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A new computational method (chimeric alignment) has been developed to detect chimeric 16s rRNA artifacts 
generated during PCR amplification from mixed bacterial populations. In contrast to other nearest-neighbor 
methods (e.g., CHECK-CHIMERA) that define sequence similarity by k-tuple matching, the chimeric align- 
ment method uses the score from dynamic programming alignments. Further, the chimeric alignments are 
displayed to the user to assist in sequence classification. The distribution of improvement scores for 500 
authentic, nonchimeric sequences and 300 artificial chimeras (constructed from authentic sequences) was used 
to study the sensitivity and accuracy of both chimeric alignment and CHECK-CHIMERA. At a constant rate 
of authentic sequence misclassification (5%), chimeric alignment incorrectly classified 13% of the artificial 
chimeras versus 14% for CHECK-CHIMERA. Interestingly, only 1% of nonchimeras and 10% of chimeras were 
misclassified by both programs, suggesting that optimum performance is obtained by using the two methods 
to assign sequences to three classes: high-probability nonchimeras, high-probability chimeras, and sequences 
that need further study by other means. This study suggests that k-tuple-based matching methods are more 
sensitive than alignment-based methods when there is significant parental sequence similarity, while the 
opposite becomes true as the sequences become more distantly related. The software and a World Wide 
Web-based server are available at http://www-hto.usc.edu/software/mglobalCHI. 

The use of 16s rRNA in the classification of bacterial species 
has been well established, and its effect on biology has been 
profound. It was 16s rRNA data that provided convincing 
evidence that chloroplasts and mitochondria most likely arose 
from free-living bacteria and that prokaryotic organisms rep- 
resented not one line of evolutionary descent but two, Bacteria 
and Archaea (previously eubacteria and archaebacteria), that 
diverged from each other and from the Eucaiya at approxi- 
mately the same time (5,26). The Ribosomal Database Project 
(RDP) (13) at the University of Illinois at Urbana-Champaign 
maintains an extensive, publicly accessible, database of 16s 
rRNA sequences with the long-term goal of developing com- 
plete phylogenies of all bacterial, archaebacterial, mitochon- 
drial, and chloroplast species. 

Since most bacterial species have not been cultured or are 
uncultivable without significant effort, methods to obtain 
rDNA sequences directly from bacterial biomass have been 
developed (8, 22, 25; see also reference 21 for a digest of 
comments on the inadequacy of using culture techniques to 
describe the members of a natural community). Some of these 
use PCR to directly amplify rDNA sequences from environ- 
mental samples with primers that can be targeted to regions of 
the 16s sequence with different degrees of cross-species con- 
servation. Since their introduction, these methods have per- 
mitted the study of a wide range of bacterial habitats, including 
hot springs in Yellowstone National Park (3), oceans (6,8), the 
human oral cavity (4), and the nuclei of ciliates (2) to name just 
a few. The power, ease, and flexibility provided by these PCR 
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methods would seem to argue that environmentally derived 
sequences will come to dominate the 16s rRNA databases 
(and hence bacterial phylogeny) in the relatively near future. 
These PCR-based methods have a significant drawback, how- 
ever; in some fraction of cases (estimated as 4.1 to 20% in 
reference 18) a recovered clone is a chimera-containing se- 
quence derived from two microorganisms (for early observa- 
tions of this problem see references 11 and 12). Obviously, 
inclusion of such sequences in phylogenies could cause signif- 
icant errors, and the number of such occurrences must be kept 
to a minimum. 

Despite the fact that there are many potential ways to detect 
chimeric sequences, including covariation analysis and analysis 
of predicted secondary structure (i.e., searching for mis- 
matches in conserved helices), most detection is done by near- 
est-neighbor methods. In nearest-neighbor analysis, a newly 
recovered sequence (henceforth the query sequence or query) 
is split into two subsequences that are then compared with a 
database of similar sequences. If the sequence can be split in 
such a way that the phylogenetic affiliation of the parts is 
inconsistent with the affiliation of the sequence as a whole, a 
chimera is suspected. This condition for a chimera is rather 
vague from the standpoint of a practical method, so most 
nearest-neighbor chimera detection programs restate this con- 
dition as an improvement score or IS. An IS is usually defined 
as the sum of the similarities between the two partial sequences 
and their nearest neighbors minus the score for the complete 
sequence compared with its nearest neighbor. Since there are 
many ways to measure sequence similarity, there are also a 
wide range of possible nearest-neighbor methods, probably 
with different levels of sensitivity (i.e., how well they detect 
chimeras) and discrimination (from a practical standpoint, how 
many nonchimeric sequences get marked as chimeras). 

There are two currently available nearest-neighbor methods, 
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the CHECK-CHIMERA method of Larsen et al. (13) and the 
aligned similarity method of Robison-Cox et al. (18). The 
former method defines similarity by the number of common 
oligonucleotides of length k (k-tuples) shared by a sequence. 
The sequence is broken at 10-base intervals, and the maximum 
value of the IS over all possible breakpoints is determined. The 
latter method computes similarity by counting the number of 
aligned, matched bases in two disjoint sequence domains by 
using the RDP universal multiple sequence alignment. Both of 
these methods have potential flaws. CHECK-CHIMERA does 
not use any alignment information at all, and the aligned sim- 
ilarity method suffers from problems associated with using a 
multiple-sequence alignment. These include the inability to 
properly penalize indels (insertions and deletions); plus, there 
are technical reasons why painvise comparisons derived from a 
multiple sequence alignment are likely to be suboptimal (23). 
Furthermore, any fundamentally statistical method will make 
errors with certain types of sequences. For this reason, we 
developed a new method to complement these existing meth- 
ods. 

Our new method, called chimeric alignment, scores se- 
quence comparisons by dynamic programming alignment (14, 
19, 23), which is the method used by the Genetics Computer 
Group programs BestFit and Gap (7). The method calculates 
two improvement scores, ISczrl and IS,,,,, based on the three 
alignments shown in Fig. 1. The first alignment (Fig. l a )  is the 
best alignment between the query and its closest neighbor in a 
database of similar sequences, which we will call the best single 
sequence alignment, and we will label its score S1. Next, two 
chimeric alignments are determined. We define a chimeric 
alignment as one in which the query sequence is broken into 
two parts, and then each part is aligned to a 5’ or 3’ fragment 
of a sequence in the database. Figure l b  shows a chimeric 
alignment where one database entry provides both of the near- 
est neighbors, and Fig. IC shows a chimeric alignment where 
each query fragment has a nearest neighbor from a different 
sequence. For convenience we call the alignment in Fig. l b  the 
best chimeric alignment with a single sequence and abbreviate 
the score C1, while the alignment in Fig. IC is simply called the 
best chimeric alignment, and its score is C2. To obtain the 
improvement scores mentioned above we compute raw differ- 
ence scores: C2S1 = C2 - S1 and C2Cl = C2 - C1. The 
scores are adjusted to remove certain artifactual effects (see 
the program documentation at http://www-hto.usc.edu/soft- 
wareImglobalCHI), and then they are labeled ISczsl and 
IS,,,l. These swres and the alignments from which they are 
derived can then be used to help determine if a sequence is 
chimeric. 

We have developed a program (mglobalCH1) that performs 
the chimeric alignments described above. To determine its 
effectiveness at detecting chimeric sequences, we have tested 
both our program and the CHECK-CHIMERA program with 
500 nonchimeric sequences and 300 artificial chimeras. Se- 
quences were labeled as chimeric or nonchimeric based on IS 
values. Although this ignored the contribution of the user’s 
expertise, it provided an objective assessment of sensitivity and 
discrimination. The chimeric alignment method was marginally 
better at detecting chimeric sequences, misclassifying 13% of 
the chimeras versus 14% for the CHECK-CHIMERA method 
(both programs were set to a 5%-false-positive rate). The best 
results were obtained when both programs were used in con- 
cert. If both programs had to agree to classify a sequence, then 
only 1% of nonchimeric sequences were classified as probable 
chimeras, 8% were classified as possible chimeras, and 91% 
were classified as probable nonchimeras. For the chimeras 
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FIG. 1. Schematic representations of alignment types. Bold lines represent 

query sequences, fine lines represent database sequences, and shaded boxes 
represent aligned regions. (a) global alignment (Sl); (b) chimeric alignment with 
one sequence providing both partial molecules (Cl); (c) chimeric alignment with 
two sequences ((22). 

10% were classified as probable nonchimeras, 7% as possible 
chimeras, and 83% as probable chimeras. 

MATERIALS AND METHODS 

Program. The program works by determining the best global sequence align- 
ment between the first i nucleotides of the query and its closest relative in a 
database and that between the remaining segment of the query sequence and its 
nearest neighbor. This is determined by using every nucleotide more than 100 
bases from an end of the query as the point to divide the sequences. The scores 
for the two partial alignments are then summed to yield the best chimeric 
alignment. The best chimeric alignment with a single sequence is generated in a 
similar manner, except both nearest neighbors must come from the same se- 
quence. The best single sequence alignment is determined by a straightfomard 
extension of standard dynamic programming methods (14,19,23). Note that this 
method implicitly imposes a 200-base minimum length on query sequences. 
Those interested in the details of the algorithm are encouraged to review the 
online documentation and reference 9. 

The score S for a sequence comparison is derived from the alignments by using 
the following relationship: S = (matches) X v - (mismatches) X p - P (indels) 
X (gap penalty), where v is the match score, and is the mismatch penalty. Gap 
penalties are assessed depending on length. There is a penalty (x for starting a gap 
and a lower penalty p for each additional base in the gap. In addition, 5’ leading 
and 3’ trailing indels are penalized less than internal gaps, because the former 
are more likely related to sequencing completeness than to sequence relatedness 
per se. After the raw improvement scores C2S1 = C2 - S1 and C2C1 = C2 - 
C1 are computed, they are adjusted to remove certain artifactual effects (see the 
online documentation at http:/hKww-hto.usc.edu/software/mglobalCHI) and are 
then labeled IS,, and IS,,,,. Readers interested in the details of the adjust- 
ments are encouraged to review the online documentation for the program and 
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a 
hto.usc.edu(1): mglobalCH1-0.95 nonl5l.seq noncheckl5-16.std chimera.mat 

1 12 1 0 6 0 -m -u 151.un 

S w m n r y  of aliment scores: 

Query: 
Sequence: non Bdr.IRBG2 260 bp 
Length: 260 

Database : 
Filename: noncheckl5-16.std 

# of sequences: 35 

Best non-chimeric alignment: 
Sequence: Bdr.ORS322 260 hP 

Score: 780 

Best chimeric alignment with a single sequence 
Sequence: Bdr.ORS322 260 hp 

Score: 780 
puery breakpoint: 100 

FromIll : 1 to 100 
FromI2l: 101 to 260 

Best chimeric alignment: 
puery breakpoint: 100 

Score: 780 

Sequencel: Bdr.ORS322 260 hp 
From: 1 to 100 

SequenceZ: Bdr.IRB231 264 hP 
From: 105 to 264 

ImProvement scores : 
C2Sl: 0 
c2c1: 0 

IS(CZS1): 0 
Is(c2c1): 0 

Best single sequence a l i m e n t  

121 cccuuacggggaaagaUUuaucgccgaaagaucggcccgcgllcugauuagcua91lug9ug 

121 cccuuacggggaaagauuuaucgccgaaagaucggcccgc9cugauuag~aglluggllg 
I I l I I I I I I I I I I I I I l I l I l I I I l I l I I l I I l I I I I I I I I I I l I I I I I I I I I I I I I I I I  

Best chimeric alignment with a single sequence: 

Best chimeric alignment: 

240 ugggacugagacacggcccaa 
I I I I I I I I I I I I I I I I I I I I I  

FIG. 2. Sample output from the mglobalCH1 program. (a) Authentic sequence Bdr.IRBG2; (b) artificial chimera chil05. Note that the best single sequence 
alignment and the best chimeric alignment with a single sequence in panel b are truncated for improved visibility. Both of these alignments have long 3' trailing indels. 
The name of the query sequences and their lengths are listed at the top, along with the names of the files containing the 16s database and the numbers of sequences 
in those files. 

to run the program on test cases to observe the relationships between the 
unadjusted and adjusted scores. 

Sequences. The database of sequences used in these comparisons was obtained 
from the RDP (13). Sequences were obtained from the aligned database (RDP 
version 5.0) with the RDP World Wide Web server. The database contained all 
prokaryotic sequences except those denoted env., which are derived from envi- 
ronmental samples. Most of the sequences denoted sym. (endosymbionts) were 
also deleted. The sequences were edited to remove extraneous characters and 
converted into our standard file format. The total number of sequences was 
2,520. Nonchimeric test sequences were obtained by randomly selecting se- 
quences from the database described above. In some cases database entries were 
missing various amounts of internal sequences. The RDP designates areas where 
sequence is missing by using a period rather than a dash in the universal align- 
ment (periods are generally found where data are unavailable or where there 
were more than six Ns in a row in the original sequence). In such cases the 
longest continuous piece of sequence was used in the test. In extreme cases, an 
entry was simply bypassed. 

Artificial chimeras were obtained from authentic sequences by randomly se- 
lecting a sequence from the database and then randomly selecting a sequence 
from the 100 nearest sequences on either side of the first in the phylogenetically 
ordered list. This restriction was designed to give a wide range of similarity scores 
for the parental sequences of chimeras. The breakpoint was chosen at random in 
the RDP-aligned sequence, and the two sequences were joined together to form 
the chimera. If the chimera had a breakpoint less than 200 bases from either end, 
a new breakpoint was chosen. Occasionally it was necessaly to reverse the order 
of the two partial sequences in the chimera in order to create a continuous 
sequence from database entries that were missing internal data (see above). 

The nonchimeric sequences varied in length from 225 to 1,740 bases; chimeras 
ranged from 438 to 1,609 bases. Estimated similarity of the parents of the partial 
sequences that were assembled into a chimera ( k ,  the sequences used to 
construct the chimera) was determined by aligning the two sequences by using 
the three gap function method described above and the same parameters as 
those for the chimeric-alignment program. Percent similarity was then measured 

as the number of identically matched bases divided by the total number of 
positions aligned (excluding leading and trailing indels). If data were missing 
from a parental sequence, it was broken into continuous pieces and the frag- 
ments were aligned separately. Overall percent similarity was then calculated as 
the length-weighted mean of the similarity of the fragments. Estimated percent 
similarity of the parental sequences of the chimeras ranged from <67 to 99%. 

Program evaluation. To explore the effectiveness of the program, 500 nonchi- 
meric sequences were used to obtain an estimate of the distribution of ISs for 
authentic sequences with this database and parameter set. For each sequence, 
IS,, and IS,, were determined (the query sequence was removed from the 
database in all cases) and the scores were ordered. A cutoff value for a chimeric 
sequence was determined by finding a score that would give a 5% false-positive 
rate (this is the same method used by Robison-Cox et al. as described in refer- 
ence 18). Three hundred artificial chimeras were then tested by using the above 
database (minus both source sequences) to determine the false-negative rate. 

The chimeric alignment program used the following parameters. The match 
and mismatch values are from matrix chimeramat (available at the University of 
Southern California (USC) computational biology World Wide Web server, 
http:/hvww-hto.usc.edu/). Generally, matches were scored +3 and mismatches 
were scored -6. In the case of mismatches with N (any nucleotide) the score 
was penalized -4. R-A, R-G, R-R, Y-T, Y-U, Y-C, and Y-Y mismatches were 
penalized -2. The gap penalties used the following parameters: a5. = a3' = -1, 

For comparison purposes, the 800 sequences described above were also tested 
with the CHECK-CHIMERA method at the University of Illinois, Urbana- 
Champaign. The studies were conducted between 19 March 1996 and 6 May 
1996. The database used excluded the same env. and sym. sequences as those 
excluded by the one used for the chimeric alignment program. In addition the 
RDP recommends that sequences shorter than 1,300 bases be excluded. A 
previous study (18) of CHECK-CHIMERA effectiveness removed all sequences 
shorter than 1,200 bases and so this was also done for consistency. The maximum 
IS was calculated with the graph axes provided by the RDP, and similar back- 
ground and false-negative values were calculated. 

ainternal = -12, P5. = PY = 0, and @internal = -6. 

http:/hvww-hto.usc.edu
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S - r y  of alignment scores: 
b 

Best chimeric ali-nt with a single sequence: 

sequence: chi W.mri8mz Hc.spBr3 1 to 226 1 212 brkpt:530 
pusry: 

Length: 438 
Database: 

P i l e m :  lWI13248.db 
t of sequuonces: 101 

Best nan-chimeric ali-nt: 
Sewuonce: > Hb.m.risml 1472 bp 

score: 1036 

Best chimeric alignment with a single 8equence 
Sequence: > Hb.mrisml 1412 bp 

Score: 1039 
Query breakpoint: 291 

From[ll: 1 to 297 
FromI21: 299 to 1472 

Best chimric alignment: 
Query breakpoint: 226 

Score: 1235 

Sequencel: > Hb.mrisml 1412 bp 
Prom: 1 to 226 

Sequencel: > Hc.01~ 212 bp 
Prom: 1 to 212 

Improvement scores: 
CZS1: 199 
CZCl: 196 

Is(CIs1): 198 
IS(CZC11: 195 

Best single sequence ali-nt 

1 

1 

61 

61 

121 

121 

181 

181 

241 

241 

301 

301 

361 

361 

421 

421 

FIG. 2-Continued, 

RESULTS 

Program. Figure 2 shows typical outputs from the mglobal- 
CHI program. Figure 2a shows an authentic sequence, while 
Fig. 2b shows the sequence of an artificial chimera. Note that 
in Fig. 2b the single-sequence alignment and chimeric align- 
ment with a single sequence are truncated to improve read- 
ability (a long 3' trailing indel was removed from each align- 
ment). The program computes the score for the optimal 
alignment of the query and a single sequence in the database 
(Sl; Fig. la)  and those for two chimeric alignments, one where 
both partial sequences come from a single sequence (Cl; Fig. 
lb) and one where the two partial sequences are derived from 
two database entries (C2; Fig. IC). In each case the aligned 
sequence(s), its start and stop points, and the point in the 
query where the sequence was split to make the chimeric 
alignments (which we label a "chimeric breakpoint") are also 
given. Two raw statistics are given, C2S1 and C2C1; the former 
is the score for alignment S1 subtracted from the score for the 
best chimeric alignment (C2) and the latter is the score for 
alignment C1 subtracted from the score for alignment C2. The 

next lines contain the final ISs, ISc2s1 and IS,,,,, which have 
been adjusted by the software. The software adjusts for two 
types of effects. First, it compensates for different amounts of 
aligned (paired) sequence in the three alignments. Second, it 
corrects for two cases where obviously nonbiological align- 
ments have occurred (5' end of one sequence aligned with the 
3' end of another and substantial internal deletions). Full de- 
tails are available in the online documentation. Finally, the 
three alignments are printed out, allowing the researcher to 
study the sources of the scores. In addition, the program can be 
set to generate a graph of C2C1 for each possible breakpoint 
along the query. Figure 3 shows two examples of such a graph, 
one of an authentic sequence and the other of an artificial 
chimera. IS,,,, was the most satisfactory statistic, so in the 
subsequent discussions IS will refer to IS,,,, unless otherwise 
specified. 

Evaluation of the mglobalCH1 program. To determine a 
baseline value for IS,,,,, 500 authentic, nonchimeric (length, 
225 to 1,740 bases) sequences were obtained from the RDP- 
derived database as described in Materials and Methods. After 
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lo001 I , I I I I , , 
authentic sequence Nscmobili - 

artificial chimera 80 -----. h 

0 200 400 600 800 lo00 1200 1400 1600 
Location of breakpoint on query (bases) 

FIG. 3. Sample graphs of C2C1 as a function of chimeric breakpoint from the 
mglobalCHI program for authentic sequence Nscmobili and chimeric sequence 
chi80.seq which consists of the sequence Ace.longum from bases 1 to 1001 
concatenated with sequence Dfmaustra from bases 1001 to 1560. 

the sequences were edited to remove discontinuities, they were 
tested by using the mglobalCHI program. Figure 4a shows the 
distribution of the improvement scores  IS,,,^) for these se- 
quences. An IS of 145 was taken to be the cutoff value for a 
chimeric sequence, as this gave a false positive rate of 5%. 
Next, 300 artificial chimeras were tested by using the mglobal- 
CHI program to estimate the fraction of such sequences that 
the program can detect. With a cutoff value of 145, this re- 
sulted in the misclassification of 39 chimeras, or 13% of the 
total. Figure 4b shows the distribution of IS,,,, for the artifi- 
cial chimeras. Not surprisingly, as the estimated percent simi- 
larities of the partial sequences increased, the fraction of de- 
tected chimeras decreased, as can be seen in Fig. 5a. However, 
as the large degree of dispersion indicates, this is not the only 
factor that is acting to influence detection efficiency. The dis- 
tance between the nearest sequence end and chimeric break- 
point also affected detection (although the correlation is less 
striking), as can be seen in Fig. 5b. 

Evaluation of the CHECK-CHIMERA method. For com- 
parison purposes the same set of sequences was tested by using 
the CHECK-CHIMERA program on the RDP e-mail server 
(13) as described in Materials and Methods. The output from 
CHECK-CHIMERA is a graph of IS, which we label IS7-tuple 
(because scores are based on counts of 7-tuples), plotted 
against chimeric breakpoint along the query sequence. The 

a 
250 

200 
3 
5 

150 

c 

100 B 
i 

50 

n 

500 noichimeras - 
0.05 Pmpirical ------ 

" 
-200 -100 0 100 200 >300 

Improvement Score (mglobalCH1) 

maximum value of this function was extracted and used as the 
score for a given sequence. This score was used even though it 
was of necessity a rather naive use of the output. By using only 
the numerical values of both IS,,,, (also a naive use of a 
program) and IS7-tup,e an objective measure of the two pro- 
grams relative efficacy could be obtained. 

An IS7-tuple of 50 gives a cutoff value which yields a 5% 
false-positive rate for the CHECK-CHIMERA program on 
the test set of 500 sequences. Figure 6a shows the distribution 
of scores for the authentic sequences. When the 300 chimeric 
sequences were tested (Fig. 6b), 42 sequences (14%) were 
misclassified as nonchimeric. As with the mglobalCHI pro- 
gram, chimera detection is generally more likely with decreas- 
ing parental similarity (Fig. 7a) and increasing distance be- 
tween breakpoint and the nearest sequence end (Fig. 7b). 

Comparison of mglobalCH1 and CHECK-CHIMERA er- 
rors. Although the sensitivity and discrimination of both pro- 
grams are approximately similar, the sets of sequences that 
were misclassified are only partially overlapping, particularly in 
the category of false positives (i.e., authentic sequences labeled 
as chimeric). Only 5 of 500 nonchimeric sequences (1%) were 
misclassified as chimeric by both programs, leaving 455 se- 
quences that were classified by both as nonchimeric and 40 that 
were classified by only one program as chimeras. Similarly, 
only 30 of 300 artificial chimeras were classified by both pro- 
grams as authentic sequences. Many of the misclassified chi- 
meras are derived from sequences with high levels of local 
similarity and/or are sequences with chimeric breakpoints near 
one of the ends, that is, chimeras with a low probability of 
detection under any nearest-neighbor method. This leaves 249 
sequences that were labeled chimeric by both methods and 21 
sequences labeled as chimeric by one program only. Thus, if 
agreement between the programs is required for assignment as 
a chimera or as an authentic sequence, the nonchimeras would 
be partitioned into three groups: probable chimeras (1%), 
possible chimeras (8%), and probable nonchimeras (91%). For 
the chimeras these values would be 83, 7, and lo%, respec- 
tively. 

As indicated earlier, using the two programs in the manner 
described above is a naive use of the data that they generate. 
In addition to the single value of the IS, the CHECK-CHI- 
MERA program provides a graph of the value of IS7.tuple 
plotted with respect to the breakpoint in the query sequence, 
and the shape of this curve also contains information. A gen- 
uine chimera should have a consistently rising score until the 

b 
250 

200 
B 
8 

150 B 
B 
c 

100 

i 
50 

0 
-200 -100 0 100 200 >300 

Improvement Score (mglobalCH1) 

FIG. 4. Histograms of IS,,, from the mglobalCH1 program for test sequences. The vertical line represents the cutoff value (145) that gives a false-positive rate 
of 0.05. (a) Histogram for 500 nonchimeric sequences; (b) histogram for 300 chimeric sequences. 
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Distance from breakpoint to nearest end 

FIG. 5. Effects of similarity of parental sequences (a) and distance between chimeric breakpoint and nearest sequence end (b) on ISc2cl (mglobalCH1) for 300 
artificial chimeras. The dashed horizontal line is the cutoff value for a chimeric sequence (145). 

breakpoint is reached, and then the score should begin a con- 
sistent fall. The mglobalCHI program also provides such a 
curve (although it is of the unadjusted value C2C1 rather than 
of ISczcl per se). Generally, the mglobalCHI graph of C2C1 
from a high-probability chimera (i.e., one with a large IS,,,,) 
is of the same form as the graph of a chimera detected by 
CHECK-CHIMERA (a consistent rise until the breakpoint is 
reached followed by a consistent fall); however, our observa- 
tions suggest that this becomes much less clear as the maxi- 
mum value of ISc2c1 decreases. 

Use of alignments from mglobalCH1. The most important 
difference between the mglobalCH1 and CHECK-CHIMERA 
programs is that mglobalCHI displays the alignments from 
which the inferred classification is drawn. This can be useful in 
correctly classifying marginal sequences (although it is impor- 
tant to note that none of the information in the discussion 
below was used to alter the cutoff values used in the program 
evaluation). For example, based on IS,,,, only, the mglobal- 
CHI program incorrectly classifies the sequence Stc.oralis 
(from Streptococcus oralis) as a chimera (ISczc1 = 160), but a 
study of the alignments reveals that the sequence is in fact 
nonchimeric. The S1 and C1 alignments were made with se- 
quence Stc.pneumo (Streptococcus pneumoniae), which, while 
complete, contained a number of ambiguous bases (N). The 
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chimeric alignment of Stc.oralis was made with a concatena- 
tion of Stc.pneumo with Stc.pneum2, another database entry 
from the same species. Sequence Stc.pneum2 was incomplete, 
but there were no ambiguous bases. The alignments showed 
that all but 18 points of IS,,, were the result of replacing 
matches with ambiguous nucleotides in alignment C1 with 
matches with defined bases in alignment C2. In reality there- 
fore, the true IS was 18 and the sequence should be classified 
as nonchimeric (in addition, the fact that both partial se- 
quences were from the same species suggests that the sequence 
is authentic). Similar observations would probably reclassify 
the “possibly chimeric” sequence Par.halden (Paracoccus halo- 
denitrificans) as “probable nonchimera.” 

Other detectable misclassifications can occur when the near- 
est neighbor to a query is a sequence that is missing some 
internal data (approximately 10% of the sequences in the da- 
tabase lack some internal sequence data, see above). This can 
yield a global sequence alignment with one or more gaps. 
Misclassification can occur when there is a shorter, but still 
relatively closely related sequence without the missing internal 
data. The program aligns a concatenation of the sequence of 
the original nearest neighbor and this sequence to the query, 
the gap(s) gets eliminated, and ISczcl reaches a large value. 
The sequence Lcc.lacti2 (Lactococcus lactis IL1403; IS,,cl = 

b 
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b 
d 

FIG. 6. Histograms of IS,,,,,, from the CHECK-CHIMERAprogram for test sequences. The vertical line represents the cutoff value (50) that gives a false-positive 
rate of 0.05. (a) Five hundred nonchimeric sequences; (b) 300 chimeric sequences. 
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FIG, 7. Effects of similarity of parental sequences (a) and distance between chimeric breakpoint and nearest sequence end (b) on IS,.,,,,, (CHECK-CHIMERA) 
for 300 artificial chimeras. The dashed horizontal line is the cutoff value for a chimeric sequence (50). 

155) is an example of this type of error and would most likely 
be reclassified as a nonchimera after study of the alignments. 

DISCUSSION 

Sequence similarity, scoring systems, and chimera detec- 
tion. Clearly, the single most important factor in determining 
the success or failure of chimera detection (i.e., sensitivity) by 
both mglobalCHI or CHECK-CHIMERA is the similarity of 
the two parental molecules that form the chimera. For exam- 
ple, of the 14 artificial chimeras with 95% or greater estimated 
parental sequence similarity, only 3 were correctly classified by 
mglobalCHI (a dismal 21%); on the other hand, for chimeras 
where parental similarity was less than or equal to 80%, 121 of 
123 were properly classified (98%). Table 1 lists the fraction 
of chimeras detected for several ranges of parental sequence 
percent similarity for both mglobalCHI and CHECK-CHI- 
MERA. Interestingly, this table and Fig. 5a and 7a indicate 
that the distribution of misclassified chimeras with regard to 
parental sequence similarity varies between the two methods. 
The CHECK-CHIMERA method works slightly better at 
higher percent similarities and makes more errors at moderate 
and low percent similarities. 

This difference may arise from the fact that as two sequences 
diverge their k-tuple match score decreases in a much less 
linear fashion than their dynamic programming alignment 
score (10). The nonlinear decrease in k-tuple score is caused by 
multiple mismatches within the same k-tuple. While the first 
mismatch in any region of a sequence may affect up to k 
k-tuples, the second mismatch might only affect (k-1) k- 
tuples, and so on. In contrast to k-tuple match methods, dy- 
namic programming alignments score each mismatch (and in- 
del for that matter) alike. The first, second, and nth mis- 
matches are treated exactly the same, so that as two sequences 
diverge, the score decreases in a more linear fashion (under 
the assumption that the optimal alignment does not change 
dramatically). 

It is also interesting to note that there are no user-definable 
parameters that can be changed to make the relationship be- 
tween similarity and score more linear in k-tuple-based scoring 
systems. In contrast, dynamic programming alignment scoring 
functions have several user-definable parameters that ulti- 
mately dictate the form of the alignment and its score, as well 
as the slope of the relationship between sequence similarity 
and score. The parameter values chosen for this study are most 

efficient at detecting chimeras whose parental sequences are 
approximately 70 to 85% similar; however, it should be possi- 
ble to develop parameter sets that are optimized for other 
ranges of parental similarity. It is important to note however, 
that more stringent parameters optimized for chimeras with 
high parental sequence similarity may yield more false posi- 
tives. 

Alignment parameters and database sequence distribution. 
16s rRNA sequence databases are nonuniform; certain clades 
(i.e., Mycobacteria) have many entries in the database, and by 
extension, a large fraction of the clade's members are repre- 
sented in the database. The situation is the opposite for other 
clades, many Archueu for example. The former case is an ex- 
ample of a dense region of the database; the latter is one of a 
sparse region. A new sequence that aligns into a dense region 
of the database is likely to have a small evolutionary distance 
between itself and its nearest neighbor, while sequences that 
align into sparse regions will likely have large evolutionary 
distances between themselves and their nearest neighbors. Un- 
der a given set of alignment parameters this means that align- 
ment scores are likely to be higher in dense regions of the 
database and lower in sparse regions. 

Any given set of alignment parameters is likely to be sub- 
optimal for some or most sequences. Although the current 
understanding of the distributions of global alignment scores 
under different parameter choices is somewhat limited (inter- 
ested readers are referred to references 20 and 24 for more 
details), it is known that the most informative alignments are 
obtained when the parameters reflect evolutionary distance. 

TABLE 1. Fraction of chimeras detected by the mglobalCHI and 
CHECK-CHIMERA programs partitioned by percent 

similarity of chimera parental sequences 

% Correct classification by: Estimated No, of 
k-tuple matching chimeras Chimeric alignment 

(%I (mglobalCH1) (CHECK-CHIMERA) 

< 70 18 94 100 
70-74 38 97 92 
75-79 54 100 94 
80-84 72 93 90 
85-89 71 89 86 
90-94 33 61 73 
95-99 14 21 29 



VOL. 63. 1997 COMPUTATIONAL DETECTION OF 16s CHIMERAS 2345 

TABLE 2. Overall rates of misclassification and undetected 
chimeras for several nearest-neighbor methods 

assuming 10% chimeras in the population“ 

% of nonchimeras % of chimeras 
misclassified misclassified misclassified 

% of total 
sequences Methodb 

mglobalCH1 5.8 5 13 
CHECK-CHIMERA 5.9 5 14 
Both: Agree for chimera 2.6 1 17 
Both: Either for chimera 9.1 9 10 
Both: Three categories‘ 1.9 1 10 

a See text for an explanation of methods. 
Both: agree for chimera, both methods must yield a chimera classification to 

label a sequence a chimera; both: either for chimera, both methods must yield an 
authentic classification to label a sequence authentic; both: three categories, both 
methods must agree for either label to be applied. 

Of the total number of sequences, 7.9% would be classified as possible 
chimeras, requiring study by other methods. 

Generally, the more closely related the sequences, the more 
stringent the parameters should be; hence, the PAM250 matrix 
has a higher mean value than the PAM25 matrix. Given this, 
we would expect that more stringent alignment parameters 
should be used to align a sequence that is phylogenetically 
affiliated with a dense region of the database than to align a 
sequence affiliated with a sparse region. This points out an- 
other advantage of the mglobalCHI program, namely, adapt- 
ability. It should be possible to develop a set of parameters and 
cutoff scores tailored to sequences that align best into regions 
of varying database sparseness. The k-tuple scoring system of 
CHECK-CHIMERA on the other hand, is analogous to an 
invariant, highly stringent set of alignment parameters that 
cannot be customized. 

Changes in the sequence database will also affect chimera 
detection. Clearly, as a greater fraction of the total spectrum of 
available sequences becomes available, the number of exact 
and close matches will increase, with a corresponding decrease 
in the number of false positives. The degree to which this 
improvement occurs (and the rate at which it happens) will be 
dependent, however, on whether the new sequences added to 
the databases are uniformly distributed over the entire spec- 
trum of sequences or whether they are primarily close relatives 
of existing sequences. In addition, as the database becomes 
more complete, the mean difference in score between a perfect 
match and the observed alignment is likely to decrease, with 
the result that the expectation value of IS,,,, for an authentic 
sequence will also likely decrease. The cutoff value(s) of ISczcl 
(and IS71-tup,e) for classification as a chimera will therefore 
need to be adjusted as well. As a result, when a new release of 
the database is made available, it will again be necessary to 
reestimate the distribution of scores generated by authentic 
and chimeric sequences, and it may be necessary to alter the 
value of some or all of the alignment parameters to reflect the 
new mean similarity level between a randomly selected 16s 
sequence and its nearest neighbor in the database. 

Misclassification probability. The data presented here with 
regard to the performance of the chimeric alignment and 
CHECK-CHIMERA methods tend to argue for their con- 
certed rather than individual use. Table 2 lists overall misclas- 
sification rates and the percentages of misclassified authentic 
sequences and chimeras, given a population of sequences that 
was 10% chimeras (an intermediate value in the reported 
range of 4.1 to 20% [IS]). As can be seen in the table the two 
programs can be used together to minimize the overall mis- 
classification rate, the false-positive rate, the false-negative 
rate, or some combination of the three, depending on whether 

TABLE 3. Approximate probability that .a classification as a 
chimera is correct for several methods and fractions 

of chimeras in the population“ 

Probability of correct classification for: 

4% Chimeras 10% Chimeras 20% Chimeras 
Methodb 

mglobalCH1 0.42 0.66 0.81 
CHECK-CHIMERA 0.42 0.66 0.81 
Both: agree for chimera 0.78 0.90 0.95 
Both: either for chimera 0.29 0.53 0.71 
Both: three categories‘ 0.78 0.90 0.95 

a All estimates reflect false-positive and false-negative rates derived from 
simulation studies. 

Methods labeled “both” are as defined for Table 2. 
Probabilities are for sequences for which both programs agree only. 

the programs must (i) agree to label a sequence chimeric, (ii) 
agree to label a sequence authentic, or (iii) agree to label a 
sequence either way. This last method seems to be the best way 
to use the programs. In the optimistic case that careful study 
detects all chimeras originally classified as possible chimeras 
(but is not used on all sequences because it takes too much 
time or too many resources), the overall error rate is 1.9%, 
with a missed chimera rate of only 10%. 

With this data in mind, it is instructive to compute the 
probability that a sequence that is labeled a chimera by these 
methods is in fact chimeric. Table 3 lists the probabilities that 
a chimera designation is correct (computed with Bayes’ rule) 
by using various assignment methods and for three levels of 
chimeras in the total population. Note that the estimates for 
the three-category method only reflect the probabilities for 
sequences for which the CHECK-CHIMERA and mglobal- 
CHI programs agree. The 7.9% of total sequences (10% chi- 
meras in the population) over which the programs disagreed 
need to be studied by other methods for which no estimates of 
the probabilities of correct classification exist. In all of the 
cases, however, the calculations are based on the data derived 
experimentally during this study (i.e., the empirical false-pos- 
itive and false-negative rates). A similar analysis can be con- 
ducted for sequences that are labeled as nonchimeric (Table 

Speed considerations. The most severe problem with a naive 
use of this method is its running time. On a SPARCstation20 
computer work station equivalent this program takes 5 to 6 h 
to run for a query of 1,400 to 1,500 bases with a database of 
2,520 sequences. This is a significant amount of time, particu- 
larly since every time the database changes the IS,,,, cutoff 
needs to be recalibrated. The obvious solution to this problem 

4). 

TABLE 4. Approximate probability that a classification as an 
authentic sequence is correct for several methods 

and fractions of chimeras in the population” 

Probability of correct classification for: 

4% Chimeras 10% Chimeras 20% Chimeras 
Methodb 

mglobalCH1 0.994 0.985 0.967 
CHECK-CHIMERA 0.994 0.984 0.964 
Both: agree for chimera 0.993 0.981 0.959 
Both: either for chimera 0.995 0.988 0.973 
Both: three categories‘ 0.995 0.988 0.973 

All estimates reflect the false-positive and false-negative rates derived from 

Methods labeled “both” are as defined for Table 2. 
Probabilities are for sequences for which both programs agree only. 

simulation studies. 
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is to limit the number of sequences that are processed by the 
computationally expensive dynamic programming, either by 
selecting likely candidates, or by removing unlikely sequences. 
Several methods might be used to achieve these goals, includ- 
ing double filtration (16, 17) and rapid database searching 
tools such as BLAST (1) and FASTA (15). 

We therefore implemented an interactive interface for the 
mglobalCHI program that prescreens the database using 
FASTA (15) to select likely candidates for later dynamic pro- 
gramming alignment. For FASTA searches, eight sequence 
segments are used to search the database. Two segments cor- 
respond to the 5’ and 3‘ half molecules; the remaining six are 
100-base segments that start or end 0,50, or 100 bases from the 
5’ or 3’ end, respectively, of the sequence. In a test set of 200 
sequences (130 authentic and 70 chimeric) the preprocessing 
routine found all of the database entries that were used by 
mglobalCHI in alignments (data not shown), suggesting that 
there will be no loss in chimera detection efficiency by using 
these reduced databases. The preprocessing decreases the run- 
ning time for a full-length sequence to 15 to 40 min (including 
the FASTA runs) on a SPARCstation20, depending on the size 
of the reduced database. 

Testing and obtaining the mglobalCH1 software. The 
mglobalCHI program (for UNIX workstations), as well as an 
interactive interface called chidetect, is available on the USC 
Computational Biology World Wide Web server (http://www 
-hto.usc.edu/). In addition to the chimera detection programs 
themselves, the package includes queuing software, so that no 
more than one of the computationally intensive mglobalCHI 
jobs is running at any time. Also included are Latex and online 
versions of a general manual, a quick reference sheet, several 
file format conversion routines, the database and matrix files 
used in these experiments, and UNIX man pages in nroff and 
html format, etc. 

For evaluation purposes we have implemented a World 
Wide Web-based server for the mglobalCHI program. Users 
who wish to test the program before deciding to download and 
install the software can submit sequences by cutting and past- 
ing them into a simple, user-friendly World Wide Web page. 
The mglobalCHI program will then be run, and the results will 
be e-mailed to the user. Also associated with the chimera 
server is a set of online user manuals for both the download 
and Web versions. The chimera detection home page is located 
at uniform resource locator http://www-hto.usc.edu/software/ 
mglobalCHI/ on the USC Computational Biology Web site. 
The server is accessible from that page, and users are encour- 
aged to begin there; however, the server can be directly ac- 
cessed at http://www-hto.usc.edu/software/mglobalCHI/chide 
tect-query.htm1 if desired. 
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