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The free energy of a single-stranded RNA can be calculated by adding the free 
energies of the components: basepairs, bulges, and loops. Basepairs receive nega- 
tive free energy while the unpaired bases receive positive free energy. The 
minimum free energy of a random RNA secondary structure with one domain has 
value F,, where the sequence length is n. Under simplifying assumptions, we show 
that for “small” values of bulge and loop penalties F,, has linear growth in n, while 
for “large” values of these parameters F, has logarithmic growth in n. This phase 
transition generalizes results obtained for the local-alignment a r e  of two random 
sequences. The random variable F, is conjectured to have a Poisson approxima- 
tion. The multi-domain secondary structure minimum free energy E,, has linear 
growth in n for all values of the penalty functions. Nothing more is known about 
the distributional properties of E,,. Q 1991 Academic Press 

1. INTRODUCTION 

A ribonucleic acid (RNA) molecule is a chain of covalently bound 
molecules called ribonucleotides. There are four ribonucleotides, deter- 
mined by their bases: A (adenine), C (cytosine), G (guanine), or U (uracil). 
For our purposes, an RNA is a word over this four-letter alphabet. An 
RNA is copied from a strand of DNA where a T in DNA corresponds to a 
U in RNA. RNA molecules are single-stranded and fold onto themselves 
to form basepairs. Structures for tRNA, SSRNA, and 16SRNA are well 
known. The folded structure that is assumed in the cell determines the 
biological function of the molecule so that the structure assumed by a 
molecule is important. In addition, predicting the two- or three-dimen- 
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sional structure from the sequence of nucleotides is far from routine. First 
we shall discuss structure in more detail. 

A, (for 
example, A = CAUAUGUUUACAAAUG), which is called the primary 
structure. Of course each A, E {A, C, G, U}. These bases can form base- 
pairs, where conventionally A pairs with U and C pairs with G. In 
addition, the pairing of G and U is frequently allowed. If A, pairs with 
A,, then li - j l  > 1. Under normal physiological conditions, a ribonu- 
cleotide chain can fold back on itself, and the basepairs then form. We 
define seconduly structure to be a planar graph (where vertices are bases 
and edges are basepairs) that satisfies the following condition: If A, pairs 
with A, and A, is paired with A, with i < k < j, then i < 1 < j (Water- 
man, 1978). The secondary structure may also be represented by a list P of 
pairs, where (i, j )  is in P if and only if A, and A, form a basepair. The pair 
itself will sometimes be referred to as i . j .  The secondary structure for the 
RNA sequence A is implied by P and can be described as being composed 
of substructures of the following types: helices, end loops, bulges, interior 
loops, multi-loops, and external single-stranded regions. The secondary 
structure assumed in the solution is one of those that has minimum free 
energy. Free energy is a thermodynamic constant that gives the amount of 
energy required for or released by a reaction. Structures such as loops and 
bulges that require energy have a positive value. Structures such as 
basepairs that release energy have negative value. We assume the follow- 
ing functions give the free energy associated with substructures: 

t ( k )  destabilization free energy of an end loop of k bases, 
P(k)  destabilization free energy of a bulge of k bases, 
y(k) destabilization free energy of an interior loop of k bases, 
p ( k )  destabilization free energy of k unpaired bases in a multi-branch 

s(a,, b,) free energy of basepair (u,, b,). 

Let the single-stranded RNA be represented as A = A ,  

loop, 

To simplify our discussion in this paper, we assume that the destabilization 
free energy functions are non-negative and have the following forms: 

5 ( k )  = 7k, 

P ( k )  = hk, 

P ( k )  = 4k9 
r ( k )  = * k -  

For the compatibility of the terminology with DNA sequence alignment, 
the free energy of an RNA secondary structure will hereafter be called 
simply by its score or free-energy score. 
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Figure 1 gives a simple example of RNA secondary structure. Assume 
that we score the matched pair of GC or AU by -1 and that the free 
energy of the various elements of RNA secondary structure are given by 
the above linear functions. Then the score of this RNA secondary struc- 
ture is -23 + h + 61) + 3 4  + 117. 

Experimental determination of RNA structure is extremely difficult so 
scientists often predict structure from the linear sequence A = A, A, 
A,,. One of the most popular methods for predicting secondary structure is 
dynamic programming, first presented by Waterman (19781, Waterman 
and Smith (1978), and Nussinov et al. (1978). Zuker and Sankoff (1984) 
provide an excellent review. Waterman and Smith (1986) propose some 
speedups of this method. Sankoff (1985) considers simultaneous alignment 
and secondary-structure prediction. Dynamic programming is still a method 
of choice for secondary-structure prediction although computation time 
can be limiting. In Section 5,  we use dynamic programming to produce the 
minimum free-energy scores F,, for simulated sequences. 

Because computer programs are used to predict biological structures, 
there are very natural questions about their reliability. After all, a program 
produces a structure for any sequence, real or not. We are studying only 
one aspect of this general question here: How does the computed mini- 
mum free-energy score F,, compare with that from a random RNA 
sequence? Gralla and DeLisi (1974) first pointed out how much secondary 
structure exists in a random RNA, the implication is that it is easy to be 
fooled into thinking a folded RNA is the result of natural selection and 
therefore real. In the years since Gralla and Delisi's work not much 
progress has been made on the problem of finding the statistical distribu- 
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FIG. 1. An example of RNA secondary structure. 
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tion of the minimum free energy secondary structure of a random RNA. 
Maize1 and collaborators (Le et al., 1988) have a heuristic approach to 
determining the statistical significance of F,, but their approach has 
serious flaws. For each interval of length W, Ai A i+ l  A i+w- l ,  they 
compute the F(i)  = minimum free energy of Ai Ai+ Ai+ w- The 
mean and standard deviation of F is found by simulation and the “statisti- 
cal significance” of F(i)  is estimated by the number of standard deviations 
F(i)  is above or below the mean. 

There are several difficulties with this approach. H i )  is assumed to be 
normally distributed which it almost surely is not because it is the result of 
taking the minimum over all secondary structures. (For a fixed structure, 
the free energy of a random sequence is of course approximately normal 
by the central limit theorem.) In addition there is the multiple-hypothesis 
testing fallacy: If you test 100 hypotheses at the 5% level, you should 
expect five hypotheses to be rejected under the null hypothesis being true. 
The same objection holds with Maizel’s approach, and the dependence of 
overlapping windows makes a theoretical analysis challenging. 

For problems of estimating statistical significance such as we have just 
described, the powerful method of Chen-Stein approximation has recently 
been developed (Arratia et al., 1989). There have been applications to 
alignment scores where the asymptotic behavior of alignment scores of 
global and local sequence-comparisons have been studied. Large deviation 
results for local DNA sequence-comparisons and Poisson approximations 
were obtained, for example, by Arratia and Waterman (1985a1, Karlin and 
Ost (19871, Arratia et al. (19901, Karlin and Dembo (19921, Arratia and 
Waterman (19941, Goldstein and Waterman (19941, Waterman (1994), 
Waterman and Vingron (1994ab), and Neuhauser (1994). 

These results depend on positive local-alignment scores having small 
probability. The phenomenon of phase transitions of local-alignment scores 
between linear score growth in n,  when the penalty parameters are small, 
and logarithmic growth in n,  when the penalties are large, was announced 
by Waterman et al. (1987) and rigorously proved by Arratia and Waterman 
(1994). The logarithmic region is the realm of large deviations. It is 
conjectured that Poisson approximation is valid in the logarithmic region 
of parameters, and numerical results are presented in Waterman and 
Vingron (1994a, b) to support this conjecture. 

In this paper we generalize the Arratia-Waterman result to the case of 
free energy for RNA. In Section 2 we establish subadditivity of a free 
energy score S, and then in Section 3 we show that for “large” values of 
bulge and loop penalties Fn has logarithmic growth in n. In Section 4 we 
prove the phase transition result for a special case of F,. In Section 5 we 
give a numerical estimate of the phase transition curve and some conjec- 
tures. Generally our method of proof follows Arratia and Waterman 
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(1994), but it is necessary to carefully check the details as there are some 
key differences between alignment and free energy. As we point out in 
Section 5, there is reason to believe that a rigorous proof of Poisson 
approximation in the logarithmic region will be easier for the free-energy 
score than for local-alignment score. 

2. SUBADDITIVE THEORY 

In this section we establish some facts that are basic to the proof of the 
phase transition. Our techniques will only allow us to prove a phase 
transition for a restricted definition of F,,, the minimum free-energy score 
over all structures with “one domain”. By this we mean that there is an i . j  
pair where Ai A i - 1  and A,, have no basepairs. This includes 
the structure 

but not structures such as 

Therefore we will prove subadditivity with an energy function for our 
one-domain case. Let A,, . . . Ag+i be an RNA sequence with 1 s g + 1 
I g + i I n.  In this i-letter sequence, let u be the total number of bases 
in the end loops; of course, this total of u bases in end loops is the sum of 
the bases in individual end loops, u = Cui. Then because ( (u )  = TU, 
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t ( u )  = C t ( u j ) .  Similarly let w be the total number of bases in bulges, with 
w = Cwj and p(w)  = Cp(wj ) ;  let rn be the total number of bases in 
interior loops, with m = Emj and p(m) = Cp(mj);  and finally let u be 
the total number of unpaired bases in multi-branch loops with u = Cui 
and y ( u )  = C-y(uj). Usually, the total free energy of the secondary struc- 
ture is the sum of free energy of substructures but here there is a small 
modification. The score function S(Ag+ . . . A g + i )  of an RNA sequence 
Ag+ l.. . Ag+i  is defined as the minimum free-energy score of its folded 
secondary structures, i.e., 

S( A g + i . .  . A g + i )  = min pen( A )  + t( u )  + p( w )  + y(  m) 

where a(k)  < a(k + 1) (so b(k + 1) < b(k)) for all i, A = i - u - w - rn 
- u - 21, pen(A) = m a {  ((A), P(A), y(A), p(A)}. This definition puts the 
A bases not accounted for into the least-favorable energy conformation. 

Let 

S k  = s( A ,  Ak) 7 

and 
Sk+l = S(Al...AkAk+i...Ak+l). 

Because the secondary structures assumed by sequences A,. . . A, and 
Ak+ l.. . Ak+l are contained in the possible secondary structures of the 
sequence A,...AkAk+,...Akfl, and the score function Sk+[ is the 
minimum over all possible secondary structures assumed by A ,  . . . Ak+l, 
we have 

Sk+l sk + S(Ak+l***Ak+l). 
Due to the assumption of iid letters, from this equation it follows that the 
expectation Sk+l is subadditive: 

2 = 

and in addition 

P(Sk+l < q ( k  I)) 2 p(sk I q k ) P ( S ,  If$). ( 2 )  

Subadditivity implies the deterministic limit of the expectations exists 
and equals the infimum 

Esk ESk 
a = lim - = inf -. 

k-m k k 2 1  k 
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Furthermore, Kingman’s subadditive ergodic theorem (Kingman, 1973) 
implies the stochastic limit holds with probability 1 and in L,: 

sk 

k - t m  k 
a = lim -. (3) 

In order to study this problem in the simplest setting without much loss 
of generality, we proceed as follows. Score a letter in bulges by 6, and all 
other unpaired letters except bulges by p, and finally G C and A - U 
pairs by -1. The parameter space is ( p ,  6 )  = [O,w]’ Then our RNA 
secondary structure alignment score takes the following form: 

f 

where m is the number of unpaired letter not in bulges and a(k)  and b(k)  
are defined as in (1). This corresponds to a global sequence alignment 
score. We have reduced the number of parameters to two, for simplicity. 
Since the score function S, = S(A,A, .  . . A,)  is now a function of the 
parameters 6 and p, we denote a by a( p, 6). 

Next we show that {( p, 6)  : a( p, 6)  = O} defines a curve that separates 
the positive region {a( p, 6 )  > 0) and negative region {a( p, 6)  < 0). Later 
we will show that this curve is a phase transition curve. 

The set {( p, 6 )  : a( p, 6 )  = 0} defines a line in the parameter 
space [0, m]’, separatingthe negative andpositiue regions {a  < O} and {a  > 0). 

Prooj The proof of this lemma proceeds by showing that a(p,  6)  is 
continuous and strictly monotone in the (1 , l )  direction. Let 6, > 6, and 
p, > p,. Let Mk( p, S), Dk( p, 6 )  and U,( p, 6)  be the number of pairs, of 
letters in bulges, and of unpaired letters not in bulges, respectively, in an 
optimal alignment for S,( p, 6 1. Apparently, 

LEMMA 1. 
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It follows from this that 

Similarly we have 

4 Pl, 6) 2 4 P2, 8) .  (6) 

This shows that a( p, S )  is non-decreasing in each of its parameters. It is 
easy to see that 

sk( p, + Ek ( + E ) D k (  p? + ( p + .)uk( p, - M k (  p, 6) 
2 S k ( p +  E ) .  

After taking expectation and limits on both sides of this equation, we 
obtain 

a( p, S )  + E 2 a( p + E ,  6 + E ) .  ( 7) 
Now we show that a( p, 6) is continuous. Let E = lp - fil + I S - 61, Q = 
( p ,  8>,d = ( f i ,  6 > , R  = ( p o ,  So> = ( p  A f i ,  S A 6) and P = ( p o  + E ,  
So + E). From Eqs. (6) and (7) it follows that 

a ( R )  I u(Q)  I a ( P )  I a ( R )  + E ,  

Similarly, we have 

a ( R )  I u(Q) I a ( P )  I a ( R )  + E .  

Thus, 

Ia(Q) - a(Q)I s €,VIP - fiI + 16 - 61 I E ,  

and we have proved that a( p, S )  is continuous. 
Although a( p, 6) might not be strictly monotone in each parameter in 

the whole space, in the neighborhood of the line a( p, S )  = 0 we can prove 
that a( p, S )  is strictly monotone in the (1 , l )  direction. 

To see this, let y = max( p, 6). Observe from Equation ( 5 )  that 

s k (  p + € 9  6 + E )  

L 
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which implies 

On the other hand, because an optimal alignment for S,( p, 6)  may not be 
an optimal alignment for S,( p + E ,  6 + E), we have 

S,( P + E ,  6 + E )  

= ( 6  + E ) & (  p + E ,  6 + E )  + ( p + .)U,( p + E ,  6 + E )  

2 S,( p, 6 )  + E ( & (  p + E ,  6 + €) + U,( + E ,  6 + €)). 

-M,( p + E ,  6 + €) 

Combining the last two equations, we obtain 

Dividing by k on both sides of this equation and taking limits yields 

E @ (  p + E ,  6 + E )  + +) 
y + E + ;  

u( p + E ,  6 + E )  2 a( p, 6 )  + 

> a( p, 6 ) .  

The last inequality follows because a(p  + E, 6 + E) is in the neighbor- 
hood of the line a ( p ,  6)  = 0. 

This completes the proof of Lemma 1. I 

3. LOGARITHMIC GROWTH 

In this section we study the behavior of the tail probabilities P(Sk I qk), 
where q < 0. Recall Equation (2): 

Taking logarithms, 

c 
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and therefore we can define the rate function r(q): 

1 1 
r ( q )  = lim - - log P (  Sk I qk) = inf - - log P(sk  I q k ) .  

k + m  k k 

We want to study scores that are more extreme (that is, smaller) than the 
average behavior a( p, 6)k .  The next theorem shows the large deviation 
behavior of such scores. 

THEOREM 1. Let A,A,  . . . be iid with q < a( p, 6). Then 

1 
k + m  k 

0 < r ( q )  = lim - -log P(Sk  I q k ) .  

The proof depends heavily on the following Azuma-Hoeffding inequal- 
ity. See Alon and Spencer (1992). 

LEMMA 2 Azuma-Hoeffding. Let Xi be a martingale with X, = 0 such 
that for some sequence ci, i 2 1 of positive constants 

lxi-l - Xil I ci. 

Then, for x > 0, 

Proof of Theorem 1. We first define a martingale whose increments 
are bounded. Let be a cr-field generated by the sequence of letters 
A , .  . . Ai, denoted by a ( A ,  . . . Ai), and define Xi = E[Sk - E[Sk]IK]. It is 
clear that Xi is a martingale (and X, = 0). Because s k  is F k  measureable, 
by the property of conditional expectation X, = Sk - E[S,] .  

To bound the martingale increments, we first derive a deterministic 
bound 

s k  - S; I c = max(1 + 2 8 , l  + 2 p ) ,  

where Sk = S(A,, . . . , Ai-,, Ai, Ai+,,. . . , Ak) is the free-energy score for 
k letters, and S’ = S(A,,  . . . , A i - l , k i , A i + l , .  . . , Ak) is the score with the 
ith letter changed. 

Begin with a particular optimal alignment for s k  and assume that letter 
Ai is paired to Ai. Alignments for S’ are given by (1) placing A: and Ai in 
bulges, so that Si = Sk + 1 + 26, and by (2) placing A: and Ai in loops 
SO that si = s k  -k 1 -k 2p. 
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Thus, 

Si I S, + max(1 + 2S,1 + 2 p )  (8) 

As in Alon and Spencer (1992) or Arratia and Waterman (19941, we obtain 
lXi-l - Xi[  I ci = c = max{l + 2S, l  + 2p). Now the Asuma-Hoeffding 
inequality can be invoked. Because q < a = a( p, S ) , E  = q - a < 0. By 
subadditivity, E[S,] 2 ka. Hence, 

Let x = --Ek > 0 and apply the Azuma-Hoeffding inequality: 

Thus, combining the last two equations, 

This completes the proof. I 

unpaired bases “outside” of secondary structure, defined by 
The relevant function is Fn, because free-energy does not penalize for 

. F,, = min( min ~ ( i , j ) , ~ } ,  
l s i < j s n  

where S( i ,  j )  = S ( A i .  . . Ai). 
Intuitively, the quantity a( p, 8) represents the average score per pair of 

letters. If we assume a( p, S )  > 0, then we can consider negative values of 
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Thus, 

With blocks of length k + 1, the total number of blocks is approximately 
n / k .  Below we show that P(F, > t = (1 - ~ ) b  log n)  approaches zero as 
n + 0. Let j = k + 1. Then t > q j .  Thus, 

This proves the upper bound. 
The lower bound we now prove is: 

P(F" > (1 + E)blogn) -+ 1 

In order to prove this, we will show that P(F, s (1 + ~ ) b  log n)  + 0. 
Let t = (1 + ~ ) b  log n. The event {F, s t} is contained in a union of about 
n2 events, by choosing the starting and ending points for the high-scoring 
regions. This union of n2 events can be decomposed further into two 
sub-unions: one sub-union consisting of order n log n events that con- 
tribute most of the probability and another sub-union containing remain- 
ing events that have less significant contribution. 

f 
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Formally, let c = 3/40];  by Theorem 1, r(0) > 0. Because t < 0, then 
{F, I t }  = {minlsi<js,S(i,j) st}. The events {minlsi<j5,,S(i,j) ~ t }  
are contained in the two unions, i.e., 

(F ,  I t }  c u (S(Aio+l. . .Aio+j) I t }  

1s j s c logn 

u U (S(Aio+l*.*Aio+j) I 0). 

l s i ,<?l  

l s i o s n  
c logn < j  

Let t = q j  where q < 0. Then we have 

2 (1 + €)log n. (10) 
The last step follows because br(q)/q 2 1 which is implied by the 

definition of b and the assumption q < 0. Because the sequence A, .  . . 
has i.i.d. letters, in the first union each event has probability at most 

P ( S ( A i o + l . .  . A .  %+I .) I t )  = P ( S j  I t )  

= P ( S j  I q j ) .  

For all k, we have 

1 
k 

- - log P( S, I qk)  2 r( 4). 

Thus, 
P ( S j  I q j )  I e - j r ( q )  

= e - W q ) / q )  

I + r ) l o g n  

- - n-(1 + e ) *  

As mentioned above, the first union consists of at most n(c log n) events, 
hence the probability of the first union satisfies 

P[ u S(Ai, ,+l . .  . I t I (nc log n)n-(l+') 

log n 
n' 

= c- + 0. 

l s i o s n  
l s j s c l o g n  
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The second union involves at most n2 events of the form {Si I 0). 
Because the length j of each sequence in the second union is larger than 
c log n and c = 3/r(0),  the probability of each of these events satisfies 

Therefore, the second union has probability at most 
L 

u { s ( A ~ ~ + ~ . . . A ~ ~ + ~ )  I 0) 
l s i o s n  

c log n < j  

1 = - - + o .  
n 

I This completes the proof that 

- + b in probability. I 
log n 

F, 

I For sequence alignment scores, the corresponding even { M  2 t }  is 
expressed as a union of n4 events. This explains why the upper bound for 
the coefficient of b in sequence matching has a factor of 2, but for RNA 
free-energy scores it has a factor of 1. From the above discussion, we know 
that, if a( p, S )  > 0, the score of the optimal subregions will grow like 
b logn, where b is defined as b = min, (q /r (q) ) .  

4. LINEAR GROWTH 

In this section we show that if a ( p , S )  > 0, then both M,/n and S,/n 

LEMMA 4. If a( p, S)  < 0, then both M,, and S ,  grow linearly. More 

converge to a( p,S) with probability 1; that is, they grow linearly. 

I precisely, the following limits hold with probability 1: 
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Proof In the previous section we have shown that S, is subadditive 
and thus the subadditive ergodic theory implies Eq. (12): 

* 
S, a.s. 
- n + a( p, 8) .  (13) 

Now we establish Eq. (11). Because F, I S,, the event [F, 2 (1 - ~>nal 
implies the event [S, 2 (1 - ~)na]. Hence we obtain that 

P(F,  2 (1  - €)nu) I P ( S ,  2 ( 1  - E),,) 
+ 0. 

Next we prove that 

P(F,  I (1  + ,)nu) + 0. 

Let k = j - i + 1, t = (1 + Elm. Then for all i, j I n, because k < n, we 
have that 

P(S , ,  I t )  = P(S , ,  I (1  + €)nu) 
- < P(S , ,  I (1  + E)ak). (14) 

Because 

1 
r = r( (1  + €)a) = inf - - logP(S,, I (1 + E)ak) k 

it follows that 

P(s, ,  I ( I  + E)&) I e-rk. (15) 

Because a(1 + E) < a, Theorem 1 implies r > 0. 

Eqs. (14) and (151, it follows that 
Because each basepair scores -1, {S i j  I t }  implies that k 2 -2t. From 

P(s, ,  I t) I e2rt. 

Therefore, 

= P (  u {Si, I t } )  
l s i < j s n  

I n2e2" + 0. 
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This proves that Eq. (1 1) holds in probability. The Azuma-Hoeffding 
inequality in Lemma 2 applies to F, as well as S,. Then as in Arratia and 
Waterman, it follows that F, converges to a almost surely. 

Combining Lemma 1, Lemma 3, and Lemma 4, we obtain the following 
phase transition theorem for RN secondary structure alignment scores. 

THEOREM 2. For i.i.d. letters A, ,  A2,,  . . . , the optimal RNA secondary 
structure alignment score F, = min{min, < , ,,S(i, j ) ,O) ,  with penalty pa- 
rameters S per letter in bulges and p per remaining unpaired letters, has a 
phase transition between linear growth with n for small p and 6 ,  and 
logarithmic growth with n for large p and 6 .  More precise&, if a( p, S )  < 0 
then F,/n + a( p, 6 )  and ifa( p, S )  > 0 then F,/(log n )  + b. 

- 
I 

I 

I 

’ 

5. SIMULATION OF THE PHASE TRANSITION CURVE 

Our theorem shows that there is a phase transition between linear 
growth of the minimum free-energy score in n with “small” values of bulge 
and loop penalties and logarithmic growth in n with “large” values. We 
know little theoretically about the location of the phase transition curve in 
[0 ,42.  To obtain more information about the shape of the phase transition 
curve, we use simulation to study the free-energy score of a random RNA. 
We begin with calculation of minimum free energy. For more about the 
logarithm for computing minimum free energy, we refer reader to Zuker 
and Sankoff (1984) and Waterman (1995). Under our simple free-energy 
model, we give a dynamic-programming algorithm for computing minimum 
free energy. 

First we define some notation necessary for describing the algorithm. 
Let g ( i ,  j )  be the minimum free energy of the RNA sequence Ai.. . A, 
with Ai and A, paired, e ( i , j )  be the free energy for an end loop with Ai 
and Ai paired, b ( i , j )  be the free energy for a bulge with penalty 
parameter 8, bl(i ,  j )  and b2(i, j )  be the free energy for left- and right-bulges 
with parameter S, t ( i ,  j )  be the free energy for the interior loop, and l ( i ,  j )  
be the minimum free energy for a multi-branch loop. For the convenience 
of discussing the algorithm, we also define b @(i, j )  and b&i, j )  to be the 
free energy for the left- and right-bulges but with the penalty parameter p 
instead of S. 

Now we give an algorithm to compute the free energy of AlA2  . . . A,. 
Recall that this is defined to be the minimum of g ( i , j )  free-energy score 
when i and j are paired ( i  ai), or zero: 

: 

. 

c 
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Also basepairs are scored -1, bulged (unpaired) letters are scored + S  per 
letter and all other unpaired letters are scored +S per letter. 

We begin with end-loops where i . j  and the letters (i + 1) ( j  - 1) are 
unpaired. Define 

e(i, j) = -1 + p ( j  - i + 1). 

Bulges require a little more work. There are two cases. b l ( i , j )  is the 
minimum free energy of all structures where i (i + k - 1) is bulged and 
(i + k )  . j  is a basepair: 

bl(i , j)  = min{kS + g(i + k , j ) }  
k >  1 

= m i n ( a + g ( i +  l , j ) , m i n { k s + g ( i + k , j ) ) )  

= min(6 + g ( i  + l , j ) , rn in{a ( l+  1) + g ( i  + 1 + l , j ) } )  

= min 6 + g ( i  + I,~),s + min(S1 + g ( i  + 1 + ~ , j ) ) )  

= 6 = min{g(i + I , j ) ,b l ( i  + I,j)} 

k t  2 

I r  1 

( 12 1 

Similarly, when bz(i, j )  is the minimum energy structure with i ( j  - k )  
a basepair and with the letters ( j  - k + 1) ... j unpaired, 

b z ( i , j )  = 6 + min{g(i,j - I), b 2 ( i , j  - I)}. 

Then 

b(i, j )  = min{bl( i, j) ,bz( i, j ) }  

= s + min{g(i + l , j ) , g ( i , j  - l ) ,b I ( i  + 1 , j ) , b z ( i 7 j  - 1))- 

It is useful to have these quantities scoring the “bulge” with p per letter J 
rather than 6 per letter: 

b ~ ( i , j )  = p + min{g(i + l , j ) , b ” ( i  + 1 , j ) } .  

and 

bP(i,j) = p + min{g(i,j - l ) , bP( i , j  - I)}. 

By definition, the minimum free energy t ( i , j )  for interior loops on 
i ... j is 
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We will decompose this minimum into four terms: 

{ k ,  = k ,  = l},{kl 2 2 , k ,  = l ) , {k l  = l , k ,  2 2},{k1 2 2 , k ,  2 2}, 

and then simplify them. 

~ t ( i , j )  =min 2 p + g ( i + 1 , j - l ) , r n i n { p ( ~ ~ ~ + 1 )  + g ( i + k l , j - l ) } ,  
k 1 2 2  

= 2p + min{g(i + 1 , j  - l ) , b ~ ( i  + 1 , j  - I ) ,  

bP(i + 1 , j  - l ) , t ( i  + l , J  - l)}. 

Now we consider the free energy l(i, j )  of multi-branch loop structures. 
These are loops that have one or more helices extending from them. The 
unpaired letters in the loop are scored p per letter. At the left side of the 
“loop” is Ai which is in a basepair or not. This implies 

r ( i , j )  = min p + ~ ( i  + ~ , j ) ,  min {g ( i , k )  + ~ ( k  + l , j )}}.  ( i < k j j  

Finally the minimum free energy g(i, j )  on i j with i * j  paired, is 
given by 

g( i ,  j) = min{e(i,j),- 1 + g ( i  + 1 , j  - l) ,-  1 + b(i + 1 , j  - l ) ,  

-1 + t(i + 1 , j  - l ) , -  1 + q i  + 1 , j  - 1)) .  

The computation will be performed on line of j - i = c, for constant 
c = rn, m + 1, . . . . For details on organizing the computation of the 
minimum free energy the reader is referred Waterman (1995). 

To see how quickly the average free energy S, /n  converges to a( p, 61, 
we plot Fig. 2, which shows S , / n  against the length n of the sequence for 
( p, 6)  = (0.1,0.2). It can be seen that after n = 300, S, /n  fluctuates 

- 
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mu 

FIG. 3. Location of the phase transition curve a( p, 6) = 0 in the ( p, 6 )  plane. 

complex methods, Zhang (1995) has proven that for sequence matching 
the coefficient is 2b.) For these reasons, we feel that a rigorous proof of 
Poisson approximation will be less difficult for F,, than for local alignment 
scores for sequence matching. 

Programs for free energy often compute a more complex function that 
allows multiple domains of folding: 

E,, = min{S(i,, j,) + S(i,, j , )  + 
1 I i, < j ,  < i, < j, < 

+S(i,, j , ) :  
m 

4. 

< i, < j, 5 n} 
Under any reasonable assignment of free-energy values, sequences such 

as GGAAACC, for example, have free energy, S(GGAAACC) = e < 0.) (It 
is possible to increase the number of G C pairs until e < 0. Then by the 
strong law of large numbers, we expect to find E,, < (n/7)P(GGAAACC)e 
for large n. This shows that E,, has linear growth. Its asymptotic distribu- 
tion remains an important open question. 

- 
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