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ABSTRACT 

Sequencing by hybridization is a tool to determine a DNA sequence from the unordered 
l i t  of all I-tuples contained in this sequence; typical numbers for 1 are I = 8, 10, 12. For 
theoretical purposes we assume that the multiset of all I-tuples is known. This multiset 
determines the DNA sequence uniquely if none of the so-called Ukkonen transformations 
are possible. These transformations require repeats of (1 - 1)-tuples in the sequence, with 
these repeats occurring in certain spatial patterns. We model DNA as an i.i.d. sequence. We 
first prove Poisson process approximations for the process of indicators of all leftmost long 
repeats allowing self-overlap and for the process of indicators of all left-most long repeats 
without self-overlap. Using the Chen-Stein method, we get bounds on the error of these 
approximations. As a corollary, we approximate the distribution of longest repeats. In the 
second step we analyze the spatial patterns of the repeats. Finally we combine these two 
steps to prove an approximation for the probability that a random sequence is uniquely 
recoverable from its list of I-tuples. For all our results we give some numerical examples 
including error bounds. 

Key words: sequencing by hybridization, sequence repeats, DNA sequences, Chen-Stein method, 
Poisson process approximation, Ukkonen transformations. 

1. INTRODUCTION 

NE OF THE PRIMARY GOALS of the Human Genome Project is to increase the rate of DNA sequencing and 0 to reduce its costs. While gel-based methods for determining the sequence of nucleotides (A, G, C, T) 
are being automated and improved, new approaches to DNA sequencing are being explored. Sequencing 
by hybridization (SBH) is a novel approach for determining DNA sequences that was proposed by several 
groups around the same time (Drmanac and Crkvenjakov, 1987; B i n s  and Smith, 1988; Lysov er al., 1988; 
Southern, 1988; Macevicz, 1989). 

Sequencing by hybridization is based on the following setup. A short single-stranded DNA of 8-25 
letters is called a probe. The probe will bind or hybridize to a single-stranded target DNA if the substring 
complementary to the probe exists in the target. If the target is presented to all probes of length I (called 

'Department of Mathematics and 2Department of Biological Sciences, University of Southern California, Los 

This work was supported in part by the NSF grant DMS 95-05075. 
Angeles, California 90089- 1 1 13. 

425 



426 ARRATIA ET AL. 

I-tuples), then the I-tuple content of the target is known, and this data can be used to partially or fully 
determine the sequence of the target. 

To accomplish the repeated probing of all 4' probes of length 1, all the probes are attached to the 
surface of a substrate where each probe is at a known position. This is called a sequencing chip. Then 
the labeled target is presented to the sequencing chip, and hybridizations are detected by an instrument 
sensitive to the label. The experimental challenges to making this approach successful include synthesizing 
and fixing DNA to the substrate in a reliable manner, devising efficient detection systems for DNA-DNA 
hybridization (i.e., for label detection), and controlling the substantial differences between the binding 
energies of complementary duplexes from those that are complementary except for one mismatched pair 
of bases. There have been rigorous efforts to overcome these challenges and significant progress has been 
made, although determination of longer sequences is not yet routine (Pevzner and Lipshutz, 1994). Fodor 
and colleagues have developed light-directed polymer synthesis (Fodor et al., 1991, 1993; Pease et al., 
1994) and recently synthesized a sequencing chip with all 48 8-tuples. A sequencing chip with all 41° 
10-tuples is a near term possibility. 

Certainly the experimental aspects of sequencing by hybridization are of importance in developing the 
technology; in addition, the computational and mathematical sides of sequencing by hybridization are 
critical too. 

To understand the basic problem, we consider a mathematical idealization. A sequence a = ala2 . . . a, 
is to be sequenced, and the data are the multiset of all I-tuples present in the sequence, known as the 
1-spectrum of a, $(a). The multiset forgets the order in which the I-tuples occur, but it does keep track 
of multiple occurrences. This multiplicity information is not currently present in the physical data, but 
makes the mathematical analysis tractable. [It is natural to first pose the sequence recoverability problem 
as a traveling salesman or Hamiltonian path problem. The graph G a  = (VX,  En) for the Hamiltonian 
path problem has vertex set VX = the set underlying &(a), and (u, u )  E EX when u = ~ 1 ~ 2 . .  . u1, 
v = ~ 1 ~ 2 . .  . ur E $(a), and ~ 2 ~ 3 . .  . ul = ~ 1 ~ 2 . .  . ul-1. This Hamiltonian path problem, visiting all the 
vertices, is computationally difficult.] Pevzner (1989) employed de Bruijn sequences (see van Lint and 
Wilson, 1992) to treat this problem as an Eulerian path problem, finding a path that uses all the edges. The 
vertices of the graph for the Eulerian path problem are the (I - 1)-tuples from $-1(a), and the directed 
edges, with multiplicities, correspond to SI (a). Formally, the de Bruijn graph for a is Gg = (Vz,  E%) where 
Vg = the set underlying Sl-1 (a) and E$ = S'(a) is the edge multiset; an edge qc2 . . . cl goes from vertex 
qc2 - . q - 1  to vertex ~ 2 ~ 3  . . . q. The problem of determining the sequences a is translated into a Eulerian 
path problem, one for which there is an efficient solution. Furthermore, a word is uniquely recoverable 
from its I-spectrum if and only if there is only one Eulerian path for its de Bruijn graph. 

A concrete example may help the reader get oriented. There are three very short examples at the start 
of Section 3, but they are all atypical in that they involve self-overlapping repeats. For a longer but typical 
example, we take m = 24,1= 4, and the word a = GTGAC CATGG AAGAC TTGGA AGTT. The 4- 
spectrum is a multiset containing 21 4-tuples, of which only 18 are distinct. To emphasize that the multiset 
does not report the order in which its elements occur, we present it in alphabetical order; when the multi- 
plicity of an element is greater than one, the multiplicity is given as a superscript. The 4-spectrum is S4 = 
AAGA, AAGT, ACCA, ACTT, AGAC, AGTT, ATGG, CATG, CCAT, CTTG, GAAG', GACC, GACT, 
GGAA2, GTGA, TGAC, TGGA', TTGG}. It is indeed hard to verify the above data, so we present the 
4-spectrum again, in the same order, but with some extra information: each 4-tuple is subscripted by the 
position or positions where it begins, for example we write GTGAl and TGAC2. Thus, the 4-spectrum, with 
additional information, is S4 = {AAGAII, AAGTm, ACC&, ACn14, AGAC12, AGTT21, ATGT7, CATGs, 
CCATs, CTTG15, GAAGto,19, GACC3, GACT13, GGAG,,,, GTGA1, TGAC2, TGGA;,,,, TTGGI6}. This 
word a is not uniquely recoverable from its 4-spectrum because another word, namely a' = GTGAC 
TTGGA AGACC ATGGA AGTT, has the same 4-spectrum. The reader can verify this by brute force, 
but it is more easily checked by finding the de Bruijn graph of a. For this example, the de Bruijn graph 
has 21 edges. There are 18 distinct edges, and three of these have multiplicity two. There are 17 distinct 
vertices, five of which are visited twice. The word a' has the same de Bruijn graph; the two words a and 
a' correspond to two different Eulerian paths in this graph. 

Computational difficulties arise when the data give only the set underlying the I-spectrum, i.e., there is 
no information on multiple occurrences of 1-tuples. A tougher problem is that the data may have errors. 
Nevertheless, it is instructive to first handle the mathematically idealized problem. We ask how big must 
1 be to expect to uniquely determine a random sequence from its 1-spectrum. For the random analysis, we 
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assume that the m letters of the given word are independent and identically distributed; the distribution 
may be to assign probability 1/4 to each of A, C, G, T. This problem was the subject of a recent paper 
(Dyer et al., 1994). The relation between that paper and ours is described at the end of this section. 

The first-order intuition for the answer is easy to derive; the critical consideration is whether I is large or 
small in comparison to logll,(m2), where p = P (two random letters match). The crude heuristic suggests 
first that for sequencing by hybridization data to give a unique answer, there should not be any I-tuple 
repeats. There are about (;)p’ expected repeats of length I, and solving 1 = (y)p’ yields a critical boundary 
at I = logl/, ( y ) ;  so the longest repeat in a random sequence is approximately I = log,/, ( y )  x log,/, (T) 
(Arratia and Waterman, 1985). Making this intuition precise involves a Poisson process approximation to 
keep track of how many repeats there are and where they occur. The distributional limit theorem for the 
length of the longest repeat in a single sequence is proved in Zubkov and Mikhailov (1974), and also 
occurs as a special case of Theorem 7.2 in Karlin and Ost (1987). Here we strengthen that result by giving 
error bounds. 

A more careful analysis of the probability of unique recoverability starts with the Ukkonen-Pevzner 
criterion for unique recoverability, which we present as Theorem 6. In this criterion, the overwhelmingly 
most likely cause for a sequence to be not uniquely recoverable from its I-spectrum is having an interleaved 
pair of repeats of r-tuples, where t = I - 1. Loosely speaking, this cause is that the sequence has the form 
. a b . . a . . . b . . ., where a, b denote t -tuples, and such a sequence is not recoverable because it has 
the same I-spectrum as the sequence obtained by swapping the two substrings that form the in a .  . . b. 
(See Section 3 for a precise description, which is valid even when the repeating t-tuples overlap.) Thus 
the probability of unique recoverability is approximately the probability of not having any interleaved pair 
of t-tuple repeats. In our previous example, the sequence is GTGAC CATGG AAGAC TTGGA AG’IT, 
with I = 4, t = 3, and here a = GAC, which begins at positions 3 and 13, while b = TGG, which begins 
at positions 8 and 17. The . . . in the first a b is CA and the . . - in the second a .  . . b is T. Exchanging 
these produces GTGAC TTGGA AGACC ATGGA AGTT, a different sequence with the same 4-spectrum. 

The next step is to use a Poisson approximation for the number of pairs of repeats. Repeats come in 
clumps, and indeed the number of repeats is not close to Poisson, so something like “maximal repeats” 
or “leftmost repeats” of length at least t = I - 1 must be considered. Returning to our guiding heuristic, 
the expected number of such repeats is about A (;) (1 - p)p ‘ .  A Poisson approximation takes the form 
P (k repeats) e-A.lk/k!. An argument involving the Catalan numbers, ck = l/(k + 1)(:), shows that 
when there are k repeats, the probability of having no interleaved pair is k!2kCk/(2k)!. Averaging over 
k yields that the probability of unique recoverability for a sequence of length m, from its I-spectrum, is 
approximately 

using A = (;)(I - p)p‘ ,  with t = I - 1. 
Here begins an overview of our paper. Section 2 gives the details of a Poisson approximation for leftmost 

pairs of repeats, even allowing self-overlap. Poisson approximations for repeats within a single sequence 
or for matches between two sequences have occurred in previous papers (Zubkov and Mikhailov, 1974; 
Arratia et al., 1986; Karlin and Ost, 1987; Arratia et aL, 1990a; Novak, 1995; Waterman, 1995). At the 
level of these last three references, where a Poisson approximation is shown with an error bound of the 
form O(m-€), two problems are very similar: the analysis of matching between two sequences, and the 
analysis of repeats within a single sequence. One novelty in the present paper is that we strive for very 
small error bounds, even for moderate values of m. At this level of careful bounding the two problems 
have substantial differences. For a more detailed discussion of the relationship between repeats within a 
single sequence and matches between two sequences, see Reinert (1996). 

The reader mainly interested in sequencing by hybridization should simply accept, as the result of 
Section 2, that the process X indicating where all leftmost repeats occur can be approximated by a much 
simpler process Y having independent Poisson coordinates, with an error of at most b(m, r )  b1 +b2. This 
error bound is a complicated but computable function of m, t ,  and the distribution used in our assumption 
that all letters are i.i.d. The reader interested in sequence matching may find Section 2 quite informative 
in its details. Our guiding principle was with t = 7,8,9,  10 or 11, and m between 100 and 1O00, what 
could lead to say a 10% improvement in the overall upper bound b(m, t )?  Thus, for example, we kept 
track of the “declumping” factors of (1 - p) whenever they occur in a dominant term. In contrast, for 

_ _  
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the two sequence matching problems, the most careful treatment to date (Waterman, 1995), gives away 
some of these factors. Even in an asymptotically nondominant term, we did not settle [see (68)] for the 
"easy bound'' of the form mt3(&)' on the net covariance contribution from two pairs of repeats where all 
four t-tuples form one island; here t* = max,[P(Ai = a ) ]  is the probability of the most likely letter, and 
m(&+)' is of the order m-l in the i.i.d. uniform case. Instead we perform a careful combinatorial analysis 
to replace the t 3  factor by a constant c = c&,(.$*), with c = 1.0445 for the important special case of 
a uniform distribution over four letters. As a corollary of the careful Poisson process approximation, we 
obtain good bounds on approximations for the length of the longest repeat within a sequence, both allowing 
and forbidding self-overlap in the repeats. 

A major issue for Section 2 is how to handle self-overlapping repeats, which do play a role in sequencing 
by hybridization. The easy strategy, embodied in Corollary 1, is to bound the expected number of repeats 
involving self-overlap, and apply the second moment calculations of the Chen-Stein method only to repeats 
without self-overlap. The more difficult strategy is to apply Chen-Stein directly to all repeats. A priori, 
there is no way to predict which strategy will yield better bounds for realistic values of m and t ;  it is 
necessary to carry out both strategies. The last two columns of Tables 1 and 2 show a comparison of the 
bounds; for example, with m = 50, t = 5 the easy strategy is better, for m = 200, t = 7 it is about 3% 
worse, and for m = 1600, t = 11 the easy strategy gets a bound almost twice as large: 0.0035 versus 
0.0018. 

Section 3 shows how to adapt the Ukkonen-Pevzner characterization of unique recoverability, given 
in terms of where repeats occur, to the process needed for probability approximation, which only says 
where lefhmst repeats occur. The three examples at the start of Section 3 show that for each of the three 
classes of transformations considered by Ukkonen and Pevzner, there are nontrivial examples where the 
only repeats are self-overlapping. 

Section 4 combines the Poisson process approximations of Section 2 with the deterministic manipulations 
of Section 3, and comes up with an overall error bound that we analyze as the sum of five contributions: 
one for Poisson approximation, one for each of the two classes of transformations that are unlikely, one for 
symmetrizing the Poisson intensities to remove the irregularity from the boundary and from self-overlap, 
and one for the tie breaking that is needed in the argument involving Catalan numbers. 

We tabulate some values of the error bounds for realistic instances of 1 and m, for examples corre- 
sponding to DNA with either the four letters equally likely, or with P A ,  p c ,  p ~ ,  p~ coming from the 
proportions of bases in the complete chloroplast genome of the liverwort Murchntia polymorph, with 
42,896 As, 17,309 Cs, 17,556 Gs, and 43,263 Ts (Arratia et al., 1990a). Tables 1, 2, and 3 discuss Poisson 
approximations; Tables 4 and 5 concern the distribution of the length of the longest repeat; Tables 6 and 7 
analyze the five sources of error for the problem of sequencing by hybridization, and Tables 8 and 9 give 
the probability of unique recoverability, with error bounds and performance guarantees. 

In the analysis of a DNA sequence for repeats, only rare repeats-those corresponding to small values 
of A-are of interest. However, in SBH the goal is to gain information about the DNA sequence, even 
if it is incomplete information. An SBH experiment is worth running even if the probability of reading a 
unique sequence is 0.5. For this probability, the tables show values of A as large as 2.747. 

We now discuss the relation between our paper and Dyer et al. (1994). They introduce the formula 
(1) and explain the connection between Catalan numbers and the probabilistically dominant Ukkonen- 
Pevzner transformation, transposition using an interleaved pair of repeats. Our theorem differs from theirs 
in that we give a bound on the error, which is important for applications, where m and 1 are only moderately 
large. Furthermore we had difficulty constructing a rigorous reading of Dyer et al. (1994). 

Section 5 considers directions for future work. The Poisson process approximation for repeats that we 
use should be robust enough to help analyze more realistic questions. For one example, one may want to 
approximate the probability of being able to reconstruct a sequence from the set underlying the 1-spectrum 
without knowing multiplicites, or in the presence of errors. For a second example, if the sequence is not 
uniquely recoverable, what sort of information is given by the 1-spectrum? What is the distribution of the 
lengths of the fragments that can be recovered, and what is the distribution of the number of sequences 
that share the same spectrum? 

The formulas as used by the program DERIVE, to compute our tables, can be found at http://www- 
hto.usc.edu/papedabstracts/sbh.html. 

We recommend skipping past Section 2 for the first reading of this paper. 

http://www
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2. POISSON APPROXIMATIONS FOR REPEATS 

Notation. We write f =: g to mean that the ratio f/g is bounded away from zero and infinity, and 
f - g to mean f/g + 1. In contrast, in heuristics we write f M g to mean that f and g are approximately 
equal, with no specific requirement. 

Throughout this paper we assume that the letters A I ,  A2, . . . are i.i.d. (independent and identically 
distributed) with 

for a E S, a finite or countably infinite alphabet. The case S = {A, C, G, T} of size s = 4 is our motivation. 
For k = 2,3, . . . let 

0 < ea = P(Ai = a )  < 1 (2) 

p E p2; pk = P(A1 = A2 = - = Ak) = x(ta)k. (3) 
a d  

The special case of a uniform distribution has ea = l /s  for all a E S, so p = l/s, and pk = s - ( ~ - ’ )  = pk-’.  
For the sake of expressing the growth rates of our error bounds as functions of m when m, t + 00 with 

A x 1, we define two parameters, y and E. As is proved below, y and E satisfy the inequalities 

O < y < l ,  O < ~ 1 1 / 3 ,  y I 3 ~  (4) 

all with equality holding if and only if we have the uniform case. 

positive probability, it follows that 
Write t* maaes  .$a for the maximal single letter probability. Since at least two different letters have 

(5 )  

< p ,  so that y defined by 

2 - l+Y e*) - P 

satisfies y > 0. For r = 1 ,2 ,3 , .  . . , 

with equality if and only if 6 is uniform. The case r = 1 shows that y I 1, with y = 1 only for the 
uniform case. 

We define E by 
(7) 

Consider Holder’s inequality, as the statement that the Zq norm of a function is decreasing, strictly so 
if the function is nonzero in at least two points. Applied to t and q = 2,3,4,  . . . this implies that 
p’12 > ( ~ 3 ) ’ ’ ~  > (p4)’14 > . .. This shows that E > 0. From the Cauchy-Schwarz inequality, applied to 
a random variable with D = ta on the event (A1 = a) ,  we have ED = p and 

(8) 

hence E p 1/3. Furthermore, equality holds if and only if D is constant, i.e., the distribution of Ai is 
uniform. From p3 = p C(t*)(ta)2 = (6*)p, with equality only for the uniform case, it follows 
y I 3 ~ ,  with equality only for the uniform. In (50) we also show an additional inequality: 3~ < 2 y .  

Given a sequence of letters AlA2.  . - A,  and a test length t, we say that there is a repeat at (i, j )  if 
i < j and the t-tuples Ai+lAi+2 - . Ai+, and Aj+lAj+l e .  e Ai+, following positions i and j are identical. 
[This choice, rather than A i A i + l - .  Ai+,-l = A j A j + l - .  e Aj+t-l, turns out to be convenient. It is more 
suggestive to call our choice a “repeat following (i, j )”  but we will usually use the simpler phrase “repeat 
at (i, j ) ” ;  it is after all a matter of taste, and not one of technical correctness, since (i, j) is a point in the 
plane and not a place in the sequence A 1 A2 . e.] We will throughout assume that 2 I t to avoid trivialities, 
and 2t p m to avoid unnecessary complication in the expression for the expected number of repeats. We 
keep track of all repeats within A1 A2 e . .  A,  by restricting to the index set Z defined by 

(9) 

3 p3 = p2(l+c). 

p 2  =  ED)^ I  ED^ = p3 

Z Z(m, t )  (a! = (i, j ) :  0 I i < j I m - t } .  

The size of this index set is 111 = (,-:+’) = (m - t + l)(m - t ) / 2 .  
We define the indicator function that a repeat occurs at a! = (i, j )  E Z by 

R, Ri, j E l(Ai+l - Ai+, = Aj+l * * Aj+r). (10) 
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Our notation is 1(C) for the indicator function of an event C, Le., the random variable with values 1(C)  = 1, 
if C occurs, and 1(C) = 0 otherwise. We work with indicators because their sum, 

N = ~ R ,  
a d  

counts the number of repeats. 
There is a general phenomenon of clumping that may occur in Poisson approximation, as previously 

described (Aldous, 1989; Arratia and Tavark, 1993). Here, repeats come in clumps; for instance with 
t = 3, m = 16, A1 . A,,, = CTATA ATGGT ATAAT C, which has TATAAT = A2. - A7 = A1o.e. A I S ,  
we say there are repeats (of 3-tuples) following (1,9), (2, lo), (3, l l ) ,  and (4, 12). Counting all repeats, 
the result would be that the distribution of the number N is not approximately Poisson but rather compound 
Poisson. More importantly, the process (Ra)(yEI cannot be approximated by any process having independent 
coordinates [see, e.g., Section 4.2.1 in Arratia et al. (199Ob)l. For many purposes, including the analysis 
of unique recoverability, it is enough to count clumps of repeats. There are many ways to give a precise 
definition for clumps; we choose one of these, which puts clumps in one to one correspondence with 
“leftmost” repeats, and makes it easy to establish a Poisson process approximation. [Another workable 
strategy is to identify clumps of repeats with “maximal repeats of lengths 2 t”; this was used in Dyer 
et al. (1994), and a Poisson process in this context can again be established using the Chen-Stein method, 
as in Section 4.2.1 of Arratia et al. (1990b). Using leftmost repeats (of length exactly t)  is simpler than 
using maximal repeats (of length 2 t) for the purposes of Poisson process approximation.] 

Formally, a repeat at (i, j )  is leftmost if there is not also a repeat at (i - 1, j - 1). Thus we define the 
indicator function that a leftmost repeat occurs at a! = (it j )  E Z by 

The sum of these indicators, 
w w ( m , t )  EX, (13) 

a d  

counts the number of leftmost repeats. Note that since Xi , ,  = Ri, j l ( i  = 0 or Ri-l,,-1 = 0), the process 
( X , ,  a! E Z) carries no additional information compared to the (R,,  a! E I ) .  There are examples, such 
as that in the remark following (99, to show that collectively the X, carry strictly less information than 
the R,. Nevertheless, as we show in Section 3, the indicators X ,  carry enough information to determine 
unique recoverability. 

A repeat at (i, j )  would naturally be called “self-overlapping” if and only if the two t-tuples, Ai+lAi+~ . - 
Ai+r and Aj+lAj+2 . - . share some common Ak, i.e., l i-j  I < 1. However, since our concern is leftmost 
repeats, which involves (t + 1)-tuples, we will also classify the situation j = i + t as having self-overlap. 
Thus we define the index set Z* for “non-self-overlapping repeats” (of t-tuples, taken leftmost) by 

I* Z*(m, t )  = {a! = (i, j ) :  0 5 i < i + t < j 5 m - t } .  (14) 

Note that I* c Z and 
m - 2 t + 1  

I Z * l = (  ) .  
The number of non-self-overlapping leftmost repeats is defined to be 

The process of indicators of leftmost repeats is 

and the process of indicators of non-self-overlapping leftmost repeats is 

x* = (X&,*. (18) 
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Note, these processes take values in {0, 1)' and (0, l}'*, respectively. Compared with W and W*, the total 
numbers of leftmost repeats, the processes give additional information: where these repeats occur. 

2. I .  Expected number 

For non-self-overlapping leftmost repeats, i.e., for i + t < j, the 2(t + 1) indices into the sequence A(.) 

come in t + 1 disjoint pairs, and for i # 0 we have Xi , ,  = 1(Ai # Aj)l(Ai+l  = Aj+l) * l(Ai+t = Ai+,), 
with the factors being indicators of independent events. Being careful with the special case i = 0, where 
the factor 1(Ai # A,) is not present, we have the probability EX, of a leftmost repeat at a! = (i, j) E I* 
given by 

EX, = p t ;  i = O  (19) 

= (1 - p ) p t ;  i > 0. 

Since I*  has m - 2t elements with i = 0 [namely (0, j) with j = t + 1 to m - t ] .  and ("i"') elements 
with i > 0, the expected number of non-self-overlapping leftmost repeats is 

The second equality above can be derived by algebraic manipulation, or seen directly from the point of 
view that all points (i, j) E I* have intensity EXi,, = p f  - p'+' or more, and that the exceptional case 
with i = 0 has an extra p'+' of intensity. 

For m, t both large, the interesting case for distributional approximations is that I* is bounded away 
from zero and infinity, and it is fairly easy to see from (20) that this occurs if and only if the difference 
between t and 2 logl/, m is bounded, i.e., 

I * x l  ifandonlyif t - 2 1 0 g 1 , , m = 0 ( 1 ) a s r n , t + ~ .  (21) 

It is also easy to see that 
1 

(22) I* - -(1- mL 
2 p ) p f  +. 0 

whenever m, t + 00 with I* bounded away from zero and infinity. These qualitative relations (21) and 
(22) will also be true for repeats allowing self-overlap, i.e. for I = EW replacing I*. The remainder of 
this subsection gives an exact formula for I and proves these two qualitative relations. This exact formula 
for I is 

t t 

I = I ( m ,  r)  = EW = I* + C ( p q + l ) r ( p q ) d - r  + C ( m  - t - d)(pq - pq+l)(pq+l)r(pq)d-r-l. (23) 
d= 1 d=l 

Allowing self-overlap, the simplest case is a! = (0, l),  with X, = l ( A l A 2  . - At = A2A3 . - At+l)  = 
l (A1 = A2 = A3 = . = At+l), so that EX, = pt+l .  The next simplest case is a! = (0,2) and t even, 
with X, = Ar+1)l(A2 = A4 = . = A,+2), 
so that EX, = [ ~ ( ~ + 2 ) / 2 ] ~ .  For the same a! = (0,2) but t odd, X, = l(A1 = A3 = . = At+2)1(A2 = 

The general self-overlap situation has j = i + d, for d in the range 1 to t.  The overlapping matching 
A i + l .  - - Ai+, = Ai+d+l.  - . Ai+d+, forces periodicity with period d; specifically the word A i + l .  - Ai+t+d 
of length t + d is a d-tuple, repeated over and over (t + d)/d = q + (r/d) times. In detail, divided d into 
t + d to get quotient q and remainder r ,  so that 

l ( A l A 2 A 3 . a .  At = A3A4A5 - .  Ar+2) = l(A1 = A3 = 

A4 = * * = At+l), so that EX, = P(r+1)/2P(t+3)/2* 

a!=(i , j ) ,  j = i + d ,  l i d i t ,  t + d = d q + r ,  O p r < d .  (24) 

First consider the indicator Ri,, = l (A i+ l  - .  Ai+, = Aj+l A,+,), so that there is no declumping 
factor l ( A i  # A,) to complicate things. The indicator R, with a! satisfying (24) involves t + d letters, and 
t +d = dq +r = (d -r)q +r(q + l), so it is plausible that the matches break up d disjoint groups of letters, 
corresponding to d independent events, with r groups of q + 1 letters and d - r groups of q letters. In 
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fact, the r factors of Ra having probability pq+l each are l(Ai+l = Ai+d+l = Ai+u+l = . . = Ai+qd+l) 
through l(Ai+, = Ai+d+r = Ai+u+r = = Ai+qd+r), and the remaining d-r factors, having probability 

proves that for a! satisfying (24), 

[Check that the special case i = 0, j = t, which is not really self-overlapping, but is included in the above 
discussion, reduces correctly, with q = 2, r = 0, to EX, = (pq+l)r(pq)d-r = pypi = pd = p'.] 

Now consider X,, for i > 0, so that compared with the analysis of R, in the previous paragraph, there 
is also a declumping factor l ( A i  # Ai). The effect is to change the last of the indicators involving q 
letters, l(Ai+d = Ai+u  = . = Ai+qd), to an indicator involving q + 1 letters, namely 1(Ai # Ai+d = 
Ai+u = = Ai+qd). The expectation of this last indicator is pq - pq+l. [To check this claim note 
that the event (A2 = A3 = = Ak) and 
{Al # A2 = A3 = = Ak).] Thus for the general 
self-overlapping index a = (i, j) E Z\Z*,  using (24) to define d, q ,  r as functions of i, j, we have 

pq each, l(Ai+r+l = Ai+r+d+l = * * * = Ai+r+(q-l)d+l) through 1(Ai+d = A i + u  = * * * Ai+qd). This 

E(R,) = (Pq+l)'(Pq)d-r. (25) 

= Ak) is the disjoint union of the events {AI = A2 = 
- = Ak), so pk-1 = p k  + P(A1 # A2 = A3 = 

As a check, we observe that in the uniform case the above simplifies to EX, = p' if i = 0 and 
EX, = (1 - p)p' if i > 0, the same as in the non-self-overlapping case. 

The expected number A of leftmost repeats is the sum of EX, for a! with and without self-overlap. 
The terms without self-overlap have a net contribution A*. For the a! with self-overlap, for each of d = 
1,2, ..., t, there is exactly one term with i = 0 and there are m - t - d terms with i > 0, namely 
i = 1,2, . . . , m - I  - d. Our restriction 2t 5 m is to assume m - t - d  2 0 so'that truncation is not needed 
in the expression for A below. We have shown that with A* = (m - 2t)p' + ("'i2')(l - p)p', as given by 
formula (20), the formula (23) is valid. 

Since for applications the value of t might be 7,8,9,  10, or 11, the above expression, with 2 terms for A* 
and then 2t additional terms, is tractable. For simplicity of understanding, it is worth having a simple upper 
bound on A - A*, the expected number of leftmost self-overlapping repeats. We get such a bound in (27) 
below. To motivate the bound, we observe that for a! = (i, i +d), EX, is nonincreasing as d increases from 
1 to t ;  this holds both for i = 0, where there is no declumping factor, and for i > 0, where there is. [We do 
not present the proof of this.] Having identified that the "worst case" is a! = (0 , l )  with EX, = pt+l, we 
content ourselves with the easily proved bound that EX, 5 (&+)I, regardless of the amount of self-overlap. 
To prove this, we use (25), together with the bounds pq+l 5 (e* )q  and pq i (t*)q-'. The resulting power 
of .$* simplifies as qr + (q - l)(d - r )  = qd + r - d = t + d - d = t .  Thus, for a! satisfying (24), 

EX, 5 ER, = (Pq+l)r(Pq)d-r i [ (~L)~I ' [ (~* )~- ' I~ - '  = (t*)'. (27) 

The net result is 
- A* 5 mt &)I. 

Note that this is not of the form A - A* x ...; we do not know such an expression. 
A simplified form of (28), with y defined by (3, is that A - A* = O(m-Y logm), since 

A - A* i mt(t*)' x m-" logm. (29) 

The asymptotic bound in the last line is valid uniformly in c ,  m + 00 with A* bounded away from zero 
and infinity. To check this we write a series of equivalent statements that two functions have the same 
asymptotic order of magnitude: A* x 1, m2p' x 1, p'I2 x m-', P('+Y)'/~ x m-l-y, mtp('+Y)'/2 x m-Yt. 
Finally, recall that A* x 1 implies that t - 2loglI, m = 0(1), which in turn implies that t x logm. 

The bound (29) shows that A - A* + 0 when m, t + 00 with A* x 1. A corollary is that for m, t -+ 00, 

A x 1 if and only if t - 2 logl/, m = 0(1), and that if A x 1 then 

)C - (m2/2)(1 - p)p' -, 0. (30) 
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2.2. Review of total variation approximations 

Our analysis of unique recoverability is based on the process X of indicators of leftmost repeats. This 
process has a complicated dependence structure, but the dependencies are weak and have only a small 
influence on the probability of unique recoverability. To make this rigorous, we compare X to a “nearby” 
process Y having independent coordinates, and the same marginal intensities. The notation “nearby” is 
quantified by the total variation distance, as follows. 

For any two random process X ,  Y both the values in the same space T, the total variation distance is 
defined by 

where the supremum is taken over all (measurable) subsets B c T. One consequence, which we apply 
in Section 4, is that for any indicator of an event, i.e., a measurable functional h from T to (0, 1}, there 
is an error bound of the form IEh(X) - Eh(Y)l 5 dTv. [Another consequence is that for a functional 
g : T + TI, the random elements X I  = g ( X )  and Y1 = g ( Y )  with values in T’ are no further apart: 
dTV(XI,YI) i dTv(X,Y). This is useful in comparing the two conclusions of Theorem 1 below, where the 
functional g is “summing the coordinates,” and the images XI and Y1 are called W and K.  The random 
variable bound (32), without the “magic” factor (1 - e-A)/A, would simply be a corollary of its process 
bound (31).] 

There following process approximation theorem first appears, with an extra factor of 2 in the upper 
bound, in Arratia et al. (1989). The bound (32) originates in (Chen, 1975), using Stein’s method. A 
friendly discussion of the Chen-Stein method and its application to sequence matching is Arratia et al. 
(199Ob). The book (Barbour et al., 1992) presents much more, including the improvement by a factor of 
2; see a related book review (Arratia and Tavar6, 1993). 

dTv(x,  Y )  = SUP IP(X E B) - P(Y E B)I 

Theorem 1. Suppose X = (X,),hr is a process of indicator random variables with EX, = P(X, = 
1) = 1 - P(X, = 0). Let Y = (Y,)acz be a process with independent Poisson distributed coordinates 
Y,, with EY, = EX,. Suppose for each a E I there is a B, c Z such that X u  is independent of the 
sigma-algebra generated by all X g ,  j? E I\B,. Let 

Let W = cuEl X u ,  A = CaEl EX,, K = Cue, Y,. Assume 0 
random variable and EW = EK = A.] Then 

A < 00. [It follows that K is a Poisson 

1 - e-A 
dTv(w, K )  5 7 (bl + b2) (32) 

and in particular 

We will apply this theorem in two situations, in the next two sections. In both cases, the indicator 
variables X u  are (among) those defined by (12). The only difference is in the index sets playing the role 
of I for Theorem 1; I* defined by (14) for the process of non-self-overlapping leftmost repeats, and I 
defined by (9) for the process of all leftmost repeats. Recall that I* c I. In both cases the neighborhoods 
B, we choose are defined via the symmetric “overlap” relation: for X* we will use B, (j? E I*  : a, j? 
overlap each other}, and for X we will use B, = (j? E I : a, j? overlap each other}. Formally, the overlap 
relation is given by, for (I! = (i,  j ) ,  j? = (i’, j ’ )  E I 

a - j? if and only if min(1i - ill, li - j ’ l ,  l j  - ill, l j  - j ’ l )  5 t .  (34) 

The motivation is that the indicator X u  involves the set of positions {i, i + 1, . . . , i + t )  U { j ,  j + 1, . . . , 
j + t } ,  X g  corresponds to another set of positions; we defined a - j? to be the condition that these 
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sets overlap. Thus it is easy to check that if a and /? do not overlap, written a 9 /?, then Xu and Xg are 
independent. There is a subtlety: it is also necessary (and easy in this case) to check that Xu is independent 
of the sigma-algebra generated by (Xg , jl 9 a). 

[For a concrete example of this subtlety in operation, consider defining B, = (/? E I : a! - /?) as 
before, but changing the neighbor relation - on Z to a 9 /? if and only if Xu and Xg are independent. 
Take the special case where the Ai are uniformly distributed. This makes the new B, much smaller, 
which would yield better bounds bl and b2. But Xu is not independent from a(Xg, /? B,), so Theorem 
1 does not apply to this choice of the B,. [Actually, the full version of the theorem (Arratia et al., 
1989) does apply; there is an error term b3 to control the departure from independence.] To check this 
failure of independence, consider the alphabet S = (A, TI, and take t = 2, rn = 11,  a = (1,4), y = 
(1,6), y' = (1,7), S = (4,8), S' = (4,9). It is easy to check that Xu is independent of each of the 
variables X,, X,,', XS, and Xar. But X,X,t = 1 implies A2 = A7 # A I ,  and XsXgr = 1 implies 
A5 = A9 # A4. Thus X,X,rXsXsr = 1 implies A1 # A2, A4 # As, which implies Xu = 0. The event 
Xu = 1 has positive probability [1/8]. The event X,X,~XgXs~ = 1 has positive probability [in fact, 2-1°]; 
we could have A1 A,  = TAATA AAAAA A or ATTAT TI'TTT T. Hence Xu is not independent of 
a(X,, Xyr, Xs, Xgr). This phenomenon is also true for alphabets of larger size s; it can be seen that the 
conditional probability P(X, = lIX,X,IXsXgt = 1) = (s - 2)/(s - 1) # P(X, = 1) = [ l -  ( l / ~ ) ] s - ~ ,  so 
that Xu is not independent of a(X,, Xyt, Xg, X,!).] 

2.3. The uniform case 

When the i.i.d. letters A', A2, . . . are uniformly distributed over a finite alphabet, rather than having 
a general distribution, many of the quantities we analyze, including expectations and covariances for the 
indicators Xu of leftmost repeats, are much simpler. In this section we collect the results of all such 
computations for this uniform special case. Some proofs involve complicated arguments about cycles in 
the graph of matching edges. In this section, we only quote the results as they simplify for the uniform 
case; the proofs are saved for the sections on the general, not necessarily uniform case. 

For the uniform case, with an alphabet of size s, we have p P(A1 = A2) = l/s. More generally for 

In the uniform case the expected number h of leftmost repeats and the expected number h* of leftmost 
r = 2,3, . . . , p ,  E P(A1 = A2 = * * = A,) = sl-" = pr-'. 

non-self-overlapping repeats are 

For h, the expression above can easily be derived using 111 = ( m - . + l ) ,  noting that for a E I, regardless 
of self-overlap, EX, 2 (1 - p)p' .  Equality holds except for rn - t cases a! = (0, j ) ,  which have EX, = 
p' = p'+' + (1 - p)p ' .  It requires some work to check that (23), the expression for h in the general case, 
simplifies to the same. The general expression for A* is given by (20), which is identical to the uniform 
special case above. 

Next we look at the bounds for the Chen-Stein method, Theorem 1. The net result (for both cases, 
not allowing or allowing self-overlap) will be an upper bound on the total variation distance between 
the process marking repeats and a process with independent coordinates, such that the bound is order of 
logrnlrn when m, t + 00 with h x 1. 

Remark. The upper bound may not be sharp; the factor of log rn may just be an artifice of our method. 
The best lower bound we can find is order of l/m, and comes from looking at configurations of the form 
Xu = Xg = X, = 1 where a = ( i ,  j ) ,  /? = ( i ,  k), y = ( j ,  k). 

Next we consider the case of non-self-overlapping repeats; the bounds for the Chen-Stein method 
are denoted by and b;, with the asterisk to denote that self-overlap is excluded. The exact value for 
b; is given by (42), with asymptotics b; - (8t/m)(h*)2 from (43); the same expressions are used for 
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both the uniform and nonuniform cases. For b; in the uniform case we use an upper bound e, which can 
be defined simply by e b;.  The inequality 

b; 5 b; (36) 

needs to be justified; it does not hold in the nonuniform case. Here is an outline of that justification. 
For the “parallel overlapping” case ( i ’ ,  j’) = (i + d ,  j + d) with 0 # Id1 5 t we have X,Xp 0 due 
to the declumping factors. Excluding the parallel overlapping case, uniformity leads to independence: for 
a! # p,E(X,Xp) = EX,EXp. The argument to see this involves a graph; one needs to check that the 
matches and mismatches required by X,Xp = 1 form no cycles. Except for the declumping factors, we give 
the details of this in the discussion leading up to Eq. (46). That equation reduces in the uniform case, via 
pr+l = p‘, to E(R,Rp) = pe(1)p;(2)  . . . = pe(1)+2e(2)+3e(3)+... = p2‘ = ER,ERp. To handle declumping 
factors, if one or two are present, we argue that the graph Sap, augmented by edges corresponding to 
mismatches, still has no cycles. Start with the argument to show that Sap has no cycles, and augment S, 
or Sp or both. Effectively, we need to use t + 1 instead of t in one or two places, but the geometry remains 
the same. The net result is that for a, ,f? E I* with a! # p, excluding the parallel overlapping case, 

E(X,Xp) = EX,EXp. (37) 

In summary, for the uniform case b; < b:, and the only differences between bf and b; are that b; excludes 
the terms with a! = /3, and for b;, the parallel overlapping terms are zero. 

Now we look at the case of repeats, allowing self-overlap; the bounds for the Chen-Stein method 
are denoted bl and b2. An exact expression for bl would be exceedingly complicated, but it is easy 
to give an upper bound & and to show that bl - bl (for m , t  + 00 with A =: 1). To derive this, 
we need an upper bound on &,+EXp. First note that the number of terms in this sum is at most 
(4t + 2)(m - t ) .  [Given a! = (i, j), there are at most 4t + 2 choices for an integer x with Ix - iI p t 
or Ix - j l  5 t. There are m - t choices for y # x with 0 5 y 5 m - t. Now take p = (i’, j’) with 
i’ = min(x, y), j’ = max(x, y); this accounts for all possible p as well as some extraneous values.] The 
value of EXp is either (1 - p ) p t  or p t ,  and (disregarding the requirement that a! - /?) there are exactly 
m - t choices j? with EXp = p t  = (1 - p ) p t  + p‘+’. Thus for any a! 

- 

 EX^ 5 (4t + 2)(m - t ) ( l  - p ) p f  + (m - t )p f+ l  
p:a-p 

and hence for the uniform case we can define an upper bound & by 

For asymptotics, when m, t + 00 with A =: 1, we have A - (m2/2)(1 - p ) p t  and (m - t) - m so 
bl - (8t/m)A2. That 

(39) 

now follows from b; - (8t/m)(A*)2 from (43), together with by 5 bl 5 & and the fact that A* - A, 
which is easily seen from (35). We get the same asymptotics in (64) for the general case, using a more 
complicated argument. 

For b2 it is essential to notice that even in the uniform case, there are situations where X, and Xp are 
highly positively correlated. The extreme example is a! = (0, l ) ,  p = (0,2),  so that X,Xp = l(A1 = A2 = 
... = At+2) with E(X,Xp) = pf+’ >> p2‘ = EX,EXp. These situations are collected under “case one” 
in the general analysis of b2, and the upper bound (78) applies here with & = l/s = p. For the other 
situations included in b2 but not already part of b;, which form “case two,” we show that the graph Sup 

- 
- 

bl - bl - (8t/m)A2 
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has no cycles [see (65)].  As in the argument leading up to (37), putting in the declumping factors doesn't 
cause cycles, and in case two E(X,Xp) = EX,Xp. 

[Uniformity is needed to simplify the following calculation: for any tree with r + k edges corresponding 
to r + k + 1 letters, with r edges requiring matches and k edges requiring mismatches, regardless of where 
the mismatch edges appear in the tree, the probability of the corresponding event is (1 - ~ ) ~ p ' .  Here is an 
example of how the probability corresponding to a tree with r matching edges and k mismatching edges 
does not vary with the tree, but only for the. uniform case. First consider t = 2, a! = (1,5), B = (2,5), 
which contributes to b;. Here k = 2,r = 4 and E(X,Xp) = P(A1 # A5 # A2 = A6 = A3 = A7 = 
A4) = (1 - p)p5. In contrast consider f = 2, a! = (1,2), B = (4,5), which contributes to case two. Again 
k = 2, r = 4, but now E(X,Xp) = P(A1 # A2 = A3 = A4 # A5 = A6 = A7) = (p3 - p4)p3. In general 
these are not equal, but in the uniform case they are.] 

In summary, for the uniform case we have that b2 is at most bl plus the contribution (78) from the terms 
in case one, so we define an upper bound & for b2 by 

b2 5 & = & + [ 1 +  (1 - p)(m - t)lp'cd,(p). (40) 

For alphabets of size 4, 3, or 2, the relevant upper bounds for the uniform case are cd,(1/4) c 
1.0445, cd,(1/3) < 1.981, cd,(1/2) < 22.09. 

2.4. Repeats, not allowing selj-overlap 

We apply Theorem 1 to the process X* defined in (18), with B, = { B  E I* : B - a!}, the relation "-" 
being defined by (34). To distinguish the Chen-Stein error bounds bl and b2 in this case from those in 
the next section, we call them by and b;. Hence we have the same random variables, but different index 
sets: b; = Ca,pEI*:Cr--p EX,EXB, = Ca,pEI*:cr-p,a+p E(X,Xp), while bl = Ca,pEI:a-p EX,EXp, b2 = 
Ca,p€I:a-p,cr+p E ( X 4 ) .  

We will give an exact expression for b;, and an upper bound for b;. We begin with b;. The intensity 
function EX,, given by (19), is constant except for the boundary effect at i = 0. Hence the chief problem 
is to determine the size of the neighbor relation, i.e., the number of ordered pairs of neighbors, i.e. IGI 
where 

G = ((a, /I) : CY, B E I * ,  a! - P}. 
It is then easy to make a correction for the boundary effects. To get a handle on IGl, consider the 
complementary relation on I* ,  namely 

H = {(a, B )  : a, B E I * ,  a! 7L P I .  

Writing a! = (i, j), 
onto the set J of sets of four points all more than c apart: 

= (i', j ' ) ,  the map (a!, B )  H {i, i', j, j') is a (l) = 6 to one correspondence from H 

J = {C c (0, 1 , .  . . , m - t }  : IC1 = 4, a # b E C implies la - bl > t } .  

To see that the correspondence is c) to one, note that a priori i c j and i' < j ' ,  so picking a set of two of 
the four elements of a C to serve as {i, j }  determines (a!, p).  It is elementary that IJI = ((m-t:1)-3t) .  To see 
this, write C = {kl ,  k2, k3, k4) with kl c k2 c - .., and let j l  = kl ,  j 2  = k2 - c, j 3  = k3 - 2t, j4 = k4 - 3t. 
This gives a set of four distinct elements (j1,  . . . , j4} c {0, 1, . . . , (m - t) - 3t) with j1 c - . c j4, and 
it is easy to check that this is a one to one correspondence between J and the set of all four-subsets of 
{0, 1, . . . , m - t - 3t}. We have shown that IHI = 6("-"4'+'), so in terms of 111* given by (15), the number 
of ordered pairs of neighbors, as a function of m and t ,  is 

Without additional work, the number of ordered pairs of neighbors in which both i, i' # 0 is c(m - 1, t ) ,  
because eliminating 0 from {0, 1,2, . . . , m - t)  has the same effect as eliminating m - c, or equivalently, 
reducing m by one. Since there are m - 2t choices for a! = (i, j )  E I*  with i = 0, and any two of these 
are neighbors of each other, there are exactly (m - 2t)2 ordered pairs of neighbors in which both have first 
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coordinate zero. [The following argument is summation by parts, and is easily understood by comparison 
to the second part of (20).] Since the EX,EXp = (1 - ~ ) ~ p ’ ‘  when neither first coordinate is zero, and the 
increments are (1 - p)p2‘+’ and pa+’ successively when one and then the other first coordinate becomes 
zero, we have, with c(m, t) given by (41), 

(42) 2 2t+2 b; = c(m, t)(l - ~ ) ~ p ”  + [c(m, t )  - c(m - 1, t)](l - p)p2+’ + (m - 2t) p . 
For asymptotics, c(m, t) - 2m3r for m, t + 00 with t/m + 0, so for m, t + 00 with A* =: 1 we have 

b; - 2m3t(l - p)’p2 = (8t/m)[(l - p)p‘m2/2]’ - (8t/m)(A*)2. (43) 

Although it is possible to give an exact expression for b2, both the expression and derivation would be 
exceedingly complicated, so we just give an upper bound, which we will denote g. 

We begin with a sketch of the analysis. Recall the definition (34) of the overlap relation. We say that 
the “degree” of overlap is the number of inequalities li - i’I 5 t ,  li - j’l 5 t, l j  - i’l 5 t ,  I j - j’l 5 t ,  
which are satisfied. Here the possible degrees of overlap for a pair a - B are d = 1,2,3, due to the 
restriction of no self-overlap in a, /3 individually. As a guide to which pairs (a, B )  require careful bounding 
of E(X,Xp), we observe without proof that there are on the order of m4-dtd pairs (a, B) having overlap 
of degree d ,  d = 1,2, or 3. The dominant contribution to bz turns out to be from overlap of degree one. 

We bound the number of pairs (a, B )  having overlap of degree two or more, as follows. There are (i) = 6 
ways to specify a set of two out of the four inequalities, but one of these, namely Ji - j’l I c ,  l j  - i’l 5 t ,  
cannot occur, due to a and B not having self-overlap. In each of the remaining cases, we can designate 
one of a, B, which is “tied down” in both its components. [For example, the case li - i’l 5 t ,  li - j’l 5 t 
ties down both components of j? (and not both components of a); the case li - j’l 5 t ,  l j  - j’l 5 t ties 
down both components of a (and not both components of B); for the case li - i’l 5 t ,  l j  - j’l 5 t both 
a, B have both components tied down, and our canonical choice is to designate a.] For the element of I* 
that is not designated as tied down, there are at most 1Z*1 = (m-yl) choices. Then for the other element 
of I* there are at most (2t + 1)2 choices. Combining these, we have at most 

choices for (a, B) E (I*)? with overlap of degree two or more. 

with the set of t undirected edges 
We will now establish an upper bound on E(X,Xp), valid for all cases. We identify an index a = (i, j )  

(45) 

so that an edge {u, v }  has 1 5 u # u 5 m and corresponds to the indicator that A,, = A,. For a E I*, no two 
edges in Sa share a vertex. [A similar structure arises in analyzing matching between two random sequences, 
except there the graphs are bipartite (Arratia et aL, 1986). Observe that in the “parallel, overlapping case” 
(i’, j’) = (i + d ,  j + d )  with 0 # Id1 5 t, we have that X,Xp is identically zero, due to the declumping 

Excluding the parallel, overlapping case, for a # B the two sets of edges Sa and Sp have no edges in 
common, so there are 2t edges in the union; let Sap denote the resulting graph. Different components in the 
graph have disjoint vertex sets; hence the events corresponding to components are mutually independent. 
Let e(k)  be the number of components having k edges, so that 2t = E k e @ ) .  For a, B E I*, each vertex 
in Sap has degree at most 2. We claim that the graph S,,p has no cycles. 

Sa = {{i + 1, j + 11, {i  + 2, j + 21,. . . , {i + t ,  j + t } )  

factors 1(Ai # Ai) and 1(Ai, # Ai’). 

[Proof. Write d = j - i, e = j ’  - i’ and without loss of generality, since the parallel case has been 
excluded, assume d < e. Note that since a E I*, we have j > i + t ;  hence for an edge {w, w’} E Sa, 
either w 5 i + t and then w’ = w + d, or else w > i + t and hence w’ = w - d .  Suppose there were 
a cycle. Take a simple cycle, with leftmost vertex u and rightmost vertex u’. There are two paths from 
u to u’, and each of these paths must alternately use edges from Sa and from Sp.  The path starting with 
Sa must begin u, u + d since we choose u leftmost; and it follows that u + d > i + f .  The path starting 
with Sp must begin u, u + e. Since u’ p u + e > u + d the path that started in Sa must continue past 
u + d; it must begin with u, u + d ,  u + d + e since u + d - e < u would contradict v being leftmost. Thus 
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u' 2 u+d+e  > u+e so the path starting with Sp must continue past u+e. It must begin u, u+e, u+e-d ;  
the path starting u,  u + e ,  u + e + d is excluded because with u + e in the role of w four sentences back, 
u + e > u + d > i + 1. It follows, from {u + e - d ,  u + e }  being an edge in S,, with u + e - d in the 
role of w ,  that u + e - d 5 i + t and hence u + e - d < u + d .  Using the above steps again, the path 
starting with Sp must begin u,  u + e ,  u + e - d ,  u + e - d + e ,  u + e - d + e - d and it follows that 
u + e - d + e - d  <u+d.Iteratingwegetthatu+k(e-d) < u + d f o r k =  1,2, ..., acontradiction.] 

Since each component is a tree, a component with r edges has r + 1 vertices and thus corresponds to 
requiring r + 1 of the random letters to match, which has probability pr+l.  Giving away the declumping 
factors in the first inequality, we have, for a # /3 E I * ,  

(46) 

For pairs (a, B )  with overlap of degree two or more, the O(m2t2) bound (44) on the number of such 
pairs is so small that there is only a relatively small loss in the overall upper bound on b; if we use the 
following coarse treatment of (46), without enumerating cases according to the values of e(l), e(2) ,  . . . . 
Using (6), that pr+l 5 (.!jJ, together with the simple upper bound in (46) yields 

E(X,Xp) 5 E(R,Rp) = pe(1)(p3)e(2)(p4)e(3) * * e .  

Recall that the number of pairs (a, /?) with overlap of degree two or more is order of m2t2, and that 
for A* x 1 we have t x logm and m2p' x 1. Using the notation defined by (5), the net contribution to 
b; from these pairs having overlap of degree two or more is at most order of t2m2(t*)2r = t2m2pr(l+y) x 
t2p'y x t2m-2Y x (logm)2m-2Y. 

For pairs (a!, B )  with overlap of degree one, it is not hard to see that the graph S,,p has only components 
with one or two edges. Thus (46) simplifies to 

(48) 

with e(1) + 2e(2) = 2t. Recall, from the discussion following (7), that p 2  5 p3, with equality in case of 
the uniform distribution. One could use the bound 

E(X,Xp) 5 E(R,Rp) = pe(1)(p3)e(2) 

We will show below that the number of pairs (a, /3) with overlap of degree one is order of m3t. Recall 
that for A* x 1 we have t x logm and m2p' x 1. Using (49), the net contribution to b,* from pairs with 
overlap of degree one would be at most order of m3tp3'(1+e)/2 x tp3rc/2 x (l~gm)rn-~'. To show that 
this upper bound has larger order than our upper bound on the contribution from overlap of degree two 
or more, we have to show that 3~ < 2 y .  As in (8), consider the random variable D with D = on the 
event {AI = a}.  Condition on the event A4 that A1 = A2. We have . 

P 4 / P  = E(D21W 2 [E(DlWI2 = (P3 /PI2  (50) 

so that p4 5 ( ~ 3 ) ~ / p .  We also use the inequality p4 > which follows from there being more than 
one letter with positive probability. Unraveling some notation, we have p2+2Y = (6*)4 < p4 5 ( ~ 3 ) ~ / p  = 
p2+3e, which proves that 36 < 2 y .  Thus the contribution from pairs with overlap of degree two or more 
is smaller than that from pairs with overlap of degree one, by at least some power of m. 

Since pairs with overlap of degree one yield the main contribution to b;, it is worth some additional 
effort to give a better upper bound than (49) on these E(X,Xp). There are two ways to improve the 
estimate. The first, which has no effect in the uniform case, is to classify the different types of overlap 
of degree one according to the displacement k involved in the overlap; for the nonuniform case we save 
a factor asymptotic to tr /( l  - r )  where r = p2/p3 < 1 is constant, while t x logm. The second, which 
is useful for both uniform and nonuniform distributions, and which applies to all degrees of overlap, is 
to include the declumping factor 1(Ai # Ai) ,  which carries over to an improvement of (1 - p ) 2  in the 
upper bound on E(X,Xp) for most pairs (a, B).  The complication comes in counting the exceptional cases 
where there are not two independent declumping effects. 
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For the first improved upper bound we distinguish cases according to the displacement k between 
overlapping indices. To be specific, recall that overlap of degree one means that exactly one of the four 
inequalities li -i’l I t ,  li - j’l I t ,  l j  -i’l 5 t ,  l j  - j’l 5 t is satisfied. We treat the subcase (i -i’l 5 t so 
that k = (i -i’l; the other three subcases have the same structure. When k = 0, we have e(1) = 0, e(2) = t 
so the second inequality in (49) holds with equality. For 1 5 k I t, we have e(1) = 2k, 4 2 )  = t - k so 
that E(R,Rp) = ~ ~ ( p g ) ‘ - ~  = (p3)‘rk where r = p2/p3. 

Next we count ordered pairs (a, p )  having overlap of degree one together with a specified k, using 
reasoning similar to that used to derive (41). The number of instances of k = 0 and overlap of degree 
one is exactly 6(m-‘:1-2). To see this, consider first the subcase li - i’l p t. Picking (a, p )  involves 
choosing values for i, j, j’ all in the range 0 to m - t ,  mutually more than t apart; the binomial coefficient 
gives the number of ways to do this. We need i’ = i and thus i is the smallest of the three values 
chosen, but there remains a two way choice for assigning j, j’ to the two larger values. The subcase 
l j  - j ’ (  I t also contributes a factor of two. In the subcase Ji - j’l I t there is only one choice, namely 
i’ < i = j’ < j ,  and similarly there is only one choice in the subcase l j  - i’l I t. Thus the factor 6 
comes from the four subcases as 2 + 2 + 1 + 1. For each k from 1 to t, there is an additional two way 
choice, corresponding on the first subcase to i’ = i + k versus i’ = i - k. Note that, in contrast to the 
case k = 0, here 12(m-‘:1-2‘) is not exactly the count of pairs (a, p )  having overlap of degree one and 
a specified k because some of the specified configurations will have overlap of degree two [for example, 
k = 1, i = 3, j = 4 + t ,  j ’  = 8 + 2t, i’ = i + k] or the index specified by displacement may be out of 
range [for example, k = 1, i = 0, j = 4 + t ,  j ’  = 8 + 2t, i’ = i - k]. 

We have shown that the net contribution to bz from its terms E(X,Xp) having overlap of degree one 
and displacement k is 6(m-T+l)(p3)‘ for k = 0, and at most 12(m-T+1)(p3)‘rk for each of k = 1,2, . . . , r. 
Summing over k, we have the following upper bound on the contribution to b,* from pairs having overlap 
of degree one. Recall that r = p2/p3. In the first inequality, both sums are taken over all pairs having 
overlap of degree one; we will return to this inequality later to use the declumping factors for a further 
improvement. 

In the nonuniform case, we have r p2/p3 < 1 so the first factor is bounded by 1 +2r/(l - r ) ,  a constant 
even as t increases. 

The second way to improve the upper bound on E(X,Xp) is to take account of the declumping factors. 
Recall the discussion leading up to (46), where, excluding the parallel overlapping case, the graph Sap has 
exactly 2t edges, each edge corresponding to one of the matches required by R,Rp = 1. Except when 
i = 0 or i’ = 0, to have X,Xp = 1 requires two additional conditions, namely Ai # Aj and Ail # A,’, 
which correspond to two distinct edges {i, j )  and (i’, j’) not in Sap. The effect of adding these two edges 
to Sap is the same as the effect of increasing t to t + 1, so in particular the augmented graph has vertices 
of degrees one and two only, and no cycles. A component of Sap having r edges corresponded to the 
requirement that r + 1 letters match, which has probability pr+l. If in the augmented graph one of these 
new edges forms a component by itself, the new component corresponds to an event of the form (Ai # A,}, 
having probability (1 - p). On the other hand, if in the augmented graph, one of the new edges joins an old 
component with r edges to form a new component with r + 1 edges, then this new component corresponds 
to an event of the form A1 = A2 = - - = Ar+l # Ar+2, having probability pr+l - pr+2; see the argument 
before (26). The net effect of including this one declumping factor is to replace Pr+l by (Pr+l - pr+2)9 
Le., to multiply by a factor which varies with r = 1,2, . . . ,2t. Fortunately, this factor is no greater than 
the simple declumping factor: 

To see this inequality, one method is to treat r as a continuous variable, and differentiate. Here is a 
probabilistic proof. As in (8), consider the random variable D with D = 6, on the event {AI = a).  
Condition on the event M that A l  = A2 = . - = Ak, for k = 1,2, . . . . We have 

(53) pk+Z/pk = E(D21M) 2 [E(DlM)I2 = (Pk+l/pk)2 

so that Pk+Z/Pk+l 2 Pk+l/Pk * * * 2 P3/P2 2 P2/P1 E P. This Proves (52). 
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Consider cases where i > 0 and i' > 0, so that there are two extra edges for declumping. If (a, /I) 
has overlap of degree two or more, it can be seen that at least one of the new edges joins an old 
component, so by (52) the upper bound on E(X,Xp) in (46) can be improved by multiplying in a factor 
of ( p  - p 3 ) / p .  If instead (a, /I) has overlap of degree one, then we consider cases according to the 
displacement k, as in the discussion leading up to (51). For k = 0 the two new edges together form one 
new component, corresponding to a new factor of P(A1 # Az,  A1 # A3) = C P ( A 1  = a,  A2 # a,  A3 # 
a )  = ea(l  - = 1 - 2 p  + p3. [In the subcase li - i'I = 0 the new component corresponds to the 
event {Ai # Aj ,  Ai # Ai!).] For k = 1 to t one new edge forms a component by itself, and the other new 
edge joins with an old, single edge component, corresponding to new factors of ( 1  - p )  and ( p  - p3) /p ,  
respectively. [In the subcase i' = i + d ,  the first factor corresponds to the event {Ai # Aj} ,  and the second 
factor corresponds to replacing the event {Ai+d = Aj+d} by the event {Ai! # Ai+d = Aj+d).] 

In cases where i = 0 or else i' = 0, so that there is exactly one declumping factor, we simply use (52) 
to save a factor of ( 1  - p ) ,  i.e., we use E(X,Xp) 5 ( 1  - p)E(R,Rp), without trying to classify subcases. 

Putting the above considerations together, we have an upper bound g for b,* for the nonuniform case. 
The first term, which is the dominant contribution, is an upper bound on the contribution from overlap 
of degree one and both i, i' > 0. Compared with (51) there are declumping factors, and the top of the 
binomial coefficient is reduced by 1 since the three designated indices, spaced more than t apart, are 
chosen from ( 1 ,  . . . , m - t }  instead of from {0,1, . . . , m - t } .  The second term is an upper bound on the 
contribution from overlap of degree two or more, and both i, i' > 0. From (44) the number of pairs (a, /I) 
here is at most 5('"i2')(2t + 1 ) 2 ,  with m - 2t in place of m - 2r + 1 because 0 is excluded, as above. For 
the upper bound on E(X,Xp) we combine from (47) with a declumping factor ( p  - p 3 ) / p .  The third 
and final term is the smallest for practical cases of m, t; it bounds the contribution from all pairs (a, /I) 
with i = 0 or i' = 0 (or both), and overlap (of degree one or more). For an upper bound on E(X,Xp) we 
use (5;)' as given by (47), without attaching any declumping factor. The number of such pairs is at most 
2m2(5t + 3),  using the following argument. There are (m - t + l ) ( m  - t + 2 ) / 2  < m2/2  ways to choose 
w ,  x ,  y with w = 0 5 x 5 y 5 m - t .  Given such w ,  x ,  y, there are at most 5t + 3 ways to pick z with 
0 5 z 5 m - t so that z is within distance t of at least one of w ,  x ,  y. Next, in choosing which two of 
w ,  x ,  y, z should serve as the coordinates of a, with the other two variables serving as the coordinates of 
/I, of the 6 = (i) ways, at least two are excluded by the requirement that a and /I each has no self-overlap. 
For i.i.d. letters Ai with a nonuniform distribution, so that r p2/p3  .e 1 ,  we define 

- For the uniform case, our defining of g is 

with br given by (42). We have shown that in both the nonuniform and uniform cases 

b* = b* 
2 -  1 (55) 

Now assume that m ,  t + 00 with A* x 1 .  From the discussion at (50) we see that the second and third 
terms are negligible compared with the first. Recall that A* x 1 implies A* - m2p'(l - p ) / 2  and that E 

is defined by p3 = p3('+')I2, so that 0 < E < 1/3 in the nonuniform case. It follows that 

Notice that if the underlying distribution of letters were uniform, in the above asymptotics we would have 
E = 1/3,  but the geometric series, instead of being summable, would be t, so the conclusion of (56) would 
be that the complicated expression in (54) is x tm-l ,  which is no worse than the order of magnitude of 
by given by (43). 

For i.i.d. letters Ai with a uniform distribution, recall from (55) that we use by as our upper bound 
b;; compared to the long expression in (54) this bound is smaller (but of the same asymptotic order), in 
addition to being more easily derived. 

- 
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To summarize, for the process X* = (Xa)aElt of indicators of leftmost, non-self-overlapping repeats of 
t-tuples in an i.i.d. sequence AlA2 - .  Am, we have calculated the exact value A* of the expected number 
of such repeats, and for the ingredients b f ,  b,* needed for Theorem 1, we have an exact expression for the 
first, and an upper bound % for the second. Thus we have proved the following theorem: 

Theorem 2. Assume that A I ,  A2, . . . are independent and identically distributed as specised by (2). 
Let t I 2, m I 2t. Take A* given by (20), bf given by (42), and given by (54) in the nonuniform 
case and % = bf in the uniform case. For the process X* of indicators of lefmtost non-self-overlapping 
repeats defined by (18), compared to the Poisson process Y* (Y,),Ep having independent coordinates 
and E(Y,)eE(X,), the total variation distance satisfies 

(57) 
t dTV(X*, Y*) 5 b*(m, t )  = bf + % = 2b; - 16(A*)2- 
m 

uniform case 

x m3(p3jt x m-3c nonuniform case. (58) 

For the random variable W* = X,, compared to a Poisson random variable K* with E(K*)  = A*, 

1 - e-A* 

dTv(W*, K * )  5 r*(m, t )  = - A* (bf +e) < b*(m, t )  = (bf +%). (59) 

For the asymptotics, E > 0 is defined in (7), and in the nonuniform case, 36 < 1. The asymptotics 
are valid as m,t  + 00 in any way with A* bounded awayfrom zero and infinity, equivalently, with 
t = [logm2/log(l/p)I + O(1). 

2.5. Repeats; allowing self-overlap 

(X,),€l, the process of indicators of leftmost repeats 
of t-tuples in the i.i.d. sequence A1A2 - - Am. The comparison process is Y = (Ya)aEI where the Ya are 
independent Poisson random variables with EY, = EX,. We will apply the Chen-Stein method, given in 
Theorem 1, directly to the process X ,  so our job is to compute (good upper bounds on) bl and h. Most 
of the summands involved in bl and & have both indices a,f? having no self-overlap, and these have 
been handled in the previous section. The only cases that remain are those in which a or f? or both have 
self-overlap. 

Before we proceed with our direct analysis, we employ an easy strategy for process approximation that 
avoids second moments for self-overlapping repeats. Tables 1, 2, and 3 show that this easy strategy has 
worse error bounds for some realistic values of m and t ;  see also the discussion after (68). Basically, the 
process X for repeats allowing self-overlap can be handled as a corollary to the treatment of the process X* 
excluding self-overlaps, using first moments to bound the additional error. For A - A*, the expected number 
of repeats having self-overlap, the exact value is given by (23), and (28) states that A -A* = O(m-' log m). 
It requires only the triangle inequality to get a conclusion having the same form as Theorem 3. 

We now carry out a process approximation for X 

Corollary 1. Under the same hypotheses as Theorem 3, 

Proof. The basic idea is very simple: dTv(X, X * )  5 A -A* and dTv (Y, Y*) 5 A -A*. There is a slight 
technicality in that the processes being compared, say X and X*,  do not take values in the same space. To 
get around this, we need to redefine X* by taking X* = (X;),,I where X: is defined to be Xa if a E Z* 
and to be zero if a E Z\Z*. With this definition, the two processes X ,  X* have values in the same space, 
so that dTv(X, X * )  is meaningful. Furthermore, they are both constructed on the same probability space, 
so that dTv(X, X * )  5 P(X # X*)  = P(UaE1\p{Xa > 0))  5 Cael\l. EX,  = A - A*. The same argument 
works to Show dTv(Y, Y*) 5 A - A*. 

We return to the approximation of X by the direct application of the Chen-Stein method. Recall that bl 
is a sum over pairs (a, f?) E Z2 with a - f?; see (34) for the discussion of the overlap relation. Each of 
a, f? is classified according to whether or not it has self-overlap, leading to a partition of the terms of bl 
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into four cases. The first case, no self-overlap in either index, results in b;, treated in the previous section. 
The second and third cases, with self-overlap in exactly one of the indices, have the same sum. For the 
fourth case, both indices have self-overlap. Thus 

For an upper bound on the middle sum in (61), note first that given a with self-overlap, the number of 
/? E I*  satisfying a! - /? is at most (3t + l)(m - 2t + 1). [To see this, a has self-overlap, i.e. li - j l  f t ,  
so there are at most 3t + 1 integers x within t of i or j .  There are at most m - 2t + 1 integers y with 
0 f y 5 m - t ,  Ix - yI > c .  We form /? = [min(x, y), max(x, y)]; this accounts for all /? E I*  and 
also for some extraneous /?.I For EXp we use the upper bound p‘. [Although most of the terms have 
EXg = (1 - p ) p l ,  classifying the cases would add complexity]. Thus 

2 EX,EXp I 2 EX,(3t + l)(m - 2t + 1)p‘ = 2(A - A*)(3t + l)(m - 2t + 1)p‘. 
u€l\l*,p€I*,a-p asl\l* 

(62) 

If m, t + 00 with A x 1 then from (29), A - h* = O(m-Y logm) and the upper bound in (62) is 
o [m-’-Y(log m12]. 

For an upper bound on the last sum in (61), note first that given a with self-overlap, the number of 
/? E Z\Z*  satisfying a! - /? is at most (3t + 1)(2t). [The difference with the previous paragraph is that /? 
has self-overlap, so there are at most 2t choices for y with 0 < Ix - yI f t.] For an upper bound on EXp 
we use (27). Thus 

EX,EX~ I EX,(3t + 1)(2t)(6*)‘ = (A - ~ * ) ( 3 t  + 1)(2t)p (l+Y)t/2. (63) 
a,g€r\l*,a-p cr€l\l* 

If m, c + 00 with h x 1 then from (29), A - A* = O(m-Y logm) and the upper bound in (63) is 
o [m-l-’~ (log m)3]. 

Putting these together we have the following upper bound & for bl: 

(64) (1+6)1/2 8t bl f & = b; + 2(A- A*)(3t + l)[(m - 2t + 1)p‘ + tp 3 - -A2. 
m 

Recall, the value of b; is given by (42), the value and bound for A - A* are given by (20) and (28), and the 
asymptotics are valid as m, c + 00 with A x 1. Note that b;, from the case with no self overlap, makes 
the dominant contribution to &, and that & = b; = O[rn-’-Y(l~gm)~]. 

For b2 we use a different grouping of the terms not incorporated in b;. Case one contains all (a, /?) 
such that the union of the four intervals [ i ,  i + t], [ j ,  j + t], [i’, i’ + I ] ,  [ j ’ ,  j ’  + t] is one connected 
interval and the graph Sap of matching edges, defined following (45), has cycles. Case two contains all 
the remaining terms. In case one, even for uniformly distributed letters, X, and Xg are not independent; 
in some cases they are highly positively correlated. The simplest example is a = (0, l), /? = ( 0 , 2 ) ,  for 
which X,Xp = R,Rp = l (A1 = A2 = . . . = Ar+2) with E(X,Xg) = pr+2 >> ( P ‘ ) ~  = EX,EXg. In case 
two, we can show that Sag has no cycles, and it is easy to show that the net contribution from case two 
is negligible. 

First we analyze case two. The number of instances is at most 2m2t(3t + 1). To see this, the first factor 
of two corresponds to designating which of a, /? is required to have self-overlap. If a has self-overlap then 
there are at most mt  choices for a, at most 3t + 1 values for the coordinate of /? that overlaps a, and at 
most m values for the other coordinate of /?. 

Next we argue that in case two, Sap has no cycles. Assume that the union of the four intervals [i, i + t], 
[ j ,  j + t], [i’, i’ + t], [j’, j’ + t] is not one connected interval. Since a - /?, this forces at least one of a, /? 
to have no self-overlap. We have already excluded terms where both a, /? have no self-overlap since these 
are incorporated into b;. Assume that a has self-overlap, so [ i ,  i + t] U [ j ,  j + t] forms one connected 
interval. Thus either [i’, i’ + t] or else [j’, j’ + t] must join this interval; the other must form a separate 
interval. Assume that [i, i + t] U [j, j + t] U [i’, i’ + t] form one connected interval, so that [j, j + t] does 
not intersect this interval. Note that both the graphs S, and Sp have no cycles. Furthermore, as /? E I * ,  
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in Sg each vertex has degree exactly 1; no two edges share a vertex. Any edge in Sg connects a vertex 
from the connected set {i, . . . , i + t }  U { j ,  . . . , j + t }  U [ j ’ ,  . . . , j’ + t} with a vertex in the isolated set 
{j’, . . . , j’ + t}, and from this vertex no further edge is emanating. Thus, no cycle in Sap can contain an 
edge from Sp, and must thus consist solely of edges in S,. But S, itself contains no cycles. The same 
argument applies if we interchange i‘ and j‘, or if we interchange a! and /I. This proves that Sag contains 
no cycles. 

Since in case two, the graph Sag has no cycles, we can apply the bound (47), stating E(X,Xg) 5 
E(R,Rg) 5 Recall that e* is the probability of the most likely letter; see (5). Thus the net contribution 
to b2 from case two satisfies the upper bound 

which is of order m-2Y(logm)2 when m, r += 00 with h x 1. 
We will develop our upper bound on case one in several stages. There is an easily derived upper bound 

on case one, which converges to zero as m, t + 00 with h x 1, as follows. There are at most order of 
mt3 terms in case one. The worst case value for E(X,Xg) is ~ r + 2  I (e*)‘+’ = O(m-’-Y). This yields an 
upper bound O(m-Yt3) on the net contribution from case one. 

Working harder we can derive (68) where the factor t3 is replaced by a constant C O ( ~ * ) .  For the application 
to DNA, 2 1/4 and some values of the constant are c0(1/4) = 28 (exactly), co(o.3) = 46.9154, 
co(O.35) = 76.7355, and c0(1/2) = 324 (exactly). For current SBH chips, 1 2 8 and so c I. 7, and the 
O(t3 )  bound would be much worse. 

For case one, the union of the four intervals [i, i + t ] ,  [j, j + t], [i’, i’ + t], [j’, j’ + t] is one connected 
interval, say of length c + k, corresponding to t + k letters involved in the matches indicated by R, Rg. 
Exclude the parallel, overlapping case, so that the graph Sag has exactly 2t edges, and the sum of the vertex 
degrees is exactly 4t. Let c be the number of connected components of this graph; enumerate these and 
let n(l), n(2), . . . , n(c) be the number of vertices in these components. The upper bound corresponding 
to (47) is now 

(e*)t+k-=.  (66) < (e*)n(l)-l+...+n(c)-l = E(X,Xp) 5 E(R,Rg) = Pn(1)  - * * Pn(c) - 

The next step is to prove that c 5 2k/3; the method involves summing up the degrees of the vertices 
of Sag. As in the argument leading to (47), write d = j - i, e = j’ - i’ and without loss of generality, 
since the parallel case has been excluded, assume d < e. A vertex u has degree at most four, since its only 
possible neighbors are u f d, u f e. We claim that for a component with n vertices, 4n exceeds the sum 
of the degrees, of the vertices in that component, by at least six. [To see this, for n = 2, check that the 
component has exactly one edge; for n = 3 check that the component has at most three edges. For n 2 4 
the leftmost vertex u has degree at most two (with neighbors u + d and u + e), the second to leftmost 
vertex u has degree at most three (with neighbors u - d, u + d ,  u + e), and similarly at the rightmost two 
vertices.] Summing the degrees of all the t + k vertices to get 4t, and grouping by components, we have 

4(t + k) I. 4t + 6c 

and it follows that c 5 2k/3, and since c is an integer, c I L2k/3J. Thus the upper bound (66) simpli- 
fies to 

(67) 
Next we bound the number of terms in case one for each possible k. Since a # /I, the smallest possible 

value for k is k = 2. The number of pairs (a, /I) in case one, involving t + k letters in matches, is at most 
m times 2(k - 1)2 + k(k - 1) = 3k2 - 5k + 2; we exclude the parallel overlapping case, as in the discussion 
following (45). This bound does not use the requirement that there be a cycle, and is derived as follows. 
There are at most m choices for b = min(i, i’). Either a! or else /I comes first in lexicographic order; the 
two cases are equinumerous and we assume a comes first, so that i = b. If a! = (b, b + k) then there are 
at most k(k - 1)/2 choices for /I with b < i’ < j ’  I b + k. If a! # (b, b + k) then (k - 1)2 choices remain: 
we must have j’ = b + k, there are k - 1 choices j = b + 1 , .  . . , b + k - 1, and there are k - 1 choices 
for i’ = b, b + 1, . . . , b + k - 1; excluding the one parallel overlapping case, namely i’ - b = b + k - j. 
Thus there are at most m(2[k(k - 1)/2 + (k - 1)2] = m[k(k - 1) + 2(k - 1)2] pairs (a, f?) such that the 
union of the four intervals [i, i + t], [j, j + t], [i’, i’ + t], [j’, j’ + t] is one connected interval. 

E(X,Xg) I E(R,Rg) 5 (e*)r+k-c 5 (e*)r+rk’3’. 
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Summing over all pairs (a, p )  in case one, the contribution to b2 is at most 

E(X,Xg) 5 m(3k2 - 5k + 2 ) ( w r k / 3 ’  = m(td‘co(h) 
case one k 2 2  

where co(x) = Ckr2(3k2 - 5k + 2)xrk/3’ = 18x(2x2 + 6x + 1)/(1 - x ) ~ .  (The sum was simplified using 
DERIVE.) For m, t + 00 with A x 1, the upper bound in (68) is order of m-y, with y > 0 given by (5). 

Even this bound is unsatisfactory for realistic instances of m, 1 .  This can be seen in the uniform case. 
Here, bf + b; - (16t/m)A2, A - A* - mtp‘ - 2(1- p)- l ( r /m)A,  so the upper bound from Corollary 1 is 
asymptotically ( t / m ) (  16A2 + [4/(1 - p)]A). In contrast, the contribution from case one is bounded above 
by (68), which simplifies to mp‘co(p) - 2[co(p)/(l - p ) ] ( l / m ) A .  For small A, in both our bounds the 
A2/m term is dominated by the A/m term. Comparing coefficients of (l/m)A, we have 4t/(l - p) from 
Corollary 1 versus 2co(p)/(l- p) from (68), which is 2t versus co(p), and c0(1/4) = 28. To handle small 
values like t = 7,9,  11  we need to work harder! 

There is a lot of slack in the upper bound on the number of components, c 5 2k/3, used to get (67). For 
example, for k = 3 the bound says c I 2, but for t 2 3, all 2 . 7  instances of (CY, p )  have c = 1. For k = 4, 
the bound says c 5 2, but of the 2 15 instances (for sufficiently large t that the “has cycles” requirement of 
case one is satisfied) most have c = 1; the exceptions (given in the special case i = 0 or i’ = 0) are (a, /I) 
or (j?, a) = ((0,2), (0,4)), ((0,4), (1,3)), or ((0,4), (2,4)). In these last three examples, it is easy to see 
that the displacements j - i and j ’  = i’ involved in CY and /3 have greatest common divisor d = 2 and 
hence Sup has at least d components. This line of attack, trying to describe the number of components in 
terms of the two displacements and their greatest common divisor, seems like it might yield exact results, 
but there is an additional complication from varying t. Given (a, p),  the number of components of Sag 
is really c c(a, j?; t). It is easy to see that this is nonincreasing as a function of t, using the case one 
requirement that the union of four intervals is one interval. [Explicitly, with b = min(i, i ’) ,  the vertex set 
of Sag is (b + 1, b + 2, . . . , b + k + t}. When t is replaced by t + 1, the graph Sag acquires two new edges, 
namely (i + c + 1, j + t + 1) and (i’ + t + 1, j ’  + t + l) ,  and one new vertex, namely b + k + t + 1, 
but this new vertex is connected to an old vertex, and hence to an old component, by one or both of the 
new edges.] We also note that case one is really case one(t) and the indicator l[(a, p )  E case one] is 
nondecreasing in c .  The complexity that prevents us from proving the conjecture following (75) is that, for 
example when d = 2 so that there are at least two components, namely one for even integers and another 
for odd integers, as t increases to the threshold of (a, j?) being in case one, a cycle may have formed in 
one component but not the other. To summarize what we have proved, for all c 2 2, for all (a, p) ,  with 
k 

(69) 

min(i, i’) = 0), for k 5 30, 
and to find exactly the number c of components. For each instance, the value k - c ends up as the exponent 
of (&) in (67), and taking out the common factor (,$*)‘ gives 

k(@) = max(j, j’) - min(i, i’), 

[k - c(a, p; t)]l[(a, /I) E case one (t)] I [k - c(a, j?; t + l)]l[(a, j?) E case one (t + l)]. 
Thus, we enlisted a computer to generate all instances of case one (with b 

(e*)-‘E(R,Rg) I (.$*Ik-“. (70) 

For t = 7, the overlap requirement of case one forces k < 22, and summing xk+ over all instances of 
(a, j?) with min(i, i’) = 0 yields a polynomial c7 with 

(71) 

In the upper bound (68), c7(x) can be used in place of co(x), and for the uniform case on four letters, we 
have c7(1/4) = (exactly) 6353/2048 

Once the computer has been enlisted, it is very easy to also handle the declumping factors. Given (a, j?), 
say with i’ > i ,  we know that in addition to the matches required for R, Rg = 1 to have Xp = 1 requires 
that Ail # Ajr. If i’ and j’ are in the same component of Sag, then R,Rg = 1 requires Air = Aji, and 
hence 

Eliminating these instances leads to replacing c7(x) by cd7(x) where 

c7(x) = 2(2x + lox2 + 18x3 + 21x4 + 42x5 + 89x6). 

3.102; instead of c0(1/4) = 28. 

E(X,Xg) = 0. (72) 

(73) ~ d 7 ( ~ )  = 2 ( ~  + 3x2 + 3x3 + 7x4 + 3.2 + 1 1 ~ ~ ) .  
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For the uniform case on four letters, we have cd7(1/4) = (exactly) 2119/2048 = 1.0347. 
Furthermore when b = min(i, i') satisfies b > 0 there is a declumping factor of (1 - p) or less, from 

the requirement that Ab does not match another position [if the position corresponds to a vertex of Sap in 
a component of size r, then this declumping factor is exactly pr - pr+l; see the discussion before (26) 
and the inequality (52)]. This reduces our upper bound on the net contribution from case one, only in the 
case t = 7, to [l + (m - t)(l - p)]cd7(&); the term 1 without the factor 1 - p corresponds to the case 
b = 0. 

Corresponding to (73), which gives the counts for the case t = 7, for t = 2,3, . . . , 11 the polynomials 
cdt(x) given below can be used in upper bounds of the form 

In C d t ( X ) ,  the Coefficient of x' is the number of instances of (a,/?) with min(i,i') = 0, such that 
E(X,Xp) > 0 and the upper bound (70) applies with k - c = r. By brute force enumeration, the 
polynomials are 

cd2(x) = 2x 

cd3(x) = 2(x + 3x2) 

cd4(x) = 2(x + 3x2 + 3x3) 

cd5(x) = 2(x + 3x2 + 3x3 + 7x4) 

cd7(x) = 2(x + 3x2 + 3x3 + 7x4 + 3 2  + 11x6) 

cdg(x) = 2(x + 3x2 + 3x3 + 7x4 + 3 2  + 1 1x6 + 5x7) 

Cd(j(x) = 2(x + 3x2 + 3x3 + 7x4 + 3-2) 

c ~ ( x )  = 2 ( ~  + 3x2 + 3x3 + 7x4 + 3x5 + 11x6 + 5x7 + 13x8) 

cdlo(x) = 2 ( ~  + 3x2 + 3x3 + 7x4 + 3x5 + 11x6 + 5x7 + 1 3 ~ ~  + 7x9) 

cdll(x) = 2 ( ~  + 3x2 + 3x3 + 7x4 + 3 2  + 11x6 + 5x7 + 13x8 + 7x9 + 15~"). (75) 

While it appears almost certain from the data that there is a single power series such that for all t 2, 
the polynomial Cdt is just the first t - 1 terms, we have no proof of this conjecture. 

To have good upper bounds available for all t, and without being able to prove the above conjecture, 
we have the following. For given (a, /?), let to = to@, /?) be the smallest c such that (a, /?) E case one(t). 
Using (69), for any t, (e*)-' times the contribution E(X,Xp) to case one indexed by (a, /?) can be bounded 
above by the [k - c(t0)]th power of &. Note that in the argument leading to (72), if i', j' are in the same 
component using t = to then the same holds for all t > to. The following polynomial c ~ S ~ O ( X )  has, as the 
coefficient of x', the number of (a, /?) such that min(i, i') = 0 and k - c(a, /?; to) = r and E(X,Xp) > 0 
with t = to in the declumping argument (72) and k(a, /?) I 30. 

(76) C k g o ( X )  = 2(X + 3X2 + 3x3 + 7x4 + 3x5 + 11x6 + 5x7 + 13x8 + 7x9 + 1 5 ~ "  
11 12 + 5x 

+ 16x2' + 2 6 ~ ~ ~  + 8x23 + 48x" + 14xZ + 2 4 ~ ~ ~  + 16x" + 36xZ + 8 ~ ~ ~ ) .  

+ 27x + 7x13 + 1 5 ~ ' ~  + 1 3 ~ ' ~  + 2 8 ~ ' ~  + 6x17 + 3 2 ~ ' ~  + 8x19 + 30x" 

For k > 30, we simply bound the contributions as in (68). This gives 

ck>3O(x) C ( 3 k 2  - 5k + 2 ) ~ ~ ~ ' ~ '  = 2x10(1276x3 - 504x2 - 3513x + 2822)/(1 - x ) ~ .  
b 3 0  

(The sum was simplified using DERIVE.) Combining these, we have a power series cd,(x) given by 

C&(x) = ckS30(x )  + ck>3O(x) (77) 

such that there are upper bounds analogous to (74), but valid for all r p 2: 
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This bound is not much worse than the bound using (74), for example with t = 7, cd,(1/4) % 1.0445, 
versus cd7 ( 1  / 4 )  % 1.0347. 

Combining our upper bound b; on bLwith the estimates for case one and case two, we obtain the 
following expression & satisfying b2 p b2. 

(79) 

where cd&,) is given by (78) and b; is given by (54) or (55). For asymptotics in the uniform case as 
m, t + 00 with A. x 1, the contribution from (78) is x l / m ,  and hence is dominated by the - t / m  terms, 
by and b;. For asymptotics in the nonuniform case when m, t + 00 with A. x 1, the dominant contribution 
is the term from (78), which is x m&)‘ x m-y. To see that this is the dominant term, recall from (4) 
that y p 3 ~ ,  with equality only in the uniform case, so using (56) we conclude that 62 = O(m-Y) in the 
nonuniform case. 

- 
b2 = b; + 11 + ( 1  - p)(m - t)I(t*)‘cd,(t*) + 2m2t(3t + l)(t*)2‘ 

Summarizing the above, we have derived the following Poisson process approximation for X .  

Theorem 3. Assume that A I ,  Az, . . . are independent and identically distributed as specged by (2). 
Let t 2 2, m 2 2t. Take A. given by (23), & given by (64), and & given by (79). For the process X 
of indicators of lefrmost repeats, allowing self-overlap, defined by (1 7), compared to the Poisson process 
Y = (Y,),E~ having independent coordinates and E(Y,) = E(X,), the total variation distance satisfies 

dTv(X, Y) 5 b(m, t )  = & + & - 16(A.*)21- uniform case (80) 

x rn(t*)‘ x m-y nonuniform case. (81)  

m 

For the random variable W = CaCl X,, compared to a Poisson random variable K with E(K) = A, 
1 1-e -  - - 

dTv(W, K) 5 r(m, t )  = - (bl + b2) < b(m, t )  = (&+ 6). (82) 

The asymptotics are valid as m, t  + 00 in any way with A.* bounded awayfrom zero and infinity, 

A. 

equivalently, with t = [log m2/ log( l / p ) ]  + 0 (1) .  For the nonuniform case, 0 < y < 1 is defned in (5). 

In Tables 1,2, and 3 we illustrate the above approximation theorems with the alphabet S = ( A ,  C, G, T } .  
The first six columns give the values of m and t, the expected number of repeats with and without 
allowing self-overlap, and (our upper bounds on) the Chen-Stein bounds on the total variation distance. 
In the last column, we give the bound that could be obtained using the “easy” strategy, Corollary 1, for 

TABLE 1. POISSON APPROXIMATION IN THE UNIFORM CASE 

50 5 .6103 .7690 S332 1.1676 3506 
200 7 .7989 3599 .3632 .4701 .4852 
800 9 3766 3969 .1438 .1579 .1844 

1600 11  .2228 .2259 .0056 .0062 .0118 
6400 13 .2270 .2280 BO17 .0018 .0035 

169 7 3 5 8  .6068 .2057 .2808 .3078 
659 9 3392 .6059 .0786 .0883 .1119 

2615 11  .6015 .6066 .0253 .0266 .0355 
10430 13 .6049 .6064 .0075 .0077 .0159 

353 7 2.6432 2.7532 2.3088 2.6621 2.5288 
1394 9 2.7117 2.7473 .7952 3387 3663 
5553 11  2.7359 2.7468 .2474 .2532 .2692 

22182 13 2.7432 2.7464 .0732 .0742 .0796 
5.675 x lo6 21 2.74597 2.74599 4.570 x 4.598 x 4.984 x 
5.81 x lo9 31 2.74488 2.74488 6.535 x 6.563 x 6.535 x 
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TABLE 2. EXPRESSIONS FOR THE GENERAL CASE, EVALUATED AT THE UNIFORM CASE 

m t I* I b*(m, t )  b(m, t )  “Easy” strategy 

169 7 3 5 8  .6068 .2483 .3346 .3504 
659 9 3 9 2  6059 .0830 .0925 .1163 

5553 11 2.7359 2.7468 .2492 .2529 .2710 
22182 13 2.7432 2.7464 .0733 .0738 .0798 

TABLE 3. POISSON APPROXIMATION FOR 
P A  = .3544, pc = .1430, PG = .145 1, PT = .3575, p = .2949 

m t I* I b*(m, t )  b(m, t )  “Easy” strategy 

50 
50 
50 

100 
100 
100 

97 
321 

1081 
3663 

7804 
26470 
89783 

6.02 x 1023 

5 
6 
7 
7 
8 
9 
7 
9 

11 
13 

13 
15 
17 
88 

1.316 
.35 11 
.0931 
S167 
.1454 
.0409 

.4816 

.5495 
3 1 3  
21956 

2.7234 
2.7366 
2.7424 
2.7528 

1.741 
SO82 
.1504 
6436 
.1912 
.0573 

. a 3  

.6069 

.6068 

.6066 

2.7468 
2.7466 
2.7466 
2.7528 

18.15 34.88 19.007 
2.668 5.801 2.982 

2.288 4.386 2.542 
.3875 .9668 SO20 

.3319 .7067 .4235 

.0480 .1179 .Of309 

2.1220 4.1022 2.3674 
.7680 1.3345 .8828 
,2454 .4042 .2964 
.0744 .1190 .0963 
SO16 .6792 S485 
.1613 .2092 .1811 
.0526 .0659 .0610 

6.766 x lo-’* 5.177 x 6.698 x 

the case allowing self-overlap. Tables 1 and 2 are for the uniform distribution, with p = .$,, = 1/4. To 
illustrate the error associated with the asymptotic relation y - m2 p (1 - p)/2, in which increasing t 
by one is exactly compensated by doubling m, Table 1 includes a progression of five pairs, (m, r)  = 
(50,5), (200,7), . . . , (6400, 13). For the next group of four entries, m is chosen so that A is close to 
0.6064; and for the last group in Table 1, m is chosen so that A is close to 2.7465. The values are truncated 
after their fourth digit after 0. When bounds such as b(m, t) are larger than 1, we report that large value 
because it reflects the behavior of second moments, but of course, as a bound on total variation distances 
for probabilities, they can always be truncated at 1. 

Table 2 gives a few values that indicate how the bounds derived for the general case work when applied 
to the uniform case. The pairs (m, t )  all come from Table 1, so that values can be compared. In particular, 
it serves as a check that the values of A, using expression (23), agree with the values of A in Table 1, using 
expression (35). 

Table 3 shows that the error bounds for our Poisson approximations, with similar m and A, can be much 
worse in a nonuniform case. We used the distribution PA = 0.3544, pc = 0.1430, p~ = 0.1451, p~ = 
0.3575; this distribution was found in the liverwort Murchantiu polymorpha. For this distribution, p = 
0.294915, t* = 0.3575, and c& = 2.483. To illustrate the threshold of informative Poisson approximation, 
the first group of entries has a fixed m = 50 and t = 5,6,7; then m = 100 and r = 7,8,9.  The second 
group has, for each of t = 7,9,  11 ,  13, a value m such that A is close to 0.6064. In the last group, for 
values t = 13,15,17 and t = 6.02 x we used a value of m such that A is close to 2.7465. 

2.6. Distribution of longest repeats 

Consider the length of the longest repeat in a sequence. There are actually two problems, according to 
whether or not self-overlap is allowed. For example, in the sequence TATATATA, the length is 6 if self- 
overlap is allowed, and 4 if self-overlap is excluded. From the Poisson process approximation of where all 
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leftmost repeats of matching t-tuples occur, an immediate corollary is a description of the length of the 
longest repeat, allowing self-overlap. For the situation excluding self-overlap, a little extra work is needed! 

The length L,  of the longest repeat in A 1 A2 - - A,, allowing self-overlap, is naturally defined by 

L m  =max(t : t =Oorfor  some i ,  j , O (  i < j 5 m  - t  and (83) 

Ai+lAi+2 * * * Ai+t = Aj+lAj+2 * Aj+t ] .  

Similarly, the length Li of the longest repeat not allowing self-overlap is defined as above but with the 
added restriction that i + t 5 j SO that the matching substrings A i + l A i + ~  - Ai+, and A j + l A j + ~  * * Aj+t 
share no letters. Thus the natural definition is 

L; = max(t : t = O  or for some i ,  j , O  5 i < i + t  5 j 5 m --I and (84) 

Ai+lAi+2 * . . Ai+t = Aj+lAj+2 - * Aj+t}.  

Now, in terms of the approximately Poisson random variables W W ( m ,  t )  and W* = W * ( m ,  t )  from 
(13) and (16), which count all leftmost repeats of t-tuples, with and without allowing self-overlap, for any 
t 2 2, m I 2t we have 

{L, < t }  = {W = 0)  but {L; < t} # {W* = 0). (85) 

The equality for the first part is obvious. If there were equality in the second part, then for example, with 
the word TATATATA, with m = 8, t = 4 we have W *  = 0 while with m = 8, t = 3 we have W* = 1 ,  
leading to Li = 3 instead of the correct Li  = 4. The failure of equality, for the case of no self-overlap, is 
due to our choice in (14) to define I* with the condition i + t < j, instead of the i + c 5 j that is natural 
in (84). [That choice, although clumsy for the purpose of approximating the distribution of L i ,  simplifies 
the computation of bf because it creates symmetry among the conditions involved in self-overlap and the 
conditions involved in the definition (34) of the overlap relation a! - p, which have to allow one extra 
position for the mismatch needed for declumping.] 

Like A, the error bounds for the Chen-Stein method are functions of m and t, for example & -= 
b l (m,  t ) .  This dependence is suppressed from the notation, except in writing out the error bound for the 
approximation of P(L,  = t), which involves both the cases (m, t) and (m, t + 1). 

- 

Theorem 4. Under the conditions of Theorem 3, for  t 2 2 and m 2 2t, 

Zfalso m 2 2(t + 1) then 

Proof. The first result follows immediately from (85) combined with the Chen-Stein method in The- 
orem 1. The second result follows from the first using P(L,  = t )  = P(Lm < t + 1) - P(Lm c t )  together 
with the triangle inequality. m 

The following corollary requires only the approximation for A given by (30), together with (80) or (81), 
which show that the error bounds tend to zero. It says that there is a family of limit distributions involving 
integerization of extreme value distributions. Define centering constants c(m) by 

Corollary 2. Under the conditions of the previous theorem, for  any T < 00, as m + 00, uniformly 
in x E [ -T ,  T ]  such that x + c(m) E Z, 
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For non-self-overlapping repeats, there is a correction term needed to account for a consecutive repeats 
of a t-tuple; these were not included in W*. Let 

O s i j m - f  

be the number of places where there is a consecutive repeat, so that P (V > 0) p EV < mp'. We have 

{L;  < t }  = {W* = 0) f l  (V = 0), hence P(W* = 0) - mp' < P(L: < t )  5 P(W* = 0). (90) 

Apart from this correction term, the following results for non-self-overlapping repeats are a direct 
translation of the previous results for repeats allowing self-overlap. 

Theorem 5. Under the conditions of Theorem 2, for t 2 2 and m 2 2t, with r*(m, t) 
[(I - e-A*/~*l(b; + b;) 

If also m 2 2(t + 1) then 

IP(L; < t )  = e--)i*(mJ) I p mp' + r*(m, t ) .  (91) 

~p(,r; = - (e-A*(m.t+l) - e--)i*(m.t) )I 5 r*(m, r + 1) + mpt + r*(m, t ) .  (92) 

Proof. These results follow immediately from (90) combined with the Chen-Stein method in Theo- 
rem 1. 

The following corollary is proved using the approximation (22) for I*,  together with (57) or (58), which 
show that the error bounds tend to zero. It says that L, and Lg have the same limits, i.e., the effects of 
self-overlap show up in approximations and error bounds, but not in limits. 

Corollary 3. Under the conditions of the previous theorem, for any T < 00, as m + 00, uniformly 
in x E [-T, TI such that x + c(m) E Z, 

P[L: < x + c(m)l+ exp(-px), P[L: = x + exp(-pX+') - exp(-px). (93) 

In attempting numerical calculations of the point probabilities using (87) or (92), it becomes apparent 
that in some cases these bounds are crude and can be beat by simple alternatives. For example, the best 
lower bound on P(L, = t )  for small t is zero, and the best upper bound comes from P(L, = t) 5 P(Lm < 
t + i) 5 exp[-I(m, t + i)] + r(m, t + i) for some choice of i > 0. In contrast, for large t, it appears that 
the upper bound from (87) is always more effective than the alternate bound P(Lm = t) 5 P(Lm L t )  p 
A(m, t). This last upper bound is elementary, not requiring the hard work needed for Poisson approximation: 
the event { L m  2 t )  is equal to the event {W(m, t) 2 l}, with P(W 2 1) p EW; the argument is really just 
that the probability of a union is at most the sum of the probabilities. If our goal is to bound P(Lm z t), 
the bound analogous to (86) is P(Lm L t) p 1 - exp[-I(m, t)] + r(m,  t), and a priori it is possible that 
this bound is better than the elementary upper bound, I(m, t ) .  Intuitively, the smallest Chen-Stein bounds 

TABLE 4. UPPER BOUNDS ON P ( L m  2 t ) :  CHEN-STEW VERSUS FQRST ORDER 

m t 1 - e-A + r(m, t )  A. m t 1 - e-* + r(m, t )  A. 
~~ 

200 7 
200 8 
200 9 
200 10 
200 11 
200 12 
200 13 
200 14 
200 15 

3921 
.2226 
.0539 
.0132 
.0032 

8.06 x 
1.99 10-4 
4.93 x 10-5 
1.21 x 10-5 

3599 
.2127 
.0526 
.0132 
.0032 

7.97 10-4 
1.97 x 10-4 
4.87 x 10-5 
1.20 10-5 

200000 17 
200000 18 
200000 19 
200000 20 
200000 21 
200000 22 
200000 23 
200000 24 

3 3 0  A729 
.1961 .2182 
.05310 .05456 
.01355 .01364 
.003404 .003409 

8.521 x 8.525 x 
2.1313 x 2.1311 x 
5.3277 x 5.32783 x 
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TABLE 5. APPROXIMATION AND GUARANTEEs FOR P(L, = t )  

5 .0309 E [O; 0.73851 
6 .3922 E [O; 0.73851 
7 .3851 f .3463 
8 .1403 f .0337 
9 .0383 f .0029 

11 .0024 f 5.50 x 
10 .0097 f 3.36 10-4 

12 5.99 x 10-4 f 1.17 x 10-5 

t P(Lm = t )  

6 .0287 E [O; 0.59731 
7 .3848 E [O; 0.59731 
8 .3892 f .2017 
9 .1440 f .0195 

10 .0396 f .0016 

12 BO25 f 2.89 x 
13 6.31 x lop4 f 6.08 x 

11 .oioi f 1.83 10-4 

t p(L800 = t )  

7 .0274 E [O; 0.51211 
8 .3804 E [O; 0.51211 
9 .3917 f .1144 

10 .1461 f .0109 

12 .0103 f 9.80 x 
13 .0025 f 1.50 x 
14 6.48 x f 3.10 x 

11 .om f 9.38 x 10-4 

7 
8 
9 

10 
11 
12 
13 
14 

BO35 E [O; 0.41051 
.2412 E [O; 0.41051 
.4509 f .1841 
.2122 f .0199 
.0622 f .0016 
.0161 f 1.59 x 

.0010 f 4.06 x 

.wo f 2.13 x 10-5 

16 
17 
18 
19 
20 
21 
22 
23 
24 

3.31 x lo-'' E [O; 0.00581 
BO42 E [0  0.00581 
.2513 f .0019 

.2072 f 3.56 x lop5 

.0606 f 2.78 x 

.0157 f 2.28 x 
BO39 f 2.52 x 

.4554 f 3.52 10-4 

9.98 10-4 f 4.21 10-9 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

6.88 x 
9.10 x 

E [O; 9.19 x 
E [O; 9.19 x 

.0054 E 1.15 10-5 

.4500 f 4.94 x 10-7 

.2667 f 2.81 x 

.1995 f 4.81 x lop8 

.0579 f 3.62 x 

.0150 f 2.79 x lo-'' 

.0037 f 1.79 x lo-" 
f 4.26 x lo-'* 9.52 x 

occur for the uniform case, so we compared the two bounds numerically for this case. As Table 4 shows, 
the elementary bound sometimes won. One case can be analyzed: if m, t -+ 00 with A =: 1, then since 
{ 1 - exp[A(m, t)]) - 1 = A2/2 - A3/6 + a . .  is bounded away from zero, while r(m, t)  -+ 0, it follows that 
for sufficiently large m and t ,  the Chen-Stein bound beats the elementary bound. 

In Table 5, we show our approximations, with error bounds, for the distribution of L,, for m = 
200,400,600 and for m = l W ,  lo6, and lo9. It can be seen that for moderate m, like m = 200, we have 
only some limited success in pinning down the distribution of L,, while for large m our approximations 
become very precise. Tbo of the qualitative implications of Corollary 2 are easily seen in Table 5, namely 
that after centering the distributions of the L, are tight, without any rescaling, and that the limit distribution 
varies with the value of the fractional part of logl,, m2. Both Tables 4 and 5 are for the uniform case on 
an alphabet of four letters. 

Table 5 shows the point estimates for P(L, = t), using the upper and lower bounds explained above. 
The point probability estimates are listed together with the intervals for which we guarantee that the point 
probability lies in. If the interval is symmetric around the point estimate, we use the f convention. For 
example, the entry 0.0309 E [0,0.7385] for m = 200, t = 5 means that 0.0309 is the approximation 
exp[-A(200,5)] - exp[A(200,6)] for P(Lm = 5); the best lower bound is 0 and the best upper bound 
is 0.7385. The entry 0.3851 f 0.3463 for m = 200, t = 7 means that 0.3851 is the approximation for 
P(L2w = 7), and we can guarantee this probability to lie in the interval rO.3851-0.3463,0.3851+0.3463]. 

3. DETERMINISTIC ASPECTS OF UNIQUE RECOVERABILITY 

Recall that the 1-spectrum of a word A = AlA2 . A, is the multiset whose elements are the 1-tuples 
Ai+lAi+2 Ai+' E S', for i = 0 to m - 1. Note that repetitions are allowed, so that this multiset always 
has cardinality m - 1 + 1, and that the order of these 1-tuples is not specified by the spectrum. Two 
different words can have the same 1-spectrum; examples are given below. We say that a word is (uniquely) 
I-recoverable if no other word has the same 1-spectrum. Tbo basic problems are to give a simple criterion 
for unique Z-recoverability, and to estimate the probability that a randomly chosen word of length m is 
I-recoverable. 
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The characterization for 1-recoverability which we use was given by Ukkonen and Pevzner. Ukkonen 
(1992) described three simple classes of transformations of words of length m that preserve the 1-spectrum, 
and conjectured that any two words having the same 1-spectrum would be connected by a series of such 
transformations. Pevzner (1995) proved that conjecture. [A different characterization of 1-recoverability 
was given in Pevzner (1989). The Ukkonen-Pevzner characterization of 1-recoverability is in terms of 
repeats in the (ordered) list of overlapping t-tuples, with t = 1 - 1, that make up the word A = A1 . Am. 
We denote this list as BO, B 1 ,  B2 , .  . . , Bm.+ where Bi = Ai+l . . . Ai+t E S'. [A natural alternate choice of 
notation, with Bi Ai+'-l is not as convenient.] Note that the list BO, B1, B2, . . . , B,,,+ and 
the t-spectrum have exactly the same elements; the difference is that the list is ordered and the spectrum 
is not. 

AiAi+l -  

We give three examples, which will correspond to the three classes of transformations. 

Example 1. With m = 5, l  = 4, t = 3, the word TATAT has 4-spectrum whose two elements are 
ATAT and TATA (since order is irrelevant, we present this multiset in alphabetical order) and its list of 
overlapping 3-tuples is TAT,ATA,TAT. Observe that this list has a repeat, the same first and last element. 
A different word, ATATA, has the same 4-spectrum, but its list of overlapping 3-tuples is ATA,TAT,ATA. 
[Not only are the two lists different, but so are the underlying multisets, i.e., the words TATAT and ATATA 
are distinguishable by their 3-spectra but not by their 4-spectra!] 

Example 2. With m = 10,l = 4, t = 3, the word ACACA TACAG has 4-spectrum {ACAC, ACAG, 
ACAT, ATAC, CACA, CATA, TACA), and its list of overlapping 3-tuples is ACA,CAC,ACA,CAT,ATA, 
TAC,ACA,CAG. Observe that this list has an element, ACA, that occurs three times. A different word, 
ACATA CACAG, has the same 4-spectrum, but its list of overlapping 3-tuples is ACA,CAT,ATA,TAC, 
ACA,CAC,ACA,CAG. [The two lists are different only in that they are in different order, i.e., our two 
words have the same 3-spectrum as well as the same 4-spectrum.] 

Example 3. With m = 11,l = 5, t = 4, the word ACACA CTCAC A has 5 spectrum {ACACA, 
ACACT, ACTCA, CACAC, CACTC, CTCAC, TCACA), and its list of overlapping 4-tuples is 
ACAC,CACA,ACAC,CACT,ACTC,CTCA,TCAC,CACA. Observe that this list has two elements that occur 
twice; a pair of ACAC and a pair of CACA, and furthermore these two repeats are interleaved. A different 
word, ACACT CACAC A, has the same 5-spectrum. [The two words also have the same 4-spectrum.] 

As above, we use the notation BO, B1, . . . , Bm-' for the list of overlapping t-tuples of an m-word, with 
t = 1 - 1. We consider the commas as optional, and grouping would be optional too. Thus if a ,  b are 
t-tuples and a, #? are lists of t-tuples, then as lists aabp = a ,  a, b, #? = [a(a)b]#?. [One way to formalize 
this would be to speak of strings (of t-tuples) and concatenations.] 

Theorem 6 (Pevmer and Ukkonen). Two words A and A' of length m have the same 1-spectrum if 
and only if they can be transformed into each other by a series of the following operations. 

1. Rotation. A' is a rotation of A if BO = Bm+ and for some 0 < i < m - t, as lists, B& B i ,  . . . , BL-' = 
Bi, Bi+l, . . . , B,,,-+l, B,,,-', B1, B2, . . . , Bi-i, Bi. Another way to express this is: the list of Overlapping 
t-tuples for one word has the form a a b #? a, and the other word has the list b #? a a b, where a ,  b E S' 
and a, #? E (St)*, i.e., a and #? are lists, possibly empty, of t-tuples. 

A' is a transposition of A [using a three way repeat at (i, j, k)] 
iJ; for some 0 5 i -= j < k 5 m'-t and a E S', we have a = Bi = Bj = Bk, and 

2. Transposition with a three way repeat. 

BA, B i , .  . . , BL-' = BO, . . . , Bi-1, a ,  Bj+lBj+2,. . . , & - I r  a ,  Bi+ l , .  . . , Bj-1, a ,  & + I , .  . - I Brn-t. 

The altemte expression of this is: the list of overlapping t -tuples for one word has the form a a #? a y a 6, 
and the other word has list a a y a #? a 6, where a E S' and a, #?, y ,  6 E (S t )* .  

A' is a transposition of A (using two interleaved 
pairs of repeats) i j  for some 0 5 i < i' j < j' 5 m - t and a ,  b E S', we have a = Bi = Bj and 
b = Bit = By, and 

3. Transpositions with two interleaved pairs of repeats. 

B i ,  . . . , B&+ = B O , .  . . , Bi-1, a ,  Bj+1,. . . , Bjt-1, b, Bir+l,. . . , 
Bj-1, a ,  Bi+ l , .  . . , By-1, b, Bjt+l , .  . . , Bm+. 
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The alternate expression of this is: the list of overlapping t-tuples for one word has the form a a f l  b y 
a S b E ,  and the other word has list a a S b y a B b E ,  where a,  b E S‘ and a, f l ,  y ,  6, E E (St)*. 

Remark. The transformations described above include “trivial” transformations, Le., cases with A‘ = 
A. Example 1 fits case 1 of Theorem 6 with a = TAT, b = ATA, a = /? = 0, the empty list. Example 2 
fits case 2 with a = 0, a = ACA, f l  = CAC, y = CAT,ATA,TAC, and S = CAG. Example 3 fits case 3 
with a = 0, a = ACAC, fl  = 0, b = CACA, y = 0, S = CACT,ACTC,CTCA,TCAC, E = 0. 

The basis of the proof of the theorem above is the “de Bruijn graph” of the word A, whose vertex set 
is {BO, B1 ,  . . . , Bm-t} (as a set, so that repeats and order are irrelevant,) and with m - t directed edges 
(Bi-l,  Bi) for i = 1 to m - t ,  so that edges are in one to one correspondence to the spectrum. Note that 
multiple edges can occur. The (ordered) list BO, . . . , B,,,-‘ is a Eulerian path, Le., it traverses each edge 
the number of times prescribed by its multiplicity, and each Eulerian path corresponds to a different word 
of length m having the same spectrum, so 1-recoverability is the same as having a de Bruihn graph with a 
unique Eulerian path. 
Our statement of Theorem 6 is precisely what Ukkonen conjectured and Pevzner proved, but there is 

a slight imprecision in their description of the transformations. For instance, (with q in the role of our 1 )  
Ukkonen wrote “(rotation) If y can be written as y = z1 y1 z2 y2 z1 for some (q - 1)-grams z1 and z2  and 
for some strings y1  and y 2 .  . . .” From this statement we initially concluded that self-overlapping repeats 
need not be considered in analyzing recoverability. However, as our three examples above show, there 
need not be any strings between the repeated (q - 1)-grams (our t-tuples), because these repeats may have 
self-overlap. 

It is fairly easy to see from Theorem 6 that unique recoverability can be determined just from the 
indicators Ri,j, (i, j) E Z of repeats of t-tuples [see definition (lo)]; the part that requires thought is 
distinguishing trivial from nontrivial transformations. When it comes to the probabilistic analysis of re- 
coverability, counting repeats is much more complicated than counting “leftmost” repeats. Thus our next 
step is to restate the result of Pevzner and Ukkonen in terms of lefhnost repeats; this requires considerable 
work. 

Recall that we say arepeat occurs at (i ,  j) with 0 5 i e j 5 m-t if for some a E S‘, Bi = a = Bj. It is 
not leftmost if the preceding letters match, so that Bi-1 = Bj-l and there is another repeat at (i  - 1, j - 1). 
For example, with m = 17, t = 3, the word AACGT AGACG TATCG TG have five repeats, at (2,8), 
(3,9), (3, 14), (4, lo), and (9, 14); there are three leftmost repeats, at (2,8), (3, 14), and (9, 14). 

Let A be a randomly chosen word from S”. Recall from (12) in Section 2 that for 0 5 i e j 5 m, 
Xi , j  is the indicator that a leftmost repeat occurs at (i, j), namely X ~ J  = 1(Bi = Bj)l ( i  = 0 or else 
Bi-1 # Bj-l), and X is the process specifying where all leftmost repeats occur. 

Lemma 1. Whether or not a word A E S” is 1-recoverable is measurable through the process X of 
indicators of lefhnost repeats of t-tuples, with t = 1 - 1. Moreover, in t e r n  of the transfomtions in 
Theorem 6: 

1. A nontrivial rotation is possible if and only i f  

2. A nontrivial transposition using three ways repeats is possible if and only if there are 0 5 i < j < k 5 
la. 

m - t such that either 
2a. X j , k  = 1 and (X i , j  = 1 or xi,k = 1 or both), or 
2b. X j , k  = 0 and Xi , j  = 1 and xi,& = 1 and, with d the greatest common divisor of j - i and k - j ,  

= 1, and there is an i with 0 < i < m - t such that X0,i = 0. 

it is NOT the case that 

Xi,k-d = 190 = xk-d.k  = Xk-d-1,k-1 = ” = Xi+2,i+d+2 = Xi+l,i+d+l. (94) 

3. A nontrivial transposition using two interleaved pairs of repeats is possible i f  
3a. Xi , j  = 1 and X ~ I , ~ I  = 1 with 0 5 i e i‘ < j < j’ 5 m - t. 
Conversely, i f  there is a nontrivial transposition using two interleaved pairs of repeats, then 3a or there 
is a nontrivial transposition using a three way repeat. 

The overall measurability may be described as 

l(A is 1-recoverable) = h(X) l(none of la ,  k, 2b, 3a). (95) 
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Remark. This lemma shows that having a nontrivial rotation is measurable with respect to X, and that 
having a nontrivial transposition using a three way repeat is measurable with respect to X, but it does not 
prove the analogous property for nontrivial transpositions using two way repeats. In fact, this last property 
is not X-measurable. As an example, for m = 15, t = 2 consider the words GGCAT TGGCA TAGGT 
and GGAAT CGGCT TAGGT. Both have x0.6 = X0.12 = x6.12 = 1 and all other Xi , j  are zero. The 
first word has a nontrivial transposition with interleaved repeats, a = AT at (i, j )  = (3,9), and b = GG 
at (i', j') = (6, 12). The second word does not have two interleaved pairs of repeats. Note the process 
( R , ) , E ~  has ones at (0,6), (0,12), (1,7), (2,8), (3,9), (6, 12), for the first word, and only at (0,6), 
(0,12), (6,12) for the second word; this shows that the process (R,) carries strictly more information 
than the process X = ( X , ) .  

Proof. For item 1, the condition X O , ~ - ~  = 1 implies that a BO = Bm-r, and the condition X O , ~  = 0 
implies that b Bi satisfies a # b, so that the rotation is nontrivial. Conversely, if there is a rotation, then 
Bo = Bm-r, and nontriviality rules out the case Bo = BI = B2 = * * = Bm-1. 

For item 2, the only easy implication is that given part 2% it follows that Bi = Bj = Bk and Aj-1 # Ak-1, 

hence the transposition using the three way repeat at ( i ,  j, k) is nontrivial. 
To see where the dichotomy (a) versus (b) in part 2 arises, we must discuss lefhnost three way repeats. 

We say that (i, j ,  k) with 0 5 i < j < k 5 m - t is a repeat if Bi = Bj = Bk, and that such a repeat 
is leftmost if i = 0 or [i 2 1 and (i - 1, j - 1, k - 1) is not a repeat]. Observe that if ( i ,  j, k) and 
(i - 1, j - 1, k - 1) are both repeats, then the transposition at one triplet is nontrivial if and only if the 
transposition at the other triplet is nontrivial. Thus, there is a nontrivial transposition using a three way 
repeat if and only if there is a nontrivial transposition using a leftmost three way repeat. Next, observe 
that for a leftmost repeat (i, j, k), it is not possible that all three of the indicators X i , j ,  Xi,&, and x j , k  are 
zero. Finally, for a repeat (i, j, k )  it is never possible that exactly two of the three indicators are zero. 
TO see this, there are three cases; one of which is Xi , j  = X i , k  = O , X j , k  = 1. In that case Bi = Bj 

and Xi , j  = 0 implies i 2 1 and Ai = Aj;  similarly Ai = Ak, and hence Aj = Ak, which contradicts 
(Bj = Bk and j 2 1 and X j , k  = 1). The other two cases are similar. The net result of this paragraph is 
that we need only consider leftmost repeats, and for these, at most one of the three indicators X i , j ,  Xi,& 

For repeats ( i ,  j, k) we need a necessary and sufficient condition for nontriviality of the transposition that 
can be expressed in terms of indicators X .  This paragraph will derive such a condition, in terms periodicity, 
namely that with d = gcd(j - i ,  k - j ) ,  the list w E Bi, B i+ l , .  . . , Bk, as a word of length k - i + 1 over 
the alphabet S', has the form w = pck-')Ida, where a E S' and p E (S')d with a being the first element of 
the d-tuple p. To establish our necessary and sufficient condition, observe first that in the alternate notation 
of Theorem 6, we want a criterion for when aa pa y a 6 = a a y a p a 6, which is obviously equivalent 
to a /3 a y = a y a p. Here, the list ab has length j - i > 0, and the list a y  has length k - j > 0. Thus, 
we may relabel our objective: (a/? becomes u, a y  becomes t, j - i becomes m, k - j becomes n) we 
need to prove, for strings u, t of lengths m, n 2 1 with d = gcd(m, n), that the concatenations ut = tu 
if and only if there is a string p of length d such thpt u = pmId and t = pRId. One implication is obvious; 
for the other we start with the assumption ut = tu. In case m = n then easily u = t, so we are done, 
with d = m, p = u. Otherwise m # n, and without loss of generality we may assume m < n. It follows 
that t has the form t = ut', where t' has length n' = n - m > 0. Stripping off the initial u from both 
sides of ut = tu, i.e., from  ut') = (ot')u we get ut' = t'u. Since gcd(n', m) = gcd(m, n) = d and 
n' + m < m + n, we are done, appealing to induction on m + n; in detail there is a string p of length 
d with u = pmfd, t' = #Id, hence t = ut' = p"Id. [The foundation of this induction are the cases 
with m = n.] 

Next we argue that in condition (b), given the first line, the remaining conditions on the indicators 
X are precisely that the transposition be nontrivial. Thus, we assume Xj,k = 0 and Xi , j  = x i , k  = 1, 
and show that the transposition is trivial if and only if it IS the case that (94), i.e., Xi,k-d = 1,0 = 
Xk-d,& = X k - d - l , k - l  = . = Xi+l,i+d+l. From the preceding paragraph, a transposition is trivial if and 
only if it satisfies the periodic condition Bi, Bi+l, . . . , Bk = where a = Bi = Bj = B k  and 
d = gcd(j - i ,  k - j). Using this condition, it is obvious that if the transposition is trivial, then the condition 
(94) is satisfied. Next we assume that (94) is satisfied, and show why the periodic condition is satisfied. 

and X j , k  is Zero. 

h t  p Bk-d,  Bk-d+l,. . . , Bk-1. The periodic Condition iS that p = Bk-cd, Bk-c,j+l,. . . , Bk+- l )d - l ,  for 
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c = 2,3, . . . , (k - i ) / d .  This is equivalent to for s = 0, 1,. . . , d ,  B i + s  = Bi+d+s = B i + u + s  = ... = 
Bk-d+s. NOW from X i , k - d  = 1 it fOllOWS that B k - d  = U = B k ,  and from X k - d , k  = 0, We obtain that 
B k - d - l  = B k - 1 .  Therefore Xk-d-1 ,k- l  = 0 implies Bk-d-2  = B k - 2 .  Iterating this establishes the periodic 
structure. 

We have completed the proof of item 2; here is a summary. The previous paragraph shows that, if 2b 
holds, then there is a nontrivial transposition at (i, j, k). We already observed that 2a trivially implies a 
nontrivial transposition at (i, j, k). For the converse, that a nontrivial transposition implies that disjunction 
2a or 2b, we start with a nontrivial transposition, and shift left to get a leftmost repeat (i, j, k) with a 
nontrivial transposition. By “leftmost,” at most one of the three indicators X i , j ,  X i , k r  X j , k  is zero. If none 
are zero, 2a follows. If exactly one is zero, then if X j , k  # 0, then 2a again holds, while if X j , k  = 0 then 
the first line of 2b holds, and using the previous paragraph, nontriviality of the transposition implies (94), 
the remaining part of 2b. 

Finally, we consider item 3. If 3a, then from X i ’ , j ’  = 1 and i’ > 0 it follows that Bir-1 # B j / - l .  This 
shows that the transposition is nontrivial; in the notation of item 3 of Theorem 6, j? # 6, because they end 
in different elements of S‘. 

Conversely, suppose there is a nontrivial transposition using two interleaved pairs of repeats, say with 
i < i’ < j < j’ giving the locations of the . . . a - . . b . . . a . . . b . . . .  In the alternate notation of item 3 of 
Theorem 6, write BO, B1, . . . , Bm-t = a! a j? b y a S b E ,  so that nontriviality is equivalent to the condition 
j? b y a S # S b y a j?. [Note, nontriviality implies j? # S, but the converse is false, e.g., with 6 = j?byaj?, 
we have j? # S, but the transposition is trivial.] 

We have assumed that B i  = Bj and B i t  = Bjr, so whether or not 3a holds is a question of the repeats 
at (i, j) and (i’, j’) are leftmost. If both are, we are done. If neither is, then both can be shifted one place 
left, i.e., there is an interleaved pair of repeats at (i - 1, j - 1) and (i’ - 1, j’ - l), and it is easily checked 
that the transposition using this new pair is also nontrivial. After iterating this left shift, we either get to 
new values 0 5 i < i’ < j < j’ for which both repeats are leftmost, or else case 1: X i , j  = 0, X i r , j ’  = 1, 
or else case 2: X i , j  = 1, X i ’ , j ’  = 0. 

Case 1 is easier. Shift back (i, j) by one until either 3a is satisfied (with the new values), or else j = i’. 
In this latter case, we have a three way repeat at (i, j = i’, j’) with X i r , j r  = 1, and the transposition using 
this three way repeat is nontrivial (as given by 2a) with (i, i’, j’) playing the role of (i, j, k). 

Now suppose case 2. Shift back (i’, j’) until either 3a is satisfied (with the new values), or either i’ = i 
or else j ’  = j. Note that both i’ = i and j’ = j cannot be simultaneously satisfied, because then j? = y ,  
and this is excluded by nontriviality. 

First assume i’ = i. Then we have a three way repeat at (i = i’, j, j’). It is not obvious to us that 
the transposition using this three way repeat must be nontrivial. If the original transformation, using the 
pair of interleaved repeats, transforms A to A‘, and the new transformation, using the three way repeat, 
transforms A to A“, then, remarkably, it can be shown that A“ = A’, hence the new transformation using 
a three way repeat is nontrivial. To check this, we use the alternate notation from Theorem 6. The list of 
overlapping t-tuples for A has the form 

w E Bo, B1, . . . , Bm-f = u j? b y u 6 b E 

and the list for A’ is 
W’ = a! a 6 b y a j? b E .  

That the repeat (i’, j’) can be shifted back until i = i’ while maintaining j < j’ implies that S = S’aj? 
(where the list 6’ is possibly empty). Thus, with parentheses added to display the transposition, 

W’ = aa(S’aj?)bya(j?)br. 

Writing w again in this form, with parentheses added to show where a transposition with a three way 
repeat will apply, 

w = a! a(j?by)a(S’)a j? b E 

so that the list w” for A” is 
W” = a! a(S’)a(j?by)a j? b E .  

The grouping indicated by parentheses is not part of the list, and one can now easily see that w = w”. 
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The case where (i ’ ,  j’) is shifted back until j = j’ while i < i’ can be handled by a similar argument, 
that the resulting transposition using three way repeat is a nontrivial transformation, because in fact it has 

rn the same effect as the transposition using two interleaved pairs repeats. 

4. PROBABILITY APPROXIMATIONS FOR UNIQUE RECOVERABILITY 

Recall, we always assume 2 I t = 1 - 1 5 m/2. 
We begin by repeating a little more carefully the overview, from the introduction, of the probabilistic 

analysis of unique recoverability from the 1-spectrum. The key is to examine where there are repeats of 
t-tuples within the sequence, with t = 1 - 1. Repeats come in clumps, clumps correspond to leftmost repeats 
of t-tuples, and according to Lemma 1, knowledge of where the leftmost repeats occur is also sufficient 
to decide whether or not a given word of length m is 1-recoverable. In terms of where the leftmost repeats 
occur, there are three ways that unique recoverability can be spoiled, corresponding to the three items in 
Lemma 1. The first two of these, corresponding to rotations and three way repeats, are extremely unlikely. 
The dominant contribution, given as item 3% is to have an interleaved pair of leftmost repeats. The total 
number of leftmost repeats is random, with a distribution close to Poisson(A), where A is the expected 
number of leftmost repeats, given by formula (23). More importantly, the process X giving the locations 
of the repeats is close to a Poisson process Y, with close to constant intensity, so that conditional on 
having k leftmost repeats, the 2k coordinates specifying locations for the matching t-tuples are distributed 
approximately as 2k independent integers chosen uniformly from {0, 1,2, . . . , m - t). Finally, provided 
there are no duplicates in a list of 2k independent uniforms, their relative order is a permutation of 2k 
objects, with all (2k)! possibilities equally likely. d f  these (2k!) permutations, exactly 2kk!Ck correspond 
to having no interleaved pair, here ck l/(k + 1) e) is the kth Catalan number. n u s  the relative fraction, 
2‘k!Ck/(2k)! = 2k/(k + l)!, approximates the probability of unique recoverability, conditional on having 
k pairs of leftmost repeats. Averaging with respect to the Poisson distribution, P(k repeats) % e-AAk/k!,  
yields that the probability of unique recoverability is approximately f (A) = Ck,O e-XAk/k!2k(k + l)!. 

In the above analysis, the error for each approximation can be controlled. 0u;outline is 

P(l - recoverable) = Eh(X) 
% Egl(X) error bound R1 eliminate rotations 
% Egl(Y) error bound R2 Poisson process approximation 
% Egl(Z) error bound R3 symmetrize intensities 
% Eg(Z) error bound R4 eliminate three way repeats 

= P(D) 
% f@) error bound R5 tie breaking, Catalan numbers. 

(unfolding; coupling to i.i.d. positions) 

The first approximation step is to eliminate consideration of rotations; in terms of Lemma 1, gl is the 
indicator that none of 2a, 2b, or 3a occurs. The error bound R1 is simply the probability that the random 
word of length m is nonconstant but begins and ends with the same t-tuples, R1 = p‘ - pm. 

The second approximation step is to replace the process X of indicators of leftmost repeats in the random 
word by a Poisson process Y having exactly the same intensity. Here X has a very complicated dependence 
structure, while Y has independent coordinates. The error bound, from the Chen-Stein method in Section 
3, is R2 = is given by (64) and & is given by (79). In case the bound (60) from Corollary 
1 is smaller, we use this better bound as the value of R2. 

The third approximation step is to slightly change the intensity of the Poisson process, to get a new 
Poisson process Z that corresponds to independent coordinates chosen uniformly from {0, 1, . . . , m - t}. 
The overall intensity A is unchanged. The original process Y has three sources of nonuniformity: the effects 
of self-overlap (which are absent when the independent letters A I ,  A2, . . . are chosen uniformly), the lack 
of the declumping factor 1 - p at points ( i ,  j) with i = 0, and the restriction that no repeat can occur at 
( i ,  j) with i = j. The error bound is R3 given by the sum over all i, j of the absolute value of the change 
in intensity at the point ( i ,  j). 

The next approximation is to eliminate consideration of three way repeats; in terms of Lemma 1, g is 
the indicator that 3a does not occur. The error bound R4 is an upper bound on the probability of a three 

+&, where 
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way repeat, which is both smaller and easier working with Z instead of X. Notice, for eliminating the 
effects of rotations in step 1, the opposite was true; there, X was more tractable than Z. 

The equality Eg(Z) = P(D) just switches notation from expectations of an indicator functional to the 
probability of an event. This lets us avoid notational complications in constructing Z in terms of other 
processes. We realize the process Z by picking the total number K of points according to a Poisson 
distribution with parameter A, and then, on the event (K = k), taking 2k independent uniform random 
picks from {0, 1, . . . , rn-t} to be the coordinates of those points. This well known construction of (constant 
intensity) Poisson processes provides a handle on all (2k)! permutations being equally likely. 

The last error, bounded by Rs, arises because our 2k independent uniform choices were from a discrete 
set rather than a continuum, so that ties occur with small but nonzero probability. When ties occur, linear 
ordering does not determine a unique permutation. 

[Alternate strategies are available. A small change would be to bound the effects of rotations and three 
way repeats together, as the first step. A more substantial change would be to eliminate all of Section 2.5, 
at the price of looser error bounds, by the following simpler outline. Start with the value of A - A* from 
(23), or a simple upper bound on it, such as (28), namely A - A* 5 rnt(if*)‘. For the process X, X*, the 
total variation distance is bounded by A - A*, so the preliminary step is that Eh(X) % Eh(X*) with error 
at most A - A*. Then proceed to follow the outline above. In the second step, the error bound now comes 
from the Chen-Stein method applied to X*, which is simpler. It also shrinks the error, since b; < and 
bg &. With our alternate strategy, the error bound R3 for symmetrizing the intensities is larger by about 
2(A-A*). Thus the net effect is to change the overall error bound by about -[&+&-(b;+b;]+3(A-A*). 
Since 3(A - A*) > 2(A - A*), the alternate strategy compares unfavorably with our original strategy using 
the option of Corollary 1 for bounding Rz.] 

- 

0. A rigorous setup. We now make the above argument precise, proceeding according to the steps in 
the outline. The first step is to “lift” the functional h defined at (93, so that the functionals h, gl, and g 
all are defined on a space large enough to serve as the set of possible values of the process Z. We replace 
the choice of index set (9) used in previous sections, I = {(i, j )  : 0 f i < j I in - t ) ,  by the slightly 
larger set 

Z = ( ( i , j ) : O f i s  j s r n - t } .  (96) 

We extend the process X of indicators of leftmost repeats to live on (the new) I, by setting all Xi,i = 0. 
Next, since the coordinates of X are (0,l)-valued, while the coordinates of Y and Z are Z+ 

(0, 1,2, .  . .}-valued, we need to extend the definition of the functional h. That is, we need to define 
h : Z: + (0, l}, compatible with (93, and tractable when applied to the processes Y and Z. For x E Z:, 
[so that for 0 5 i 5 j 5 rn - t ,  xi,j E {0, 1,2, . . . } I ,  we define 4 conditions, motivated by Lemma 1: 

la. XO,~- ‘  2 1, and there is 0 < i < rn - t such that x0.i = 0. 
2a. There are 0 5 i < j < k f m - I such that xi,& 2 1 and (xi , j  z 1 or xi,& 2 1 or both). 
2b. There are 0 f i j < k f rn - t such that x j , k  = 0 and xi, j  z 1 and xi,& 2 1 and, with d the greatest 

common divisor of j - i and k - j, it is NOT the case that [Xi,&-d 2 1 , O  = Xk-d,k = Xk-d-1,k- l  = 
* * = Xi+2,i+d+2 = X i + l , i + d + l l .  

3a. There are 0 f i < i’ < j < j ’  5 rn - t with xi,j 2 1 and xit , j t  2 1. 

Our new definition of the functional h is that h(x) = 0 if la, 2% 2b, or 3a is true, and h(x)  = 1 
otherwise: 

h(x)  = l(none of la, 2a, 2b, 3a). 

With these (new) definitions of Z and X and h, Lemma 1 still applies, so that h(X) is the indicator that 
our randomly chosen word AtA2 . . A,  is I-recoverable. This justifies the opening equality in (96). 

1. Eliminate rotations. Eliminating rotations from consideration means that we define the functional 
gl : Z: += {0, 1) by copying the definition of h, but omitting the condition la: 

g l ( x )  = l(none of 2a, 2b, 3a). 
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When applied to X, we have Ih(X) - gt(X)I I 1(X satisfies la). Note that X satisfies la  if and only if 
A l A 2 . .  At = Am-r+l At and not (A1 = A2 = = Am), so that 

IEh(X) - Egl(X)I 5 P(X satisfies la) = p‘ - pm R1. (97) 

For asymptotics as m, t + 00 with )c x 1, Rt - p‘ x rn-2. 

2. Poisson process approximation. Since the functional gt takes values in [0, 11, the difference be- 
tween expectations of gt applied to two processes is bounded by the total variation distance between the 
processes. Thus the bound 

(98) 

where R2 is the minimum of the two bounds, either (60) from Corollary 1, or & + & from (80) and (81) 
in Theorem 3. We have from Theorem 3 that & + & x log m / m  in the uniform case, and & + x m-Y 

in the nonuniform case. 

IEg1 (XI - Eg1 gr) I I dTV (X, Y) I R2 

3. Symmetrize intensities. The next step is to change from the Poisson process Y on Z to another 
Poisson process Z on I ,  also having independent coordinates. Recall, the intensities of Y are the values 
EYi,j = EXi,, pi,j as given by formulas (19) and (26); note for i = j we have Xi,j 3 0 so pi,j = 0. The 
overall intensity is )c = C05i5j5m-r pi,j, with value computable using (23). Our goal is to use a constant 
intensity point process on the square [0, m - tI2, which has (m - t + 1)2 points, and then for i < j to map 
both points (i, j) and (j, i) to the point (i, j) E I .  This motivates the definition 

for (i, j) E I ,  i = j (99) 

2)c 
(in - t + 1)2 

for (i, j) E I ,  i < j .  - = p =  

For two Poisson random variables, such as Y ~ J  and Zi,j, the total variation distance is at most the absolute 
value of the difference in their expectations. For two processes, each having independent coordinates, 
the total variation distance is at most the sum of the total variation distances between corresponding 
coordinates. As before, since gl is an indicator functional, total variation distance gives an upper bound 
on the distance between expectations. Thus 

An exact expression for R3 is easy in the uniform case, and is comparable to (23) in the nonuniform 
case. For asymptotics as rn, t + 00 with A x 1, we have R3 = O(l/m) in the uniform case, and 
R3 = O(logm/m) in the nonuniform case. 

4. Eliminate three way repeats. The next step is eliminating three way repeats from consideration. 
Thus we define the functional g : Z: + (0,l)  by 

g(x) = l(not 3a). 

For the difference with gl, we have (x : gl(x) # g(x)) C (x : 2a or 2b} C UO5ism-tCi where Ci is the 
event that for the “corner” at (i, i), x is greater than zero at two or more different locations. The “comer” 
at (i, i) is defined here as ((k, j) E Z : k = i or else j = i } .  Notice that the point (i, i) is excluded from 
the comer, which contains m - t points, and hence there are (“‘L’) ways to pick two different locations 
in the comer at i, regardless of the choice of 0 I i I m - t. Our process Z has independent coordinates, 
and intensity p = 2)c/(m - t + 1)2 at the points that make up comers, so for a particular pair of points, 
the probability that Z is nonzero at those points is at most p2. Thus P(Z E Ci) I (m;‘)p2. Summing over 
the m - t + 1 choices for i we get 
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5. Catalan numbers. There are two considerations here. First a counting argument is needed to 
establish a connection between Catalan numbers and interleaved pairs of repeats; there is no probability 
error introduced in this step. Second, a tie-breaking argument, which accounts for the error term Rs, is 
necessary. 

The deterministic connection between Catalan numbers and interleaved pairs was given by Dyer et al. 
(1994), but for the sake of completeness, we present the argument here. Suppose there are 2k distinct 
objects, and k distinct labels, with each label assigned to exactly two objects. [In a = Bi = Bj with 
a E S‘, i, j E {0,1,. . . , m - t } ,  the objects are i and j and the label is a ;  this correspondence is rough 
since the objects are not necessarily distinct, and neither are the labels.] There are (2k)! different ways to 
linearly order the objects. Let Gk be the subset consisting of those linear orders that do not have any pair of 
interleaved labels a . b . . . a . - - b - .. The claim is that IGk I = 2kk!Ck, where the kth Catalan number, 
ck = l/(k + I)(?), is the cardinality of the set Fk of “well formed formulas” using k left parentheses ‘(’ 
and k right parentheses ‘)’. Recall, a string of k ‘(’ and k ‘)’ corresponds to a well formed formula if and 
only if, reading from left to right, the count of ‘(’ is never exceeded by the count of ‘)’. There is a 2kk! 
to one correspondence between Gk and Fk, namely given a linear order in Gk, written out as a string, for 
each of the k labels a replace the first occurrence of a by ‘(’ and the second by ‘)’. It is easy to check 
that this is a map to Fk; this uses only the two-to-one labeling of the 2k objects, and does not use the “no 
interleaved pairs“ property of elements of Gk. To see that each element of Fk has exactly k!2k preimages 
in Gk, the key observation is that a well formed formula there is a unique matching of the ‘(’ and ‘)’ such 
that there are no interleaved matching pairs; this is part of the standard combinatorial treatment. The factor 
k! comes from assigning the k labels to the k matching pairs, and the factor 2k comes from choosing, for 
each of the k labels, for the two objects sharing that label, which comes first in the linear order. 

Finally, we need a probabilistic approximation to connect having k pairs of repeats with the situation 
of having all (2k)! linear orders equally likely. This cannot (as far as we know) be done directly with the 
original setup of repeating t-tuples in a sequence of i.i.d. letters A I ,  A2, . . . , A,, even if the letters are 
uniformly distributed over a finite alphabet S. Even after passing to the Poisson process Z, the following 
additional argument is needed. Let K, L1, L2, . . . be independent, with K being Poisson distributed with 
parameter A and Li is uniform in the set {0, 1 ,2 , .  . . , m - t } .  On the event {K = k }  form k points 
Q I ,  Q 2 , .  . . , Qk from the 2k coordinates L 1 , .  . . , L2k via Qi = (L2i-1,lzj). [Note, neither the Li nor the 
Qi need to be distinct.] This yields a Poisson point process 9 on the square {O,  1, . . . , m - t )  with intensity 
A/(m - t + 1)2 at each point of the square; we think of 9 as a random set of points. The square is “folded” 
up into the index set Z defined by (96), via the map 4[(x, y)] = (x, y) if x 5 y and 4[(x, y)] = (y, x) if 
y < x, and folding the constant intensity Poisson process on the square yields the Poisson process Z whose 
intensity is given by (99). In terms of this construction, g(Z) is the indicator of the event D that 9 does 
not have a pair of points Q ,  Q’ such that with (i, j) = #(e), (i’, j ’ )  = #(e’), i < i’ < j < j’. [A priori, 
two points of 9 may coincide in location, but the further condition i # i’ rules this out.] In shorthand, the 
complementary event Dc is defined by 

Dc = { 3 Q ,  Q’ : i < i’ < j < j ’ } .  ( 102) 

Define another event B by changing only the strictness of the inequalities: 

BC = { 3 Q ,  Q’ : i 5 i’ 5 j 5 j ’ } .  

The obvious dilemma here is whether the Catalan argument applies with D or with B; the resolution lies 
in between. To break ties between the coordinates L1, L2, L3, . . . we introduce independent continuously 
distributed “marks” U1, U2, . . .; to be concrete let Ui take values in [0, 11. We denote the “augmented” 
coordinates by i i  (Li ,  Ui).  We use 4 to denote the natural lexicographic total order on the space of 
possible values of augmented coordinates, i.e., for x, y E {O ,  1, . . . , m - t ) ,  u,  v E [0, 11 define (x, u )  < 
(y, v )  if and only if [(x < y) or else ( x  = y, u < v)]. With augmented points Q and with folding defined 
in terms of 4, we define an event C by changing the definition (102) to include the marks 

(104) 

Since for two augmented coordinates (x, u )  and (y, v ) ,  we have deterministically that x < y implies 
(x, u )  < (y, v ) ,  which further implies x 5 y, it follows that 

CC = {3Q, Q’ : i < i’ 4 j 4 j ’ } .  

I ~ Q ,  Q’, i < i’ < j < j ’ }  c {gQ, Q ,  i 4 i’ < j < j ’ }  c { ~ I Q ,  Q’, i I i’ I j i j ’ )  
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i.e., D" c C" c BC, so that we see B c C c D. For C ,  the distinction between < and 5, corresponding to 
the distinction between D and B,  is immaterial, since ties for the augmented coordinates have probability 
zero. On the event { K = k) we have with probability one that there are 2k distinct augmented coordinates, 
and since (151, V I ) ,  . . . , (LZk, I&) are i.i.d., each of the (2k)! possible linear ordering occurs with proba- 
bility 1/(2k)!. Now by the Catalan argument, P(CIK = k) = 2kk!Ck/(2k)! = 2k/(k+ l ) ! .  Averaging over 
the distribution of K yields an exact relation: 

To connect this with P(D), consider the event E that the 2K coordinates contain a duplicate: 

E = IlILi,. . . , L~KII  < 2K)  

Since B c D c B U E, we have IP(B) - P(D)I p P(E). For an upper bound on P(E) we use the 
simplest upper bound for the birthday problem: when there are j people independently and uniformly 
picking birthdays from a year with n days, the probability of a coincidence is at most the expected number 
of (unordered) pairs of people sharing a birthday, i.e., ( i ) /n .  Here n = m - t + 1 and j = 2K with 
E(2;?") = 2A2 + A. Thus P(E) I (2A2 + A)/(m - t + l ) ,  which we take for R5. This justifies the last step 
in our outline, with 

We summarize this as 

Theorem 7. Assume that AI,  A2, . . . are independent and identically distributed. Let 1 2 3, t = 
= 1 - 1,m p 2t. Let p = p2 =P(A1 = A2) andmre  generally, f o r r  = 2,3, ...,pk 

Ak). With A given by (23) and f defined by (105), 
P(A1 = A2 = 

(P(AlA2. . A, is 1-recoverable) - f (A)l p R R1 + . - .  + R5. (107) 

For m,  t + 00 with A x 1, which is equivalent to m,  1 + 00 with 1 = [logm2/ log(l/p)] + 0(1), we 
have R = O(logm/m) in the uniform.case, and R = O(m-Y) in the nonuniform case; the dominant 
contribution being the term R2 from the Poisson process approximation. 

Remark. Consider that f [A(m, t ) ]  is just a function of m and t ,  designed to approximate the probability 
of unique recoverability, with the crucial property that as m, t + 00 with A x 1, the approximation error 
tends to zero. There are lots of plausible alternate expressions. For example, it is easy to see that the 
function f (A) is Lipschitz continuous with Lipschitz constant 1. Therefore we could replace A in (107) by 
an approximation of A that has an easier form, e.g., A' = ( 1  - p)p'm2/2, and a bound similar to (107), 
provided we include an additional error bound R6 such that IA' - AI 5 R6; see (28). For another example, 
we might try to account for the probability of rotations or three way repeats. Since there is no theory to say 
how these might be dependent on the presence or absence of an interleaved pair of repeats, the simplest 
heuristic is to assume independence, and use 

F(m, t )  f ( A ) ( 1  - pr + p") exp [ - (mi t ) ( l  - P)(l  - P2)P2'] * 

Here we have assumed a uniform distribution; the second factor corresponds to rotations, which is item la 
in Lemma 1;  the last factor is a Poisson approximation for the probability of having no three way repeats, 
matching only condition 2a of Lemma 1. Now for m, t + 00 with A x 1, the difference between F (m, t )  
and f (A)  goes to zero, but it is plausible that for small m and t ,  F(m, t )  is the better approximation to 
the true, unknowable probability of unique recoverability. At the level of (107) however, we would have a 
worse error bound. For the example t - 7 ,  m = 180 cited in Pevmer et al. (1991) to have approximately a 
95% probability of unique recoverability, we have f (A) = 0.9368 and F(m, t )  = 0.9347. Thus the change 
from f (A) to F(m, t )  is both too small and also in the wrong direction, for explaining the difference 
between their 95% and our %934%. 
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TABLE 6. m ERROR BOUNDS IN THE UNIFORM CASE 

m 

100 
200 
800 

169 
659 

2615 
10430 

t = l - 1  h 

7 
7 
9 

7 
9 

11 
13 

.2015 
3599 
3969 

.6458 

.6059 

.6066 

.6064 

Ri 

6.103 x 
6.103 x 
3.814 x 

6.068 x 
3.814 x 
2.38 x 10-7 
1.49 x lo-* 

R2 

.0565 

.470 1 

.1579 

.2808 

.0883 

.0266 

.00779 

R3 

.0042 

.00886 

.002264 

.00744 
BO1861 
.00046 
.000116 

R4 

,0043 
.00891 
,002267 

,00749 
.001864 
.00046 
.000116 

R5 

.0030 

.0120 

.0031 

b0824 
.00205 
.0005 1 
.OOO 128 

TABLE 7. TIIE ERROR BOUNDS IN THE NONUNIFORM CASE 

m t = l - 1  A. Ri R2 R3 R4 R5 

100 7 6436 1 . 9 4 0 ~  2.542 .0081 .0138 .0156 
100 9 .0573 1.687 x lo-’ .0809 .0127 .0012 6.946 x 

321 9 .6069 1.68 x lo-’ .8828 .0494 .0038 .00429 
1081 11 .6068 1.467 x .2964 .0272 .0011 .0012 
3663 13 .6066 1 . 2 7 6 ~  .0963 .0136 .00033 .00036 

TABLE 8. THE PROBABILITY OF UNIQUE RECOVERAJ3ILITY IN THE UNIFORM CASE 
~~ 

m t = l - l  f ( h ) - R  h f (A) R R2 

100 
200 
800 

85 
110 
111 
188 
469 
586 
983 

2288 
2814 
4735 
9988 

12208 
20909 

169 
205 
353 
659 

2615 
3186 
5553 

10430 
180 

2450 

7 
7 
9 
7 
7 
7 
7 
9 
9 
9 

11 
11 
11 
13 
13 
13 
7 
7 
7 
9 

11 
11 
11 
13 
7 

11 

.9254 

.4076 

.735 1 

.9525 

.9019 
A993 
so97 
.9503 
.9005 
S O 1  1 
.9501 
.9002 
so04 
.95004 
.90005 
SO01 

.6458 

.3612 

.8559 

.92 18 

.8500 

.2414 

.94 18 

S707 
.9372 

-2.113 

.2015 
3599 
A969 

.1422 

.2467 

.2515 

.7567 

.3037 

.4776 

.4638 

.7028 

.5560 

.83 11 

1.359 

1.995 

2.440 

.6068 

.9048 

.6059 

.6066 
9017 

.6064 

.6916 
S322 

2.753 

2.746 

.9936 

.9077 

.9008 

9967 
.9906 
.9903 
.9260 
.9861 
.9676 
SO53 
.9693 
.9349 
.6613 
.9572 
.9129 
S634 

.9499 

.8993 

.4986 

.9500 

.9499 
3999 
.4999 
.9500 

.9368 

.9605 

.0682 
so00 
.1656 

.0442 

.OS7 

.0909 

.4162 

.0357 

.067 1 

.3041 

.0191 

.0347 

.1609 

.007 1 

.0129 

.0633 

.3040 
S381 

.0941 

.0281 

.0499 

.2584 

.008 1 

.3660 

.0232 

2.612 

.0565 

.4701 

.1579 

.0346 

.0755 

.0776 

.3890 

.0320 

.0621 

.2933 

.0179 

.033 1 

.1571 

.0068 

.0124 

.0621 

.2808 
5070 

.0883 

.0266 

.0480 

.2532 

.0077 

.3406 

.0219 

2.518 
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TABLE 9. THE PROBABILITY OF UNIQUE RECOVERABILITY IN THE NONUNIFORM CASE 

m t = l - l  f ( h ) - R  h f (A) R R2 

50 
100 
200 
400 
800 

1600 
17 
18 
47 
69 

233 
378 

1224 
2173 
5704 

97 
321 

1081 
3663 

7804 
26470 
89783 

7 
8 
9 

10 
11 
12 

7 
7 
7 
9 
9 

11 
11 
13 
13 

7 
9 

11 
13 

13 
15 
17 

A98  
S311 
.6360 
.7310 
.8032 
.8533 

.9556 

.9492 
S224 
.9507 
SO18 
.9501 
SO08 
.95002 
SO02 

- 1.523 
.0093 
.6239 
A392 

-.0807 
.3041 
.4323 

.1504 

.1912 

.2340 

.2804 

.3327 

.3929 

.0123 

.0143 

.1317 

.0267 

.3184 

.0746 

.7776 

.2141 
1.4685 

.6043 
6069 
.6068 
.6066 

2.7468 
2.7466 
2.7466 

.9964 
9942 
9915 
.9880 
.9834 
.9774 

.99997 

.09996 
9 7 2  
.9998 
.9848 
.99909 
.9224 
.9928 
.78 10 

.9503 

.9499 

.9499 

.9499 

.4999 
so00 
so00 

.5465 

.4630 

.3554 

.2570 

.1902 

.1240 

.0442 

.0506 

.4747 

.049 1 

.4829 

.0489 

.4215 

.0428 

.2808 
2.474 
.9405 
.3260 
.1106 

3 0 7  
.1958 
.a76 

SO20 
.4235 
.3219 
.2298 
.1587 
.lo76 

.0360 

.0416 

.4339 

.0401 

.4430 

.0393 

.3877 

.0345 

.2579 
2.367 
2828 
.2964 
.0963 

S485 
.1811 
.0610 

For Tables 6 and 7, recall that R = R1 + R2 + R3 + Rq + Rs is our upper bound on the error in the 
approximation of the probability of unique recoverability by the function f(A).  Tables 6 and 7 show the 
contributions of the different error bounds to R in the uniform case and in the “strongly nonuniform” case 
P A  = 0.3544, pc = 0.1430, p c  = 0.1451, PT = 0.3575, p = 0.2949. The by far largest term is the error 
bound R2, coming from the Chen-Stein method. We pick some round values for m, t, and some values 
m, t so that A is close to 0.60646. The values are truncated, not rounded. 

Tables 8 and 9 illustrate the approximation for the probability of unique recoverability in the uniform 
case and in the nonuniform case PA = 0.3544, pc = 0.1430, p c  = 0.1451, PT = 0.3575, p = 0.2949. 
The third column reports the difference f ( A )  - R ,  which serves as a lower bound on the probability of 
unique recoverability and is thus a “guaranteed value”; in contrast the value f ( A )  in the fifth column serves 
as a “prediction” with no guarantee. The values for (m, t) chosen for Tables 8 and 9 include some round 
values of m, some values of m chosen so that there is a guaranteed 95, 90, or 50% probability of unique 
recoverability, some values of m chosen so that approximation f(A)  is close to 95,90, or 50%, and finally 
for the uniform case, t = 7, m = 180 and t = 11, m = 2450, which were given in Pevzner et al. (1991) 
to have a 95% probability of unique recoverability in simulations. 

5. FINAL DISCUSSION 

Our primary motivation has been to give error bounds for approximations to the probability of unique 
recoverability, and along the way to give careful bounds for Poisson approximations for long repeats, 
with and without allowing self-overlap, for sequences of i.i.d. letters, both with and without a uniform 
distribution. The corresponding limit theorem for the probability of unique recoverability for the uniform 
case, without error bounds, was given in Dyer et al. (1994). For the nonuniform case, bounds on the 
expected number of self-overlapping repeats, as in our (27) and (28), are essential. 

The values we report in Tables 8 and 9, including guarantees on the probability of unique recoverability, 
can be compared to those reported in Pevzner et al. (1991), which are based on Monte Carlo simulation. 
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For small 1, such as l = 8, our error bounds are rather large, but our error bounds are rigorous; in contrast 
simulation values have associated confidence intervals, which are random and vary with the simulation. For 
only slightly larger I ,  such as 1 = 12 or 16, our theoretical error bounds are quite satisfactory. From Tables 
6, 7, 8, and 9 it is clear that the major source of error is R2, from the Poisson process approximation. We 
have treated the Poisson approximation as carefully as possible at present; but as the remark in Section 
2.1 explains, it is conceivable that our upper bounds could be improved by a factor growing like log m. It 
is tempting to hope for such an improvement. 

A natural extension of the Poisson process analysis in this paper would be to address questions of 
partial recovery. For example, what is the distribution of the length M of the longest contiguous substring 
of a target of length m that can be uniquely reconstructed? In this paper, we have approximated only 
P(M = m ) .  It should even be feasible to describe approximately the joint distribution of the lengths of all 
fragments that can be determined from the spectrum. For another approach, consider the random variable 
N counting the number of sequences of length m that have the same l-spectrum as A1A2 A,,,. In this 
paper, we have approximated only P(N = l), but it may be possible to handle the distribution of N. 

For applications, the most drastically unrealistic feature of our model is the assumption that the multiset 
of l-tuples can be read from a target sequence; information on multiplicities is not available in the laboratory. 
Assuming that only the set of l-tuples were known, it is plausible, from the structure of the de Bruijn 
graph, that there would still be a high probability that the multiset could be reconstructed. If this is so, 
then the above analysis, together with one additional error term, might serve to predict and bound the 
probability that a random target sequence of length m could be uniquely reconstructed from the set of 
l-tuples it contains. The issues of partial recovery and set versus multiset are addressed in Arratia and 
Reinert (1996). 

For the theoretical understanding of physical sequencing by hybridization, it would be good, but difficult, 
to analyze some probability model where the given data are generated from the l-spectrum with errors. In 
applications, both false positives and false negatives can occur, for reporting whether or not given l-tuples 
are present in the target sequence. 
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