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Abstract 

In the analysis of biological sequences there arises the question of attributing weights to 
each element of a set of objects in such a way that similar objects do not overly influence 
deductions based on the entire set of objects. Since there is no known precise statement of this 
problem, we introduce two axioms that these weights should fulfill. It is then easy to see that this 
formulation includes one commonly used method. Further we apply the axiomatic framework 
to the new problem of attributing weights to alignments between two sequences. Viewing a 
sequence alignment as a directed network, an analogy to electrical networks is developed. This 
connection is used to prove the existence of the weights and develop other characteristics of an 
alignment network. 

Keyworh: Sequence alignment; Weighting methods; Electrical networks; Least squares estimation 

I '  

1. Introduction 

In several contexts in molecular biology the problem arises of attributing weights 
to species, sequences or other objects [3]. However, the given objects may not be 
independent descriptors of what one seeks to describe and thus a set of objects is not 
as informative as it would seem. One example of this situation arises in the problem 
of attributing weights to sequences in a multiple sequence alignment. The researcher's 
idea is that each sequence provides information about the residues that are admissible in 
a position of the sequence. At the same time, some of the sequences are closely related 
(in evolution) and therefore cannot be viewed as independent pieces of information. 
This problem is reviewed by'vingron and Sibbald [lo]. 

Another problem of this type is the weighting of alignment paths in cases where a 
set of alignments is being considered. For our purpose, we are given a list of possible 
alignments, without M h e r  distinction between them, and we believe that the correct 
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solution is an alignment from the list. How much do we then know about a single 
residue pair? A residue pair that is not part of any alignment will not be part of 
the correct alignment, while a residue pair that is contained in all alignments must 
be correct. We are led to the idea of assigning weights to the residue pairs such 
that the weight reflects the “confidence” that we have in a residue pair based on its 
representation in the alignment paths. But conflicting forces have to be considered: 
When many alignment paths contain a residue pair it should raise our confidence in 
this pair. If these alignments are all very similar, however, they should not have as 
much importance as totally distinct alignments that share only this one residue pair. 
Fig. 1 shows some situations that illustrate the problems that arise. A different viewpoint 
on this issue resulting in an alternative formalization is presented in [ 5 ] .  

In this paper, we will first give a formulation of the general problem of attributing 
weights to overlapping sets and their elements. In the form given, it applies to the above 
cases and possibly to several more in the realm of biological applications. Furthermore, 
we will make precise the connection to electrical circuits and linear least squares that 
has been mentioned in the literature [l,  31. Application to the weighting of alignment 
paths will be discussed in detail. 

2. Axioms for point-set-weighting 

Suppose we are given a finite set X = {xl ,x2,  ..., x,} and a finite family = 

{ B i } i = 1 . ~  of subsets of X .  Weights on the elements of X can be written as a vector 
u E R” and weights on the sets as w E RN. We consider first a weight vector u on the 
points xi such that the sum over the weights of the points in a set is equal (to some 
constant c, say) for all sets. 

Axiom 1. 

vi = c  for all k =  1, . . . , N .  
i :XiEBk 

Fig. 1. Weights on paths should reflect the overlap between them. While the weights for the two paths in 
(a) should be equal, there should be only a tiny change in (b), gradually leading to equal weights for all 
three paths in (d). 
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While the sum over the point-weights in a set is constant, the sets will also have 
associated weights w = (wi)i=l, . . . ,~ . Given the vector v, we define w by requiring that 
the weight of a point is expressible as the sum of the weights w; of the sets of which 
it is an element. 

Axiom 2 (Additivity). 

v; = wk for all i = 1, ..., n. 
k : x , E B k  

The weight of a point is thus inherited from the sets of which this point is a member. 
We abbreviate the N-element column vector that contains only 1 as 1. Let M = 

(mi,)i , ,=1.. ,~ be the matrix defined by mkl = IBk fl BlI. One can think of M as an 
“overlap matrix” that counts the number of points which two sets share. 

Theorem 1. Assume A4 is non-singular. Then the above weights satisfy 

with v given by the axiom of additivity. 

Proof. Let A be the N x n matrix which contains a 1 at position (k, l )  whenever X I  E Bk 
and 0 otherwise. Axiom 2 then may be written as v = A‘w. Axiom 1 becomes Av = cl. 
Together this implies AA‘w = cl .  It is easy to see that AA‘ = M :  One can think of 
A as the adjacency matrix of a bipartite graph. One component of this bipartite graph 
is the family 99 and the other component is X .  There is an edge in this graph when 
a set Bk contains a point X I .  Entry ( i ,  j )  of the product AA‘ then counts the number 
of paths that go from Bi first to some point and then on to a set B,. The number of 
such paths is exactly the cardinality of Bi n B, which is mu. Therefore Mw = c l  and 
w=cM-’.l. 0 

We adopt the convention that c should be chosen such that wi = 1. The proof 
also shows that M is positive semidefinite because it is the product of a matrix A and 
its transpose. Furthermore, it will be positive definite, and thus invertible, when A has 
maximal rank. When the rank of A is not maximal, there may be either a manifold 
of solutions or no solution. For the application we give below, it will be shown that 
there always exists a solution. In any case, a convenient way to calculate w according 
to Theorem 1 is by singular value decomposition [6] .  

3. Two applications 

3.1. Alignment networks I 

Assume now we are given an “alignment network”, by which we mean a directed 
graph representing a set of alignments in an edit graph comparing two sequences 
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b) 

a) h 0 . 5 6 9 2  

2 0  0.0635 
3A 0.0926 
3B 0.0926 
3C 0.1054 
30 0.1260 

0.43!\\ 0.2154 0’2538 0.3154 

0.215 
0.4308 0.684 1 

Fig. 2. (a) An alignment network with edge-weights. (b) Paths (1A-3D) are identified by the region through 
which they pass. Next to the path identification the path-weight is given. 

(Fig. 2, for an introduction to this view of sequence alignment see [2]). In this paper 
we show paths in edit graphs; the alignments themselves are implicit. We assume all 
alignments are global, Le. the paths link a source with a sink. We want to assign 
weights to the alignment-paths that reflect how “mique” a path is (Le. how little 
overlap with other paths it has), and we want to assign weights to the edges in the 
network. An edge inherits the weights from the paths it is on, and the edge weight 
is equal to the sum of these path weights. Considering a simple example like the one 
in Fig. la, we would give each of the two possible alignment paths a weight of 0.5 
(wt  = (0.5,0.5)) and assign the edges where the paths coincide a weight of 1 (vi = l) ,  
while the other edges receive a weight of 0.5 (u, = 0.5). This might suggest a general 
rule to attribute to an edge the number of alignment paths using that edge divided 
by the number of paths in the network. The remainder of Fig. 1 shows that this rule 
would fail. In Fig. l(b), the path passing through region B is split into two by a small 
deviation, creating two regions C and D. Clearly this should not have much effect on 
the weights of the edges in region B which should still be close to 0.5. However, the 
edges in region B now receive as their weight because two out of three paths pass 
through those edges. Edges in regions C and D would receive each. What we wanted 
to achieve, however, was that as region B s h r i n k s  and C and D increase (Figs. l(c) 
and (d)), the weights on edges in C and D should approach i. 

The example in Fig. 1 shows that the degree of overlap between alignment paths 
must be taken into account. With paths corresponding to sets and edges to elements of 
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the sets, we can employ the point-set-weighting of the previous section. By counting 
the overlaps between the paths in terms of the number of edges they share, we obtain 
the matrix M .  We can apply the scheme described in Section 2 and obtain a vector 
w = cM-' . 1 of weights for the alignment paths. Weights u for the edges then are 
the sum of the path-weights of the paths going through an edge. Applying this scheme 
to the situation of Fig. 1 does indeed result in weights which adequately reflect our 
intuition (as one can readily check with paper and pencil). Fig. 2 shows a less schematic 
application. 

One consequence of the scheme described does not conform with the intuition 
about alignment weighting: Two paths which do not overlap but use different num- 
bers of edges receive unequal path weights. We will return to this phenomenon in 
Section 5.  

3.2. Weighting of sequences related by a tree 

We now show that the scheme of Section 2 can also be used to explain a commonly 
used method of attributing weights to sequences related by a rooted evolutionary tree 
due to Altschul et al. [l]. The problem there is to attribute weights to the labels of 
a rooted binary tree that has lengths associated to its edges. The method of Altschul 
et al. introduces a matrix that they call a covariance matrix and that is analogous 
to the overlap matrix. It measures the sum of the length of the tree edges shared 
by paths connecting two different species to the root of the tree. Weights are then 
assigned as the row-sums of the inverse of the covariance matrix. When one thinks 
of every edge in the tree as made up of points and the branches as sets contain- 
ing the points of the edges, then the analogy to the overlap matrix becomes clear. 
The weighting scheme by Altschul et al. can thus be interpreted in the framework of 
Section 2. 

Altschul et al. name two analogous frameworks that yield the same weighting scheme: 
electrical networks and least squares estimation. We will discuss both these topics and 
prove the existence of weights for alignment networks. 

4. Electrical networks 

We proceed by translating an alignment network into an electrical network. Consider 
an electrical network with the same topology as the given alignment network. Every 
edge in the edit graph corresponds to a wire. For the moment, we set the resistance of 
each wire to 1. We show that if we attach a unit current to this network, the currents 
in the wires are exactly the weights u on the edges. This will subsequently be used to 
demonstrate the existence of weights w on the paths. 

We briefly summarize some facts about directed graphs and electrical networks as 
given e.g. by Bollobas [4]. The cycles of the underlying undirected graph of a directed 
graph can be written as vectors with as many entries as there are edges. Edges that 
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are not used in the cycle correspond to a 0 entry, edges that are traversed in their 
proper orientation are +1, others are -1. These “cycle-vectors” form a vector space, 
the cycle space. A convenient basis for the cycle space can be constructed from a 
spanning tree of the oriented network. Every chord (an edge of the graph that is not 
part of the spanning tree) then closes exactly one cycle using edges from the tree and 
this one chord. Such a cycle is called a fundamental cycle. The vectors associated to 
the fundamental cycles form a basis of the cycle space. By counting the chords, one 
obtains the dimension of the cycle space: The spanning tree has #{vertices} - 1 edges. 
Thus, the number of chords is #{edges in the graph} - #{vertices} + 1, which is the 
dimension of the cycle space. Recall also Kirchoffs laws: the sum of incoming and 
outgoing currents in a vertex is 0 (current law) and the sum of the potential differences 
along a cycle is 0 (voltage law). Ohm’s law says that the potential difference along an 
edge is the product of current and resistance in that edge. 

There appears to be a problem in the correspondence between alignment networks 
and electrical networks since paths have no natural meaning in an electrical network. 
However, given an alignment network D, we can define a new network b which is 
the network D plus one additional edge from the sink to the source of the network. 
We will call this new edge the closing edge. Each path from the source to the sink 
of D now defines exactly one cycle in d, namely the cycle made up of the path and 
the closing edge. We will call the set of cycles created from the paths by closing 
the network in this way the closed paths. Since B has one edge more than D, the 
dimension of its cycle space is one higher than the dimension of the cycle space of D. 
For later reference we summarize this in the following lemma. Let d be the dimension 
of the cycle space of D and d be dimension of the cycle space of d 

Lemma 1. d = #{edges in D }  - #{uertices} + 1. 

d = #{edges in d} - #{vertices} + 1 = 1 + d .  

Lemma 2. The closed paths span the cycle space of B. 

Proof. We will show that a fundamental cycle of B can be written as the difference 
of two closed paths. Let e be the chord defining the fundamental cycle. Let a and b be 
the branches from the root of the tree to the beginning and end of e. a and b separate 
at a vertex x .  Let us call a’ the part of a from x to the beginning of e, and call b’ the 
part of b from x to the end of e. The fundamental cycle contains a’, e and b’. There 
also exists a closed path from the root along a and e to the sink, as well as one along 
b. The difference between these two paths is exactly the fundamental cycle contain- 
ing e. 0 

Let A be the path-edge matrix of D: ag = 1 when path i contains edge j and 0 
otherwise. Analogously we define the closed path-edge matrix of B as d. Compared to 
A, d has one additional column containing all Is because the closing edge is contained 
in all closed paths. Notice that the set of edges in the network can be identified with 
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the set X from Section 2, and the set of paths through the network can be identified 
with the family 93 from Section 2. The path-edge matrix introduced now is therefore 
identical to the matrix A used in Section 2. 

Lemma 3. rank(,?) = d .  

Proof. The rows of ,? contain the vectors corresponding to the closed paths. From 
Lemma 2, these vectors span a vector space of dimension d .  0 

Lemma 4. rank ( A )  = rank(,?). 

Proof. Select a set of edges in D that form a cut. Every path through the network 
contains exactly one edge from this cut. There correspond columns of A to these 
edges. The sum of these columns is the vector 1' and this is exactly the column of 

A" corresponding to the closing edge. Because this column is a linear combination of 
columns of A ,  the two matrices must have the same rank. 

Corollary 1. rank ( M )  = d.  

Proof. M is AA', and this product has the same rank as A .  0 

We now turn to the question of calculating the current in the electrical network when 
a unit current is attached at the closing edge of the network. Let m be the number of 
edges in D, n be the number of vertices in D, and N be the number of paths from the 
source to the sink of D. Identifying the set of paths with the family 93 from Section 
2 and the edges with the set X ,  we can search for vectors u E [w" and w E RN that 
fulfill Axioms 1 and 2. The following two theorems establish that knowing u and w 
corresponds to calculating the current through the electrical network. 

Theorem 2. If there exist vectors u E [w" and w E RN furfilling Axioms 1 and 2 ,  
then Kirchoffs laws hold for currents u on the edges of the network. 

Proof. We first show that Axiom 2 implies Kirchoffs current law. Axiom 2 says that 
the weights w of the paths add up to give the weights of edges. Therefore, when a set 
of edges enter a vertex, all incoming paths will also exit the vertex. This means that 
the sum of edge-weights leading into a vertex is the same as the sum of edge-weights 
coming out of a vertex. Thus, by Axiom 2, the edge-weights fulfill Kirchoffs current 
law. Axiom 1 says that the sum of edge-weights along a path from source to sink 
is constant. Under the assumption of unit resistance, this also means that the sum of 
potential differences along any path from source to sink is constant. As a consequence, 
the potential difference along any cycle is 0. 0 

To formulate the converse, we assume that we are given a network and attach a 
unit current to it. A current flow always exists (for a mathematical proof see [4]). 
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We make the currents on the edges the vector u. Kirchhoff's potential law implies 
that the potential difference between source and sink is the same along each path 
through the network. Thus Axiom 1 is fulfilled by the currents u. We need to show that 
given u there exists a vector w obeying Axiom 2, i.e. that solves the equation 
A'w = U. 

Theorem 3. I f  u is the vector of currents on the edges of a network, Atw = u is 
solvable. 

Proof. Let v" be the vector of currents on 6. v" is identical to u in all its entries except 
the one corresponding to the closing edge. This entry is 1 because we are attaching 
a unit current to the network. We show that d'w = v" is solvable. From this it easily 
follows that the theorem holds. Let k be the signed vertex-edge incidence matrix of 
the directed graph. The signed vertex-edge matrix of a directed graph has entries +1 
(when an edge points to a vertex), -1 (when an edge leads out of a vertex) or 0 
(when a vertex is not incident to an edge). kv" then will be a vector with all entries 0 
(Kirchoff's current law). Viewing k as a map Rm+' 4 R", v" E k e r k  due to Kirchhofs 
current law. To prove the theorem we need to show that k e r k  G Im A'. In fact equality 
holds: We show first that Imdt G kerk .  Let x E Imd' ,  i.e. 3 y  : j t y  = x. Applying 
k we get Bdty = Bx. However, kdt is a matrix with all entries 0 because an entry 
in Bdt is the sum along a path of the edges incident to one vertex. And this sum is 
always 0, because there is one edge entering and one edge leaving a vertex. Therefore 
x E kerk. To prove k e r k  = Imd' we show that dim(Imdt)  = dim(kerk) .  dim(Imd') 
is (m + 1 ) - n + 1 from the Lemmas 1 and 3. To calculate dim(Im k) ,  choose a spanning 
tree for the network 6 and select those rows of k which correspond to edges in the 
tree. This matrix has full rank [4], namely n - 1 since the tree has n - 1 edges. Thus 
dim(Im B )  is n - 1 and from the equation dim(Im B )  + dim(kerB) = m + 1 it follows 
that dim(kerB) = (m + 1) - n + 1. Therefore ImA' = kerB. 0 

Apart from their existence, another attribute of the weights is of interest: Are they 
positive? This question turns out to be related to another question that arises from 
interpreting an alignment network as an electrical network. An alignment network is a 
directed graph and a path through this network is defined as obeying the directions of 
the edges. Electrical current, however, does not ask for permission to flow in a certain 
direction. Its direction is determined by the resistances. In fact, it is possible to design 
an alignment network that would result in negative current in one of its edges. Fig. 3 
shows such an example. It can easily be checked that the current in the edge that is 
printed in bold flows in reverse direction. Albeit, this phenomenon does not contradict 
any of the above observations. The (directed) paths through the alignment network are 
only one of many ways to span the cycle space. Other paths, forbidden as alignments, 
might be used otherwise. At the same time it is easy to see that when assigning weights 
to species related by a tree, the weights will always be positive because the current 
has no alternative routes. 
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Fig. 3. A simple network that contains an edge where the current would flow against the direction of the 
alignment network. Paths 1 and 2 have a much higher resistance than path 3. 

It is well known that an electrical network minimizes the energy dissipation ( Cedges 
current* * resistance, see [8]). The following observation will be referred to in the next 
section. 

Lemma 5. The energy dissipation of the electrical network is the normalizing con- 
stant c. 

Proof. xu' = (v ,v)  = (Atw,Atw) = (w,Mtw)  = (w,Mw) = (w,cl) = c C w i  = c. 
0 

5. Linear least squares 

Consider a set of measurements from which we want to estimate the mean. When 
the measurements are independent normally distributed, the minimum variance linear 
unbiased estimator is the average of the measurements. If they are assumed to be 
correlated and this correlation described in the form of a variance-covariance matrix 
C, then the estimator is the weighted average. The weights are the normalized row-sums 
of the inverse of the variance-covariance matrix E-'. Because the matrix A4 is non- 
negative definite, it can be interpreted as a variance-covariance matrix. The following 
observation connects the error that is minimized in linear least squares problem with 
C = M to electrical networks. 

Lemma 6. The energy dissipation of the electrical network is the variance in a least 
squares problem. 

Proof. The quantity minimized in linear least squares is E(e'e) where e is the vector of 
errors. This can be rewritten as (l,M-'l)-' [8]. Since w = cM-'l and C w i  = 1, we 
have ( lyM-l l ) - '  = (l,(l/c)w)-' = cy which was shown to be the energy dissipation 
minimized by the currents through the electrical network. 0 
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6. Alignment networks I1 

An additional modification of the model is required. So far we identified currents 
and potential differences by assuming that every edge had unit resistance. However, 
this also implies that a long alignment receives less weight than a shorter one. For two 
disjoint paths, one of which has more indels than the other, this disagrees with our 
intuition. The situation can be remedied by using non-identical resistances to make all 
global alignments equally long. 

All our earlier observations hold also with resistances. The resistances can be sum- 
marized in a square matrix R that on its diagonal has the edge resistances and is 0 
elsewhere. Recall that when one abbreviates the vector of all potential differences in 
the edges as p, Ohm's law becomes p = Ru. Axiom 1 is then rephrased as ARu = c l .  
Axiom 2 remains unchanged, namely u = A'w. The overlap matrix M becomes AM', 
but with R a diagonal matrix (rii # 0) the rank of M is unchanged. It is easily checked 
that Theorems 2 and 3 still hold. 

Theorem 4. Assume that a network is made up of edge-disjoint paths. When one 
assigns resistance 0.5 to horizontal and vertical edges and resistance 1 to diagonal 
edges, all paths will receive equal weight. 

Proof. From the study of sequence alignments it is well known that for an alignment 
between two sequences of length 11 and 12 the following holds: 2 * #{matches} + 
#{indels} = 11 + 12. This alignment-invariant is a special case of the invariant used 
in [7]. In a network on an edit graph, this means that if one assigns resistances of 
0.5 to all horizontal or vertical edges (corresponding to indels) and a resistance of 1 
to diagonal edges, the sum of the resistances along any path connecting two vertices 
will be constant. We need to show that all entries of w = cM-'l  are equal. M is now 
AM' with rii either 1 or 0.5. Multiplying A' with R makes the entries of A either 1 
or 0.5, depending on the resistance of the corresponding edge. Multiplying again by A 
adds up the resistances along a path and since the paths are disjoint, the result will be 
a diagonal matrix. Due to the alignment invariant, all diagonal elements of this matrix 
are equal, namely to the sum of the resistances along a path. The inverse of M will 
therefore also be a diagonal matrix with constant main diagonal and all path-weights 
wi are equal. 0 

Fig. 2(a) shows an example of a more complicated alignment network. Horizontal 
and vertical edges have resistance 0.5, diagonal edges have resistance 1. Note that due 
to the "bottleneck" in the middle of the graph, the matrix M is not invertible. Corollary 
1 allows us to calculate the rank of M as 6: 35 edges + 1 edge to close all paths - 31 
vertices +l. Due to the bottleneck, M is easily decomposed into two smaller matrices, 
one for the upper part and one for the lower part of the network. The weights for the 
paths are listed in Fig. 2(b) and the weights of the edges (the currents) are shown 
adjacent to the respective parts of the alignment network in Fig. 2(a). 
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With the above choice of resistances we tried without success to devise networks 
that contain edges where the current flows in the opposite direction to the alignment. 
Therefore we suspect that these resistances are sufficient to keep edge currents positive. 
An even more challenging question is whether there are necessary and sufficient criteria 
for the absence of negative edge weights. 

7. Calculating the overlap matrix for sets of optimal alignments 

The above analysis yields two ways to calculate the weights w and u. The first op- 
tion is to calculate the currents in the network thus obtaining u. Solving the equation 
from Axiom 2 will then yield w. Alternatively, as pointed out at the end of Section 2, 
from Theorem 1 one can calculate w without knowing u. Axiom 2 then yields 2). This 
procedure requires knowledge of the overlap matrix M .  We thus proceed to give an 
algorithm to calculate the overlap matrix M for the set of all optimal alignments of 
two sequences. Naively, one would calculate all alignments and then compare them and 
count their agreement. M can, however, be constructed very efficiently upon backtrack- 
ing through the dynamic programming matrix. We describe this for the unit resistance 
case. 

Suppose the forward pass of calculating a sequence alignment has been performed. 
The algorithm to calculate the overlap matrix M needs to keep track of the numbering 
of the paths. We will start by explaining how to label the edges that are part of 
some optimal alignment with an array that contains pointers to path identifiers. Let 
the identifiers be an array of numbers, one for each path. The backtracking starts at 
the sink of the network. Label this vertex with a pointer to the first path. We do not 
follow each alignment path but examine each vertex in the order described next. We 
will proceed backwards through the edit graph from one anti-diagonal to the next. 
Suppose we are in an anti-diagonal. We start at one end and move towards the other 
end of the anti-diagonal, examining each vertex on the anti-diagonal. When inspecting 
the edges adjacent to a certain vertex, we first take the union of the labels of the 
incoming paths from the prior anti-diagonal. This gives us the set S of all labels of 
paths that pass through this vertex. Say there are k, k E { 1,2,3}, possible continuations 
of these paths, depending on how many edges are optimal in the backtrack from the 
vertex. The number of indices for paths must now be increased by k - 1 times the 
cardinality of S, since each path must be divided into k paths. Set the label of the 
fist  of the k edges to the same indices as the incoming paths. The labels of the next 
possible edge are set to the next set of IS1 indices, etc. At the source of the network, 
this procedure has generated a set of labels that contains as many labels as there are 
paths through the network. 

At the same time that one calculates the labels, it is possible to generate the overlap 
matrix M .  Initially M is a 1 x 1 matrix with entry 0. As one changes the labels of 
the edges one changes the size of the matrix and updates it in in the following way: 
Suppose a subset S of the set T of paths generated up to this point of the computation 
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enters a vertex. For simplicity, think of the matrix A4 re-ordered in such a way that the 
paths in S form a consecutive set of rows and edges. Then the overlap-counts among 
the paths in S form a block of the matrix. We will call this block the S x S-block. 
Add 1 to each entry in the S x S block. This represents extending the paths by the 
one edge that we are currently inspecting. If this is the only way to extend the paths 
in S, proceed along the anti-diagonal. Otherwise, there is at least one other edge that 
can continue the paths in S. Extend the matrix by adding as many rows and columns 
as there are elements in S. Say the new rows (columns) are members of a set S’. 
Initialize all entries of the S’ x T sub-matrix to the same values as the S x T sub- 
matrix. Analogously for T x s’. The s’ x s’-block is set to the same values as occur in 
the S x S-block. When one reaches the source of the network, the matrix will contain 
exactly the overlaps between all the paths. 

The matrix rows can be used as the identifiers. At this point of the algorithm, 
however, it is not clear which edge belongs to which path. Thus the edges cannot 
be assigned the weights that result from inverting the matrix. This information can be 
generated by, upon backtracking, building a tree where an edge describing a certain path 
branches into the new paths to which it gives rise. This tree will have as many leaves 
as there are paths through the network. After completion of the the above algorithm, 
if one goes from the leaves to the root, one can assign to each edge of the network a 
list of pointers to all paths in which it is contained. 

8. Conclusions 

Motivated by biological applications, we presented axioms describing a weighting 
scheme that may be applied to sequences connected by a phylogenetic tree or to 
different alignments of two sequences. It turns out that the axioms describe the current 
flow through an electrical network. Using this analogy, it is not difficult to prove the 
existence of the weights. The electrical networks are, of course, not necessary but 
simply helpful in understanding what the weights capture. 

When this weighting scheme was first applied to biological problems by Altschul 
et al., the motivation was drawn from linear least squares estimation. In the more in- 
volved case of alignment path weighting it is hard to see how to extend that treatment, 
while the electrical networks form a natural framework for both problems. The question 
why the optimization problem in least squares estimation and the electrical networks 
lead to the same answer has, on a formal level, been answered. In more depth this 
has been well explained by G. Strang [8] in his book “Introduction to Applied Mathe- 
matics”. His entire book is based on this duality between solving linear equations and 
optimizing quadratic forms. The phenomenon we observed in our application is only a 
special case of this. 

A more systematic application of numerical methods combined with the analysis of 
the topology of a network should make the weights computable even for large sets of 
alignments. This in turn will allow a dot-plot representation of a large set of alignments 
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where edges are colored according to their weight. Visual analysis of such a dot-plot 
will thus be made significantly easier. Furthermore, applications in the assessment of 
alignment reliability [9] can be envisaged. With respect to the biological applications 
several open problems remain, however. We have not characterized the situations where 
weights will be positive. This question becomes increasingly harder as one applies the 
axioms for weighting to other objects, for example to RNA structures. First results 
show that negative weights are common in this case. 
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