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We construct a mathematical model for in vitro molecular selection with 
amplification. Using DNA-protein binding as the illustrative example, we 
obtain an expression for the probability that a randomly selected molecule 
from the final in vitro selection products is a molecule with the highest 
binding affinity Experiments of this type have been reported for several 
examples of DNA binding proteins. Our study requires a model of the 
DNA-protein binding constant between DNA molecules and the target 
protein. The relationship between binding constants and selection 
probabilities is presented under simplifying but reasonable assumptions. 
From our analysis, we find that for successful in vitro selection experiments 
there should be a certain relationship between the number of polymerase 
chain reaction cycles and the concentration of free protein. The results 
obtained should be widely applicable to a variety of selection-amplification 
procedures. 
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Introduction 
In vitro selection of molecules is a developing 

technology that is being used in a wide range of 
biological studies such as protein-DNA interactions 
(Kinzler & Vogelstein, 1989,1990; Murtin et al., 1989; 
Blackwell & Weintraub, 1990; Thiesen & Bach, 1990; 
Pollock & Treisman, 1990; Rebar & Pabo, 1994), 
protein binding sites on RNA (Tuerk & Gold, 1990; 
Lin et al., 1994; Peterson et al., 1994), catalytic 
properties of RNA molecules (Joyce 1989a,b; 
Beaudry & Joyce, 1992; Lehman & Joyce, 1993; 
Bartel & Szostak, 1993; Lin et al., 1994; Lorsch & 
Szostak, 1994; Prudent et al., 1994; Wilson & 
Szostak, 1995), and catalytic properties of single- 
stranded DNA molecules (Breaker & Joyce, 1994; 
Cuenoud & Szostak, 1995). The basic principle of 
in vitro selection can be summarized as follows. 
First a library of random sequences (DNA, RNA or 
protein sequences) is constructed. Some of the 
molecules in the library are assumed to have a 
specific function in which we are interested, and a 
selection procedure is used to isolate those 
molecules. These molecules are then amplified by 
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IHF, integration host factor. 
Abbreviations used: PCR, polymerase chain reaction; 

some means, and this population is subjected to 
selection. This cycle is then repeated. 

In this paper, the goal is to characterize one class 
of these problems, namely finding DNA molecules 
that bind to a given protein. This protein will be 
called the target protein. The intention is to select 
DNA molecules that strongly bind to the target 
protein and to determine the contribution of each 
individual base involved in the protein-DNA 
interactions under some reasonable assumptions. In 
order to study this, we first synthesize a library of 
random sequences consisting of all DNA molecules 
that might bind to the protein. The DNA molecules 
are flanked by two primers for amplification by the 
polymerase chain reaction (PCR). These DNA in the 
library are presented to the target protein. Some of 
the DNA molecules will bind to the target protein. 
The DNA-protein complexes are separated from 
unbound DNA molecules by gel electrophoresis. We 
refer to this as the selection step. The small amount 
of DNA present in the DNA-protein complexes is 
eluted from the protein and then amplified by PCR. 
We refer to this as the amplification step. These two 
steps, selection and amplification, constitute one 
selection-amplification cycle. The experiment is 
repeated for several cycles. Figure 1 shows the 
mechanism of in vitro selection. The idea is that each 
cycle selectively enriches the DNA molecule 
population in proportion to their binding affinity 
After many cycles, the DNA molecules with the 
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9 highest binding affinity will dominate. Thus, the 
DNA molecules with highest affinity should be 
selected by the process. We construct a mathemati- 
cal model for in vitro selection and present some 
results using the theory of branching processes; we 
model the binding constant between a DNA 
molecule and the target protein. Then we study the 
probability that the best binding molecules can be 
selected after rn selection-amplification cycles. Our 
goal here is a mathematical understanding of 
selection-amplification experiments. We derive a 
relationship between the number of PCR cycles and 
the concentration of free protein needed for 
successful in vitro selection experiments. We defer 
all our proofs to the Appendix. A discussion of the 
extension of our results to other classes of in vitro 
molecular selection-amplification problems appears 
in the Discussion. 

A 

Repeat 
3-8 cycles 

A Mathematical Model 
c Consider an experiment in which many DNA 

molecules with different sequences are allowed to 
bind to a single type of protein molecule. Using 
equilibrium binding affinity of the DNA molecules 
to a target protein, we can divide the DNA library 
into several groups. Each group is composed of 
molecules with equal binding affinity In our 
analysis, we also assume that there is only one 
binding site in each DNA molecule. Suppose that in 
the initial library we have N different groups of 
molecules. Let n, and K,, i = 1,2,. . . ,N be the 
number of molecules and the binding constant of 
ith group, respectively The binding constant K of a 
DNA molecule to a target protein is defined as 
follows. In a DNA-protein binding experiment at 
equilibrium (DNA molecules with a single se- 
quence), let pT and p be the concentration of total 

and free protein in the binding reaction. Let DT and 
D be the concentration of total and free DNA 
molecules, respectively Let Dp be the concentration 
of DNA-protein complexes. Then: 

Dp = K X D X p ,  DP + D = DT. 

It follows that: 

K X P X D T  
Dp = 1 + K x p  * 

Thus, the fraction of the DNA molecules that are 
bound to the target protein is: 

K x  
f = l + K ! p .  

If we assume that DNA molecules bind to the 
protein independently then each DNA molecule 
binds to the target protein with probability f .  For 
group i molecules, we define fi = Ki x p / ( l  + Ki x p ) .  
We will discuss the limitations of this assumption 
below: Implications and Limitations. Therefore, in 
the selection step of a selection-amplification cycle, 
a group i molecule binds to the target protein with 
probability fi .  We select only DNA molecules that 
bind to the target protein in the selection step. These 
probabilities, fi, f2. . . . , f ~ ,  then describe the distri- 
bution of the selected DNA molecules. 

Amplification is the result of PCR, which can be 
modeled by a branching process (Sun, 1995). 
Suppose the efficiency of the PCR reaction cycle is 
h. Then, in each PCR cycle, a molecule generates 
two copies with probability h and remains one copy 
with probability 1 -h.  We assume that the 
amplification by PCR is completely accurate. We 
carry out I PCR cycles in the PCR amplification step. 
The experiment of selection and PCR amplification 
is repeated for rn cycles. 

We define the following parameters: N, number 
of different groups of DNA molecules; ni, number 
of group i DNA molecules; Ki, binding constant of 
a group i DNA molecule; fi, probability of a group 
i DNA molecule binding to the target protein; h, 
efficiency of PCR; I ,  number of cycles in the PCR 
amplification step; rn, number of experimental 
cycles. 

First let us just consider one group of molecules, 
all with the same sequence, and denote the 
corresponding parameters without subscripts. 
Under the above assumptions we have the following 
theorem. This theorem gives the generating func- 
tion, expectation, variance and the limit behavior of 
the number of DNA molecules after rn selection- 
amplification cycles. 

Theorem (1) 

Suppose initially we have one molecule. Let N,,, 
be the number of DNA molecules after rn 
selection-amplification cycles (including selection 
and I PCR amplification cycles). Then we have 
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(1) The generating function g m ( x )  of Nm satisfies 
the following recursive equations: 

g d x )  = x ,  
g m + , ( X )  = g m ( f h ( X )  +f), m = 0,1,2,. . ., 

and h~ is defined recursively by: 

ho(x) = X ,  

h ' + l ( X )  = hl(hX2 + X X ) ,  1 = 0,1,2,3,. . . , 
where f =  1 -f, X = 1 -h.  

(2) The expectation and variance of Nm are: 

E(Nm) = A", 
Vur(Nl)Am-'(Am - 1 )  Vur(Nm) = I A - 1  

where: 

A =f(l + A)', 
Var(Nl) =f(l + h)'-'[(2 -f-fh)(l + h)' + h - 11. 

(3) If A = f(1 + h)' > 1, then Nm / A m  converges 
with probability 1 and in mean square to a random 
variable WI as m tends to'infinity and: 

E(W1) = 1 ,  Vur(W1) = Vur(Nl)/(A2 - A ) .  
(4) P(  WI _= 0)  = q decreases with respect to I and 

liml+ ,,,q = f. That is when I is sufficiently large, Z, 
vanishes with probability approximately f .  

Now we consider the general case. The next 
corollary describes the results of letting the number 
m of selection-amplification cycles tend to infinity 
The first result gives the probability that DNA 
molecules from groups i = 1,2,. . . ,$, ([l, $1) van- 
ish from the subsequent population of molecules, 
and the second result gives the probability that a 
randomly chosen molecule from this population is 
from groups i E [1,91, given that DNA molecules 
do not vanish after the experiment as first m and 
then I tend to infinity Suppose, without loss of 
generality that fl >f2 > . . . > f ~ .  Let N:) be the 
number of group i molecules after m selection- 
amplification cycles and for any $, 

J 

i = O  

Then we have the corollary: 

Corollary (1) 

Let ni be the initial number of group i molecules, 
f i  be the probability that an group i molecule being 
selected in one selection step, and h be the efficiency 
of PCR. Then 

(1) The probability that DNA molecules from 
groups [l, $1 vanish in the subsequent population 
satisfies: 

(2) Under the condition that Skw # 0 for all m: 

s(w = 1, SkI) # 0, for all m. 
m - r m  lim sm ' {O, otherwise. 

Thus given Skw # 0 for all m, the probability that 
a randomly chosen molecule is from groups 11, $1 
tends to 

as m and then 1 tend to infinity 

The Case of a Large Initial 
of Molecules 

Number - 
In practice, biologists have usually done three to 

Vogelstein, 1989, 1990; Murtin et al., 1989; Blackwell 
& Weintraub, 1990; Thiesen & Bach, 1990; Pollock & 
Treisman, 1990; Rebar & Pabo, 1994). Theoretical 
analysis as m tends to infinity can not be applied in 
this case. In this section, we will study the case 
where the initial number of molecules in each group 
is large and the number of cycles is relatively small. 
We will also model the binding constant of a DNA 
molecule and analyze the connection between the 
binding constants and the selection process. 

In theorem (1) we obtained the expectation and 
the variance of the number of molecules generated 
from one initial molecule after m selection-amplifi- 
cation cycles. Each molecule is selected and 
amplified independently by our assumption. There- 
fore, if we start from a large number ni of group i 
molecules, from the strong law of large numbers, 
we have: 

eight selection-amplification cycles (Kinzler & * 

Therefore, when ni is large, we can approximate N:) 
by ni[ fi(1 + A)']". This approximation is good only 
when ni is relatively large compared to 

where Ai = fi(1 + 1)'. This condition is hard to obtain 
in practice. 

If the above conditions are satisfied for each 
group of molecules, we can use ni[fi(l + A)']" to 
approximate AI!). Then the probability that a 
randomly chosen molecule in the final product after 
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rn selection-amplification cycles is from groups 
[l, 91 is approximately: 

From now on, we will use the following 
assumption. 

Assumption (A) 

The probability that a randomly chosen molecule 
in the final product is from groups [1,91 is given 
by equation (2). 

From equation (l), we have the relationship 
between fi and the binding constant Ki: 

where p is the concentration of free proteins at 
equilibrium. Substituting the above equation into 
equation (2), we have the probability that a 
randomly chosen molecule in the final product is in 
groups 11, 91: 

Differentiating with respect to p ,  we have: 

1 +Kip 1 + Kjp 

(3) 

where 

Therefore, P(9, p )  is a decreasing function of p and 
approaches its maximum of 

I 
C niK; 
i =  1 

N 

niK; 
i = l  

as p tends to 0. Our goal in a selection exper- 
iment is to enrich the DNA molecules with high 
binding affinity Because P(9, p )  is maximized as p 
goes to 0, in a binding experiment experimental 
conditions should be carefully designed so that the 
concentration p of free proteins is small. Letting p 
tend to 0 in equation (3), it follows that: 

In the following, we will use equation (4) as the 
probability that a randomly chosen sequence in the 
final product is from groups [l, 91. 

Modeling the Binding Constant 
For a specific target protein, let us suppose 

that a DNA sequence I = i l i 2 .  . . ik of length k 
in base-pairs has an equilibrium binding con- 
stant (Cantor & Schimmel, 1980; Koblan et al., 
1992): 

KI = exp(-G(I)/(kT)) = exp (-PG(I)), 

where T is the temperature and G(I) is the total 
free binding energy If I(o) = iio)iio) . . . iio) and 
G(I(O)) = minIG(I), then I“) is said to belong to the 
consensus sequence for the target protein. We use 
this terminology because binding sites are often of 
the form ARYGR . . . T ,  but note that here consensus 
sequence just means the set of sequences with 
minimum free energy of binding. In the following, 
we assume that in the initial library every DNA 
molecule is represented an equal number of times; 
that is, if nI and UJ are the numbers of DNA 
molecules with sequences I and J, respectively 
nr = nJ for any I and J. Under the above assumptions, 
we have the next theorem. 

Theorem (2) 

Sup ose there is a unique consensus sequence 

randomly chosen molecule whose sequence is the 
I‘O) = i$ b: ii0) . . . if’). Let Pz be the probability that a 

6 0, 



654 Modeling in Vitro Selection-Amplification 

unique consensus sequence after rn selection- 
amplification cycles. Then the following hold: 

(1) Assume that all the positions contribute 
independently in the sense that the energy function 
G ( I )  satisfies: 

where o,(i) is a function on (A, C, G, T } .  Then: 

(P2;)F1 = fl (exp(-mpo,(A)) + exp(-rnpo,(C)) 

+exp(-rn po,(G)> + exp(-rnpo,(T))). 

k 

p = l  

In particular, if the binding energy is independent 
of state i different from the consensus, that is 
o,(i) = 6/(rnp)I(i#iF)), then: 

(Pg;)-l = (1 + 3 exp(-6))k. 

(2) Suppose that the bases in DNA molecules 
have nearest-neighbor interactions in the sense that 
the energy function satisfies: 

k k-1 

G(I)  - G(I(O)) = 1 q ( i J  + op(ipip+d. 
)I=1 p = l  

Further we assume that: 

oJiJ = s!(rnp)I(ip # iy), 
- 6) / (mp) ,  ip#iF), ip+l#iFil, 

Then: 

Remark (1) 

The conditions in part (1) of theorem (2) assume 
that each base contributes independently and this 
particular condition means that if a base in a 
sequence differs from the consensus sequence, the 
energy is increased by a constant 6/ (rnp) .  The 
conditions in part (2) assume that, apart from the 
independent contributions, there are nearest-neigh- 
bor interactions. For nearest-neighbor interactions, 

we assume that if the two bases differ from the 
consensus by one base, the energy is increased by 
a constant ( 6 2  - 6/2)/(rnp) and if the two bases are 
both different from the consensus sequence, the 
energy is increased by a constant (61 - 6 ) / ( r n p ) .  We 
choose this parameterization to simplify the final 
formula. 

Remark (2) 

Although in reality the base sequence contributes 
to the free energy in a complex fashion, we choose 
here to make a strongly simplifying assumption to 
permit a closed expression to be derived. Further, 
more realistic modes of contribution to the free 
energy can be taken into account by extending the 
above treatment. 

Implications and Limitations 
Many in vitro selection experiments have been 

performed to study the DNA binding properties of 
different proteins (for example, see Kinzler & 
Vogelstein, 1989,1990; Blackwell & Weintraub, 1990; 
Thiesen & Bach, 1990; Pollock & Treisman, 1990; 
Rebar & Pabo, 1994). The experimental conditions 
depend on the properties of the protein to be 
investigated and are determined empirically In this 
section, we examine the effects of experimental 
conditions according to our model in order to 
understand the power and limitations of in vitro 
selection-amplification techniques. For simplicity 
we consider here only two groups of molecules. The 
molecules in the first group have binding prob- 
ability fl and the molecules in the second group have 
binding probability f2, where f1> f 2 .  We will use the 
notation and parameters introduced above. 

First let us examine the effect of the number of 
PCR cycles in the PCR amplification step. Without 
any amplification, i.e. I = 0, a initial group i 
molecule is retained with probability 5 .  It is 
retained after rn selection-amplification cycles if, 
and only if, it is retained after each cycle. Therefore, 
the probability is f ," . The molecule vanishes after rn 
selection cycles with probability 1 - f ," . If the initial 
number of group i molecules is ni, all the molecules, 
both group (1) and group (2), vanish after rn 
selection cycles with probability (1 - f ;")"1(1 - fT)Q.  
As we have noted above, in order to have high 
probability of selecting the best binding molecules 
during in vitro selection-amplification, we should let 
the concentration of free proteins be small. Then, 
from equation (1 ), the corresponding binding 
probability f i  will also be small. From the above we 
see that, with high probability no molecules are 
retained. PCR therefore must play an essential role 
in the in vitro selection-amplification techniques. 
With PCR, the selected molecules are amplified 
exponentially between selections. Because we have 
many molecules after amplification, the probability 
that they all vanish is small. Therefore, whether we 
can obtain any molecules that bind the protein after 
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the experiment depends heavily on the first 
selection cycle. If the initial number of molecules is 
small, the probability that no molecules are selected 
can still be close to 1. We see that in order that the 
experiments be successful, the initial number of 
molecules should be large and that PCR must be 
used to amplify the selected molecules. 

How can the protein concentration best be set in 
in vitro selection experiments? On one hand, we 
want to be able to select the best binding molecules 
with high probability On the other hand, we want 
a high degree of discrimination and we do not want 
all the molecules to bind to the protein. Let us 
determine the concentration of free proteins as a 
function of the number of PCR cycles through a 
series of selection-amplification stages. Because the 
DNA molecules are amplified on average (1 + h)' 
times after 1 PCR cycles and group (1) molecules are 
selected with probability f1, the expected number of 
selected group (1) molecules is proportional to 
fl(l + 1)' after a single selection-amplification cycle. 

that fl is on the same scale as (1 + A)-'. If f1 is too 
small, the group (1) molecules are lost with high 
probability Furthermore, background effects will 
dominate and specificity will be lost. If f1 is too 
large, many DNA molecules will be selected, 
including many of those not in group (1). Therefore, 
fl should be proportional to (1 + A)-'. As noted 
above, we should let the concentration of free 
proteins be small and thus fl be small. Therefore, we 
should use as many PCR cycles as possible, but not 
too many to avoid PCR artifacts. Because of the 
other constraints, such as convenience of exper- 
imental conditions and mutations produced during 
PCR, biologists often do 20 to 30 PCR cycles. 

We did Monte Carlo simulations to study the 
effects of the number of PCR cycles ( I ) ,  the number 
of selection-amplification cycles (rn ), and the ratio 
between the two binding probabilities of the two 
groups of molecules ( fl l fd. In all these simulations 
we chose fl such that fl(l + 1)' = 2 so that each 
selection-amplification cycle essentially doubles the 
group (1) molecules. We chose h = 0.9 and 
nl = n2 = (1 + 1)' so that the expected number of 
selected group (1) molecules is two after the first 

simulated selection-amplification experiments by 
Monte Carlo. After each Monte Carlo simulated 
experiment, we observe the number of group (1) 
and group (2) molecules. 

First we studied the effect of the number of PCR 
cycles. We chose rn = 2 selection-amplification 
cycles and f l l f 2  = 5. (For each value of I ,  
fl = 2 x (1 + 0.9)-' and f2 = f1/5.) Figure 2(a) and (b) 
show the histogram for the proportion of the first 
group molecules for 1 = 5 (a) and 1 = 20 (b). These 
two Figures are almost the same. This shows that 
the PCR amplification step has the principal effect 
of rescuing the selected sequences. But we note that 
the fl corresponding to 1 = 5 is much larger than that 
corresponding to I = 20. From the relationship 
between binding probability f and the concentration 

c We should design the experimental conditions so 

- selection. For each choice of ( I ,  r n , f l ,  fd, we did 5000 

1 

of free proteins (l), we see the free protein 
concentration for 1 = 5 is much higher than that for 
1 = 20. 

Next we examined the number of selection- 
amplification cycles. We chose 1 = 20 as has often 
been done in published experiments. Other con- 
ditions were the same as in the above simulations 
except that we chose rn = 1. Figure 2(c) shows the 
histogram for the proportion of the first group 
sequences. Comparing Figure 2(c) with Figure 2(a) 
we see that doing one more selection greatly 
increased the efficiency of the experiment. Under 
our simulation conditions, the average proportion of 
the group (1) molecules after one selection-amplifi- 
cation cycle is only 0.836xfi/(f1 +fd with a 
standard deviation 0.27. One more cycle increased 
the average to 0.940xf:/(f: +f:) with a standard 
deviation 0.19. 

Finally we studied the effect of the ratio f~ / f2 .  We 
chose 1 = 20, rn = 2, and f1 / f 2  = 2. Figure 2(d) shows 
the histogram for the proportion of the group (1) 
molecules. Comparing Figure 2(d) with Figure 2(a), 
we see that the ratio f1 /fz plays a sensitive role in the 
final results of the experiment. If f1 l f 2  is large, then 
it is relatively easy to select the best binding 
molecules. Under our simulation conditions, after 
two selection-amplification cycles, the average 
proportion of the group (1) molecules is 0.758 with 
a standard deviation 0.32 for f~ / f ~  = 2, compared to 
the average proportion of the group (1) molecules 
0.94 with a standard deviation 0.19 for f~ l f ~  = 5. 

In practice, fl/f2 is usually between 10 and 100. 
In this range, we can almost surely select the group 
(1) molecules after in vitro selection-amplification 
experiments. We choose the above parameters to 
make our analysis much more clear. 

Discussion 
We have analyzed here the quantitative relation- 

ships defining the often repeated experimental 
procedure of using binding and amplification cycles 
to find the specific DNA sequences that bind well 
to a particular protein. There are many published 
examples of DNA-protein interactions that have 
been analyzed in this fashion. The analysis is also 
applicable to a number of potential procedures 
that are based on the binding-amplification cycle to 
find one or a small number of double-stranded 
DNA, RNA or single-stranded DNA molecules 
having a specific selected property The relationship 
presented here should provide the basis for 
a quantitative analysis of these experiments. 

To some extent, the present analysis was inspired 
by experiments in which we have previously 
examined the IHF (integration host factor) DNA 
consensus binding patterns by selection exper- 
iments. The protein IHF of Escherichia coli is a 
histone-like protein which was discovered through 
its requirement for the integration of bacteriophage 
h into the bacterial chromosome (Williams et al., 
1977). Unlike other histone-like proteins, IHF binds 
to DNA in a sequence-specific fashion making 
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most of its sequence-specific contacts in the minor 
groove of DNA. DNA molecules that bound IHF 
were selected and consensus sequences were 
determined using the r-tide program (Galas et al., 
1985). We were surprised at the wide range of 
sequence variations present among the selected 
molecules, but found the consensus sequences were 
as expected from naturally occurring variants of the 
IHF binding sites. A preliminary account of this 
work was presented at the Keystone UCLA 
workshop on ”The Polymerase Chain Reaction” 
(Murtin et al., 1989). 

As indicated in the Introduction, there are several 
distinct types of molecular selection-amplification 
experiments reported in the literature. The specific 
type of experiment described and analyzed here, 
sequence-specific protein-DNA interactions, is not 
by any means the only type to which the results 
derived here can be applied. These different types 
of experiment fall generally into three classes: (1) 
DNA and RNA equilibrium binding experiments, 
in which selection is determined by the differential 
binding properties at equilibrium (for example see 
Murtin et al., 1989; Kinzler & Vogelstein, 1989,1990; 
Blackwell & Weintraub, 1990; Pollock & Treisman, 
1990; Rebar & Pabo, 1994); (2) DNA and RNA 
binding experiments in which selection is based on 
differential on and/or off rates not in equilibrium, 
as in a column binding experiment (Tuerk & Gold, 
1990; Lin et al., 1994); and (3) DNA and RNA 
cleavage-release experiments in which selection is 
determined by the reaction rates of the DNA or 
RNA catalyst (Joyce, 1989a,b; Beaudry & Joyce, 
1992; Bartel & Szostak, 1993; Breaker &Joyce, 1994). 
There are two experimental characteristics that 
effectively define these different classes of selec- 
tion-amplification experiments, and it is these 
characteristics that determine how our results can 
be applied. The first of these is equilibrium. Our 
analysis uses the simplifications made possible by 
the equilibrium assumption to express the prob- 
ability of isolating the strongest binding molecules 
in terms of the set of equilibrium binding constants. 
These considerations will apply equally to DNA or 
RNA, double or single-stranded. When we shift to 
a non-equilibrium situation, however, as in class (2), 
above, the formula for K no longer applies, and f 
must be calculated for the specific experimental 
situation, but the remainder of the analysis carries 

For the class (3) cleavage-release type of 
experiment f must now be interpreted to be the 
probability that, during the reaction time allowed in 
the experiment, a molecule in group i is released. 
This is in turn directly related to the catalytic 
constant specified by the sequence of group i. This 
constant plays essentially the same role as the 
specific binding affinity but the time interval 
allowed for the cleavage reaction plays the role of 
the protein concentration in the equilibrium binding 
experiments. To get the maximum specificity, the 
time interval must be kept short, so that relatively 
few molecules achieve cleavage during the interval. 

1 

- 
- through. 

The experiment is not in equilibrium, of course, so 
that the relationship has the same monotonicity, but 
is not precisely the same relation. This similarity can 
be best seen in the extremes. If the protein 
concentration or the time interval is extremely long, 
then a large fraction of the molecules are selected 
whatever the spectrum of specificities. If the 
interval is extremely short, then very few molecules 
are selected, making the experiment difficult or 
impossible, but those are selected primarily by their 
specific binding or catalytic properties. 

The relationships derived in this paper for the 
relatively simple case of equilibrium selection can 
be extended to encompass all of the above 
experimental situations and probably many others 
for which the selection-amplification process is 
central to the experiment. This extension of course 
depends on constructing a model of specific 
experimental situation, such as we have given for 
protein-DNA interactions. 
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Appendix 

Proof of theorem (1) 

After the first selection step, a DNA molecule is 
selected with probability f and not selected with 
probability f =  1 - f .  Let S1 be the number of 
molecules selected. Then the generating function of 
S1 is: 

ExSl = f x  + f ,  
and 

E ( S I )  = f ,  Vur(S,) = ff. 
In the PCR amplification step, the number of 

DNA molecules T, generated from one molecule 
after I PCR cycles is a branching process. After one 
PCR cycle, a DNA molecule generates two copies 
with probability h and one copy with probability 

Modeling in Vitro Selection-Amplification 

1 - h. Therefore, the generating function of TI is 
Ax2 + Xx. From the general theory of branching 
processes, we know the generating function h l ( x )  of 
TI satisfies the following recursive equation: 

h o b )  = X ,  

hi+l(X) = hr(hx2 + X X )  = hh:(x) + Xhl(X), 

I=0,1,2,  . . . .  (AI) 

The expectation and variance of 7" are: 

E(TI) = (1 + A)', 
Var(T,) = (1 - h)(l  + h)'-l((l + 1)' - 1). 

Therefore, the number of DNA molecules after the 
first experimental cycle, N,, is: 

SI 

Nl = 1 TI", 
i = l  

where Tfl, i = 1,2, . . . are i.i.d. and have the same 
distribution as T,  . Thus, the generating function of 
N, is: 

The expectation and variance of N1 are: 

E(Ni) = E(Si)E(Ti) = f ( l  + A)', 
and 

Var(Nl) = E(S1)Var(Tr) + Wzr(Sl)(E(Tr))2 

=f(l -h) ( l  + h)'-l((l +A)'- 1) +ff(l +h)2' 

= f ( l  + h)'-'[(2 - f - fhX1 + h)' + h - 11. 
After m selection-amplification cycles, the 

process of in vitro selection-amplification produces 
a random number of DNA molecules, N,. Note 
that {N,, m > l }  forms a branching process. From 
the general theory of branching processes, the 
generating function g,(x) of T,  satisfies the 
following recursive equation: 

go(x) = x ,  

g m + l  ( x )  = g m  (gl ( x ) )  = g m  ( fh + j9, 
m = 0 , 1 , 2  , . . . .  

The expectation and variance of N,,, are: 

E(N,) = (E(N1))" =f"(l + A)", 
Vur(Nl)Am-'(Am - 1) 

A - 1  Vur(N,) = 

(1) and (2) of the theorem is proven. 
Part (3)  of the theorem follows directly from the 

standard theory of branching processes (Harris, 
1963). 

(4) For any I such that f(1 + 1)' d 1, we have q1 = 1. 
If f(l + A)' > 1, then qr < 1 and 41 is the unique 
solution of x = gl"(x) = f + j h l ( x )  in @,I), x < gl ( x )  
when x < 41 and x > gl(x) when x > qr (Harris, 1963). 

L 
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Since h l ( x )  is increasing in x, we have: 

hI+lCX) = hl(hX2 + Xx)  <hr(hx + Xx) = h f ( X ) .  

Thus: 

41.1 =g!'+')(qi+i) = f + f i i + i ( q i + i )  

< f + f h r  (qr+i) = g!') (91+1). 642) 
Therefore, ql+l < ql and liml + m91 = c < 1 exists. From 
equation (A2) we have: 

c = f +  f lirn hl(ql) .  
I - C C  

Next we prove liml, ,hl(q1) = 1. First we prove 
liml+chl(x) = 0, for any 0 < x < 1. 

By the recursive equation for hl(x), h f ( x )  is 
decreasing in 1 and is bounded. Therefore, 
lim, + ,hr(x) = d < 1 exist and from equation (Al) we 
have: 

d = ?d2 + U. 
. Therefore, d = 0. 

Now choose E > 0 such that c + E < 1. Then: 

lim hl ( q I )  d lim hl (c + E) = 0. 

Therefore, we have c = f and theorem (1) is proven. 

' 
1-00 1-00 

.L 

Proof of corollary (1) 

(1) For each molecule in group i, it vanishes with 
probability f i  as rn then 1 tends to infinity Because 
all the molecules are selected and amplified 
independently, all the group [1,91 molecules vanish 
in subsequent population with probability 

fi f? 
1 = 1  

as rn then 1 tends to infinity 
(2) On the set that Sg'#O for all rn, there exists 

a minimum io d 3 such that N?) # 0 for all rn. From 
theorem (1) we have: 

i # io, 

as rn tends to infinity and Wi, # 0 on the set that N,$) 
does not vanish. Therefore: 

lim S g )  /Siw = 1 

i.e. on the set where ( S y ) # O ) ,  a randomly chosen 
molecule is from groups [l, 91 almost surely as rn 
tends to infinity From part (1) of this corollary we 
have: 

- 
m-m 

i = l  

Corollary (1) is proven. 

Proof of theorem (2) 
(1) From equation (4), in the main text, we have: 

which proves (1). 
(2) Let 

p = 1 , 2  ,..., k-I. 
It is easy to check from the conditions of the 
theorem that: 

2 - $0) . '(01 , - p I b+l = $ + I .  I 
Then, from equation (4), in the main text, we have: 

and 
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Then, we have: 

= 3 exp(-(iSn + 6/2)) + 1. 

Similarly we can prove: 

Similarly 

21 = 3 exp(-hl + exp(-62)g1-~. A6) 
In order to solve the system of difference equations 
(A5) and (A6), we want to find a number a and a 
corresponding number c such that: 

g1 + ug, = c(g1-1 + agr-I ). (A7) 
Using equations (A5), (A6) and (A7) and setting the 
coefficients of gl-l and equal, we have: 

1 + a exp(-62) = c, 
3 exp(-Zi2) + a3 exp(-6]) = uc. 

Therefore: 
SI = 3 exp(-(61 + 6/2)) + exp(-6d. 3 exp(-6,) + 3a exp(-6]) = a ( l  + a exp(-62)); 

that is: From equation (A4), we have for 2 < 1 < k - 1: 
u2 + exp(tj2)(l - 3 exp(61))a - 3 = 0. (AB) 

Equation (AB) has two solutions. Let ul < ul be the 
two solutions of equation (A8). Then from equation .i 

gr = C exp(-m P(yk-I <iF I ik-I+l )gr- dik-I+d)) 
'X-l+l 

= 3 exp(-62)gl-l + gr-l. (A5) (A7) we have: 
i 

Solving this system of equations, we have: 

From equation (A3), we have: 

(I%:)-' = gk-l(il)exp(-mPol(il)/2) 

= gk-l + 3gk-1 exp(-6/2). 

I ,  

Combining equations (A9) and (AlO), we complete the proof of theorem (2). 
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