extends the primers by a 
constant length L. In later cycle sequences tags at both ends are generated. After n 
PEP cycles, sequences without tags at either end are removed. In the second step, 
the usual PCR is applied using primers complementary to the constant region of the 
tagged random primers. During this step molecules containing random primers at 
both ends are amplified exponentially. This technique is referred to as T-PCR. The 
T-PCR technique combines the coverage properties of PEP and the exponential 
growth rate of amplification by PCR. Because in the second step only sequences 
with tags at both ends are amplified, we are only concerned about sequences with 
tags at both ends, which we refer to as Tag sequences. Note that the first generation 
sequences defined in Section 1 are not Tag sequences because, at most, only the 5' 
end is tagged. A second generation sequence is a Tag sequence if and only if the 5' 
end of its first generation ancestor is tagged. Because we suppose the length of 
extension is a constant, third or higher generation sequences are always Tag 
sequences (Figure 13). Here again we suppose there is a target T which we model as 
an interval on the real line. We want to answer the following questions. 

(a) For a fixed target of length T, what is the expected number of Tag sequences 

(b) What is the probability that the target is covered by any Tag sequences of length 

First let us fix a target of length T. Let Yz and Y', be the lengths of a kth 
generation Tag sequence at its 5' and 3' ends beyond the target. From the above 
discussions we see that Theorems 1, 2, and 3 still hold for k 2 3. For k = 2, the 

with length at least T + 1 covering the target completely? 

at least T + I? 

5' 

- 3' 
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results are changed because not all second generation sequences are Tag sequences. 
The following theorem gives modified versions of Theorems 1, 2, and 3 for k = 2. 

Theorem 11. ( i )  The joint density function of E and Y:  is 

f 2 ( x ,  y )  = A ~ ~ - W L - T - ~ - Y )  , O < x + y < L - T ,  

in the sense that for any subset B c {(x,  y )  : x  > 0, y > 0, x + y < L - T} ,  

P{(c, Y:) E B }  = llf26, Y )  dx dy. 
B 

(ii) Y', and Y i  have the same density function. I f  we denote their common density 
function by f2(x), we have 

f2(x)  = he-AL(l - e-A(L-T-x) ), O C X C L - T ,  

in the sense that for any 0 € x < L - T, 
L -  T 

P{c > x }  = P{Y', > x }  = I, f2(s) ds. 

(iii) Let P2(1) be the probability that there exists a second generation Tag sequence 
at the second cycle with length greater than T + 1. Then 

P2(l) = (A(L - T )  - l)e-"' - (A1 - l)e-A(2L-T-'). 

(iv) Given that second generation Tag sequences covering the target exist, the 

( v )  The expected number of second generation Tag sequences with length at least 
expected lengths of y'2 and Y: are J & - T ~ f 2 ( ~ )  dxlP2(0). 

T + 1 containing the target T is (:)P2(l). 

The next theorem gives a recursive formula for the probability that a target of 
length T is covered by Tag sequences of length at least T + 1. 

Theorem 12. Suppose initially we have one single-stranded sequence. The expected 
fraction c,, of the genome covered by Tag sequences of length at least T + 1 afrer n 
PEP cycles satisfies the following recursive equation: 1 - c,,,~ = (1 - c,,)(l - h,,), 
where c1 = 0 and exp (AT)h, is given by 

In the following we illustrate the coverage result with an example. As in Section 2, 
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0.5 ' 

0.4 ' 

0.3 . 

0.2 . 

0.1 

0.002 0.004 0006 0.008 0.01 

Annealing rate 

Figure 14. The probability that the target is covered by Tag sequences after 2, 3, 4, and 5 cycles with 
L=lOOO, T=250. 

we let L = lO00, T = 250. Figure 14 shows the probability that the target is covered 
by Tag sequences after 2, 3,4, and 5 PEP cycles. From Figure 14 we see that if the 
annealing rate is low, the coverage is also low. When the annealing rate reaches 
some level, the coverage reaches its maximum. Then the coverage decreases after 
this level. Under the above conditions, the maximum point for coverage is 
approximately A = 0.002. That means that in approximately every 1/0.002 = 500 
bases there is a primer annealing to the genome. Even at this optimal annealing rate, 
after 5 cycles the probability that the target is covered by Tag sequences is only 
around 58%. The reason for this behavior is that, when the annealing rate is low, 
few Tag sequences are generated and thus the probability that a point is covered by 
Tag sequences is small. If the annealing rate is too high, the first generation 
sequences are more likely to replace each other and thus few second generation Tag 
sequences are generated but more third and higher generation sequences are 
generated. All the factors balance among themselves and maximum coverage is 
obtained. It might be noted that the optimal annealing rate here is the same as that 
in Section 4. That is just a coincidence. If we use different values for the parameters, 
the optimal annealing rate will be different. 

Proof of Theorem 11. (i) We refer to Figure 15. For a fixed target of length T ,  let 

: X T y : L-T-X-y I 
5' -- 3' 0-th generation 

second generation 

Figure 15. The mechanism by which a second generation Tag sequence with {G b x, Y: B y} is generated 

first generation 
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r", and Y; be the lengths of a second generation Tag sequence covering the target at 
its 5' and 3' ends respectively. For any 0 < x  + y < L - T, x B 0, y B 0, {r", Zx,  
Y;  B y }  happens if and only if in the first cycle there is a primer (Pl) in the interval 
( y ,  L - T -XI  and to the right of P1 in an interval of length L there are no primers 
so that the 5' end of the extension product of P1 is tagged and the extension product 
of P1 covers A, B. Let the position of P1 be z.  Then in the second cycle there must 
be a primer in (x, L - T - z] which has probability 1 - e-h(L-T-z-x) . Th erefore 

L- T-x  

1 dz P{r",Zx,  Y ; Z y } =  I, A~-AL(~  - e-h(L-T-z-~)  

1, = e-"[A(L - T - x - y )  - 1 + e-h(L-T-x-Y) 

Therefore the density of (pa Yz) is 
f&, y )  = A ~ ~ - A ( ~ L - T - * - Y )  , O S x + y S L - T .  

(ii) The marginal density of r', or Y: is 
L- T-x  

h(x) = h(x, y )  dy = Ae-"L(l - e-h(L-T-x) 1. 

(iii) It is easy to calculate 

P2(1) = 11 f?(x, y )  dx dy = [A(L - T )  - l]e-AL - (AI - l)e-A(2L-T-'). 
l U + y C L -  T 

(iv) Can be seen from (ii) and (iii). 
(v) Just like the proof of Theorem 3, we prove this part by induction. For n = 2, 

the claim is obviously true. Suppose the result is true for n. Let X;(I) be the number 
of second generation Tag sequences of length at least T + 1 covering the target after 
n PEP cycles. Then we have X;+'(I) = X;(I) + Z;(I), where Z:(I) is the number of 
second generation Tag sequences of length at least T + I generated from a], where 
a1 is the first generation sequence generated in the first cycle. Given = x ,  
Y: = L - T - x ,  after each cycle al generate a second generation Tag sequence of 
length at least T + 1 covering the target if and only if there are primers in ((I - x ) + ,  
L - T -XI  at the 3' end of a l .  The probability of this event is 1 - exp [-A(L - T - 
x - (I -x)+)]. So after n cycles, the expected number of second generation 
Tag-sequences generated by a1 of length at least T + I is n(1- exp [-A(L - T - 
x - (I -x)+]). In the proof of Lemma 1, we have proved 

P{Y: + f i  = L - T, Y : > x }  = Ae-"(L - T - x ) ,  O C x  C L - T. 
Thus 

d 
dx 

-- P(Y: + Y: = L - T, Y: > x } =  O C x  C L - T. 
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From law of total probability we see that 

EZ;(I) = n [ - r ( l  - exp [-A(L - T - x - (1 -x)')])Ae-"" dw = nP2(1). 

Therefore 
Ex;+'(1) = EX;(I) + EZZ(1) = Ex;(1) + &(I).  

By induction on n, we have EX';(/) = (;)P2(1) and the theorem is proved. 

Proof of Theorem 12. Fix a target T. Let A,, be the event that the target is 
covered by Tag sequences of length at least T + 1 after n PEP cycles. Conditional on 
the lengths at the 5' and 3' ends (E = x ,  Y: = y )  of the first generation sequence a1 
which is generated at first cycle, by the mechanism of PEP, A,+,  happens if and only 
if the target is covered by Tag sequences of length at least T + 1 generated by the 
original sequence after n cycles, or the target is covered by Tag sequences of length 
at least T + 1 generated from a]. Let A,*(x, y )  be the last event just discussed. Then, 
given (E = x ,  Y: = y) ,  A,, and A,*(x, y )  are independent and A,+,  I (x ,  y )  = A , ,  U 
A,*(x, y ) .  Thus 

2 

P(An+I I (x ,  Y ) )  = P(An uA,*(x,  Y ) )  = 1 - (1 - P(An))(1-  P(A,*(x, Y ) ) ) .  

Therefore 

(17) 1 - P(An+I I (x, Y 1) = ( 1  - P(An))(1-  P(A,*(x, Y ) ) ) .  

Next we study P(A,*(x, y ) ) .  We consider two cases. 
(a) 1 < x  + y < L - T. Notice that when (E = x ,  Y: = y ) ,  the first generation 

sequence does not have a tag at its 5' end. Therefore the second generation 
sequences generated from it are not Tag sequences because the 3' ends of the 
second generation sequences are not tagged. In order that A,*(x ,y )  occurs, there 
must be a second generation sequence at some cycle j ,  2 5 j 5 n, such that this 
second generation sequence generates tagged third generation sequences covering 
the target at some cycles j + 1,  j + 2, - - * ,  n + 1. Let Bj, 2 S j 5 n, be the event just 
described. Then A,*@, y )  = B2 U B3 U - - U B,. Therefore 

n 

Given (Y: = x ,  Y: = y), Bj occurs if 
( 1  - x ) +  <xl c y ,  no primers in (x , ,  y )  at 

* U B,,) = 1 - n (1 - P(Bj)).  

and only if there exists a primer at x , ,  
cycle j and in cycles j + 1 ,  j + 2, - - , n + 1 

j = 2  

there are primers in ( ( I  - xl)+, x]. Since in each cycle the number of primers is a 
Poisson process with parameter A, the number of primers in cycles j +  1,  
j + 2, * ,  n + 1 is a Poisson process with parameter (n - j + l)A. Therefore 

(19) P(Bj)  = I' Ae-A(Y-X1) ( 1  - exp [-A(n - j  + l ) ( x  - ( 1  -XI)+)]) dxl. 
(I++ 
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From (18) and (19) we have 

P(A,*(x, Y )) 

= 1 - fi [ 1 - [ Ae-A(Y-*l)(l - exp [ -A(n - j  + l)(x - (I - X I ) + ) ] )  d x , ]  
(20) j = 2  (r-x)+ 

= 1 - fi [ 1 - [ he-A(y-xd (1 - exp [-Ai(x - (I - x l ) + ) ] )  d x l ] .  
i = l  ( r - x ) +  

(b) x + y  = L - T. Notice that when (Y: = x ,  Y: = y ) ,  the 5' end of the first 
generation sequence is already tagged. Therefore any second generation sequences 
generated from it are tagged at both ends. Given (Y; = x ,  Y: = y ) ,  A,*(x, y )  happens 
if and only if there are primers in ((I - x ) + ,  y ]  in cycles 2,3, * , n + 1 which occur 
with probability 

P(A,*(x,y)) = 1 - exp [ - A n ( y  - (I - x ) + ) ]  = 1 - exp [ -An(L  - T - x  - ( I  - x ) + ) ] .  

From the proof of Lemma 1 we see that the density function of (Y;,  Y:)  is 
fi(x, y )  = A2e-h(T+x+Y) , O < x + y < L - T ,  

and 
P { G  + Y: = L - T, Y ; Z x } =  Ae-"(L - T - x ) ,  O < x  < L - T. 

From the law of total probability we have 
e,- 

) dx. + lLPTAe-AL(l - e-An(L-T-x-(I-x)+) 

It is easy to verify that 
L- T \ A(1- exp [-An (L - T - x - ( I  - x ) + ) ] )  dx 

JO 

Taking the expectation of (17) and combining (20), (21) and (22), we see that 
Theorem 12 holds. 
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