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1. Introduction 

The biological sciences have undergone a revolution in the last dozen years. Al- 
most every edition of a major newspaper reports some new discovery in biology, 
often with medical and/or financial implications. Biologists now have the ability 
to rapidly read and manipulate DNA, the basic material of life that makes up 
chromosomes and is the camer of genetic information. The reading of DNA is 
called sequencing, since the scientists are determining the linear sequence of bases 
along the DNA molecule. The bases or alphabet of DNA is adenine (A), guanine 
(G), cytosine (C), and thymine (T). These bases, joined to a sugar-phosphate 
backbone, are linked together in a chain to form DNA. Frederick Sanger and 
Walter Gilbert independently developed procedures for the rapid sequencing of 
long segments of DNA molecules. They received the Nobel Prize in 1980 for their 
discoveries. Sanger, incidentally, was earlier the first to determine the amino acid 
sequence of a protein, insulin. 

Rapid DNA sequencing has caused an information explosion. It was only in 1953 
that a complementary double-helical structure was postulated for DNA. By 1975 
only a few hundred bases had been sequenced. In Spring 1994 DNA sequences are 
collected in international databases and sequences totaling about 200 million bases 
are known. These sequences come from various locations in the genomes of a wide 
variety of organisms. (A genome holds all the genetic information of an organism.) 
The sequences vary greatly in size. A long continuous sequence that has been 
determined to date is that of human cytomegalovirus which is 229354 bases long. 

Early in this century, Fisher, Haldane and Wright did fundamental work in prov- 
ing that the Mendelian model of genetics, with discrete alleles, is rich enough to 
generate the seemingly continuous range of phenotypes observed in nature. This 
might seem almost trivial in light of today’s emphasis on discrete mathematics, but 
it was by no means obvious at that time. Their mathematical work in population 
biology led experimental biology. Today mathematical scientists lag far behind the 
experimental biologists as they read the basic material of the gene and directly test 
hypotheses about the nature of life. There has developed a small field of mathemat- 
ical and computer sciences to assist the molecular biologist in his endeavor. Most of 
this mathematical development is about discrete structures. See Waterman (1989). 

Increasing attention is being given to the mathematical and computational as- 
pects of molecular biology because of the human genome project. This project can 
be viewed as directed toward sequencing all the DNA of humans and other organ- 
isms. While 200 million bases of DNA have been sequenced in pieces that average 
about loo0 bases long, the genome of even the bacterium E. coli is about 5 million 
bases. Man has a genome of 3 billion bases. Presently, the efforts center on im- 
proving the mapping and sequencing technology so that such sequencing projects 
can be more easily accomplished. Even so, using today’s technology, genomes of 
the size of those of E. coli will be sequenced within the next few years. A number 
of analytical problems are concerning people who are involved in these studies. 
First of all, the puzzles of assembling map and sequence information from the ex- 
perimental results are large, combinatorial problems. In addition, the vast quantity 
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of data will severely tax our current methods for finding the relationships between 
the sequences that are determined 

In this chapter some combinatorial aspects of molecular biology will be explored. 
Section 2 discusses sequence alignments where certain sequence relationships are 
studied, both by enumeration and algorithms. The next section gives some results 
on enumeration and algorithms for secondary structures. The final section treats 
restriction maps of DNA and their relationship with the human genome project. 
The emphasis is on the description and straightforward solution of some of the 
related problems. Recently this general area has become increasingly active. 

2. Sequence alignments 

Evolution is a key concept in biology. To understand living organisms, biologists 
study the relationships between the organisms and their environments. Important 
inventions, such as the eye, are maintained and improved on throughout history. 
When these concerns of understanding the how and why of biology are brought 
to a molecular level, the evolutionary mode of thinking is extremely important. 
Certain machinery such as that involved in DNA to protein translation (the genetic 
code) is present in all organisms and works everywhere in essentially the same way. 
These mechanisms are so basic to life and so much additional biological activity 
depends on them that they cannot be modified except in very minor ways. 

Other more recent ‘inventions’ at the molecular level allow us to understand 
the difference between life forms in terms of their history. For example, organisms 
with a nucleus (such as humans) are classified as eukaryotes while those without a 
nucleus (such as E. coli) are classified as prokaryotes. Finer and finer distinctions 
can be made, and classifying organisms goes hand in hand with understanding how 
they function. 

Something of the same approach is taken by biologists in performing DNA 
sequence analysis. Given a sequence x, what known sequences are related to it 
and what are the relationships? Before this question can be explored we need to 
understand what evolutionary events can take place during sequence evolution. 
The simplest event is substitution, where one nucleotide is replaced by another, as 
when A is replaced by C for example. Nucleotides can be inserted into or deleted 
from a sequence, either one nucleotide at a time or in blocks. Insertions and 
deletions greatly complicate the analysis. Inversions and duplications of a block of 
sequence make things even more difficult. 

It is common in molecular biology to try to discover the function of a DNA 
or protein sequence by relating it to other sequences. Frequently this means a 
biologist will compare a sequence with a large number of previously analyzed 
sequences; the comparison is done using a computer using algorithms as described 
below. These comparisons are usually done with sequences taken two at a time. 
Often there are families of related sequences where any pair might have a fairly 
weak relationship. Therefore there is a good deal of interest in comparison of more 
than two sequences, often in comparison of several hundred sequences. 

- 
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In most sequence analysis the sequence transformations are restricted to substi- 
tutions, insertions or deletions. The biologist represents his findings in an alignment 
of one sequence written over another, and the sequence transformations can be 
read from the alignment. For example, 

ATTA-CGG 
-CGACC-G 

is an alignment of ATTACGG with CGACCG. From the point of view of taking 
the top sequence as the “original” sequence, this alignment shows the events in an 
evolution of x to y .  There has been the deletion of an A and a G,  the substitution 
of C and G for the two T’s, and the insertion of a C. There is no history recorded 
in an alignment, since there is no information about the timing of the events 
relative to one another nor is it known which sequence “came first”. In fact, some 
other sequence is likely to have been the ancestor of both sequences. In the next 
section we consider some combinatorics motivated by considering the history of 
the events, then we discuss sequence alignment combinatorics and algorithms. 

: 

2.1. Shuffles and alignments 

Let x = ~ 1 x 2  . xn and y = yly2 .  - - ym be two sequences. The problem under con- 
sideration here is to count the histories for a special type of evolution: delete all 
the letters of x and insert all the letters of y. The deletion/insertion events take 
place one letter at a time, the events can be performed in any order and it is possi- 
ble to track each nucleotide. Thus for simplicity it is assumed that all n + m letters 
are distinct. The results described in this section are from Greene (1988) where 
material of independent combinatorial interest also appears. While this is a very 
special case of molecular evolution, the possible histories between two sequences 
are of much biological interest. Greene’s work is the first mathematical study of 
this complex problem. 

Define an order by s 6 t if s is a subsequence of t. Let {s} denote the set of 
letters in the sequence s, and s) t  denote the sequence s restricted to the set {t}. 
A sequence s is on a path between x and y if {s} c {x} u {y }  with SIX 6 x and 
sly 6 y. This set of sequences is denoted W(x,y )  and was noted by Greene to be 
shuffles of subsequences of x and y. If we maintain the idea of going “from” x “to” 
y ,  there is a natural partial order on W(x,y) :  

SIX 2 tlx, 
sly < t ( y ,  s 6* t if { s ( t  = tls. 

All sequences of the same length have the same order structure so we set 
W ( x , y )  = W(n, m). For any n and m, W(n, m) is a lattice. 

There are some natural combinatorial questions about W(n,  m) such as deter- 
mining O(n,m), the number of elements. Greene answers virtually all of these 
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questions. We set Cn,,,, equal to the number of maximal chains in W ( n , m )  and 
define 

This last function is closely related to the Jacobi polynomials and both of the 
quantities of interest can be expressed in terms of it. 

.(ln,m = 2n+m@n,m(1/4), 
Cn,m = (n + m)!@n,m(l/2), 

Many interesting cases remain to be studied. Simply changing one sequence to 
another by deleting all letters of one sequence and inserting all letters of another 
is not realistic biology. The extension of Greene's work to allow matching and 
mismatching letters remains to be made; it is likely to be extremely difficult. 

2.2. Sequence alignment 

In this section we will consider alignment of x = ~ 1 x 2 .  . . xn  and y = yly2 .  ' y n -  The 
sequences are the same length to avoid non-essential complications of the results. 
Both algorithms and combinatorics for alignment are easy if no insertions and 
deletions are allowed. There are simply 2n + 1 ways to align the sequences, one 
over the other. Each of these alignments can be evaluated for quality of matching 
by direct examination of the overlapping portions. Therefore the best alignments 
can be found in O(n2) time. While this chapter is not intended to be a survey 
of algorithms for alignments, this area is discussed as it is of great importance 
in biology. Also, it motivates some useful combinatorics. Insertions and deletions 
can be included in sequence alignments and best alignments can still be located 
in O(n2) time. Reviews of the field have appeared in Kruskal and Sankoff (1983) 
and in Waterman (1984, 1989). 

An alignment can be viewed as a way to extend the sequences to be of the same 
length L, equal to the overall length of the alignment. The alignment shown above 

ATTA-CGG 
-CGACC - G 

has length L = 8. Note that the alphabet for the extended sequences has been 
increased by the symbol "-". 

We now turn to asymptotics for the number of alignments of two sequences of 
length n. The first results for this problem related the number of alignments to 
the Stanton-Cowan numbers (Laquer 1981). One way to count alignments is to 
identify aligned pairs (;) and simply to choose subsets of x and y to align. This 
gives 

, 
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alignments if x has n letters and y has m letters. Recent work has generalized these 
results. Biologists find an alignment more convincing when the matched segments, 
that is segments without insertions or deletions, occur in larger blocks. Let g(b, n) 
be the number of alignments where the matched sections are of length at least b. 
The following appears in Griggs et al. (1986): 

For b 2 . 1  define 

h(x) = (1 - x)2 - 4x(xb - x + 1 ) 2  

g (b ,n)  N (-ybn-'/2)p-n 

and let p = min{x: h(x) = 0).  Then 

as n + 00, 

where Yb = ( p b  - p + l ) ( - ~ p h ' ( p > ) - ' / ~ .  The proof uses generating functions for 
g(b,n).  We remark that the result of Laquer (1981) is given by the above result 
with b = 1. 

Next are some results on f ( k , n ) ,  the number of alignments of k sequences of 
length n (Griggs et al. 1990). Using combinatorial argument to give the exponential 
growth rate: 

For fixed k 2 2, 

lim lnCf(k, n) ) /n  = ln(ck), 
n+x 

where ck  = (2'lk - l)-k.  It is also possible to show that the asymptotic behavior 
of ck is equivalent to that of 2-1/2( ln2)-kkk.  

Employing a saddle point method gives more precise asymptotics for f ( k , n ) .  
For fixed k 2 2 let r = (2llk - l ) k .  Then 

f(k,n) = [r -n n -(k-')/2] [( , kT(k -1 ) /2~ ' /2 ) - '2 (k2-1 ) /2k  + (3(n- ' /2) ]  . 

From the asymptotics given here it is clear that it is not possible to just look 
at all possible sequence alignments and pick the preferred ones. It is necessary to 
define an objective function for "good" alignments. Suppose a function s(a, b) is 
given to score the alignment of a and b from the sequence alphabet, and that the 
problem is to find the highest scoring alignments. This score is given by 

where xi* and y; are the jth members of the extended sequences. 
A simple dynamic programming method can be used to find the maximum scor- 

Let x = ~ 1 x 2 . .  ' x n  and y = y1y2 s ( - ,yk) ,  Sop = 0, Si,o = 
. ing alignment. 

'yn. Set So,j = 
C l < k g i  s ( x ~ ,  -), and Si,j = S ( x 1 ~ 2  * * ~ i , ~ 1 ~ 2  * * y j ) .  Then S(X,Y) = Snp and 

Si-l j  + s ( x i ,  -1, 
Si-l,j-1+ s(xi ,Yj ) ,  

+ s(- ,Yj) .  
Sij = max 
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The above algorithm aligns two sequences in O(n2).  time and space. Letters 
are inserted or deleted in blocks in biology. For general weighting of these “gaps” 
the dynamic programming algorithm has time O(n3) (Waterman 1986), while linear 
weighting retains time O(n2). It can be argued that the weighting should be concave 
where the comparisons can be made in almost the same time. See Waterman (1989), 
Miller and Myers (1988) and Galil and Giancarlo (1989). 

For the case of k sequences of length n the simple algorithm generalizes to 
require 0(2%tk) time and space. This is computationally impractical and several 
different approaches have been taken to solve this important problem; see Wa- 
terman (1986) and Waterman and Jones (1990). Some recent approaches to this 
important problem are now described. 

Carrillo and Lipman (1988) consider the generalization of dynamic programming 
alignments to k sequences. They observe that the score of the projection of a 
multiple alignment onto two of the sequences cannot be more than the score of 
those two sequences aligned by themselves. They exploit this observation to greatly 
reduce the time and storage of multiple sequence alignment. As many as 9 or 10 
sequences might be aligned by their technique. 

Another approach to k-sequence alignment is to build up the multiple alignment 
from two sequence alignments. It is obviously possible to begin with the best- 
aligned sequence pairs and obtain an unsatisfactory result in the end, but some 
groups have made useful algorithms based on this approach. In Waterman and 
Perlwitz (1984) some connections with geometry are explored. Taylor (1987) and 
Vingron and Argos (1989) have excellent programs along these general lines. 

Finally in Waterman (1986) and Waterman and Jones (1990) a different approach 
is taken. The algorithm matches short words of set length and degree of mismatch. 
The words can be matched within a fixed amount of position offset and total score 
is maximized where a score is given to each matching word. 

. 

, 

3. Secondary structure 

When RNA is transcribed from the DNA template, it is single-stranded. That is, 
RNA does not possess a matching or self-complementary strand to pair with it. The 
single-stranded molecule can fold back on itself and when regions of the molecule 
are complementary they can become double-stranded or helical. The pairing rules 
for the sequences are analogous to those for DNA except that T becomes U 
(uracil) in the RNA alphabet: A pairs with U and G pairs with C. In addition, 
frequently G is thought to pair with U .  Biologists call the two-dimensional self- 
pairing secondary structure. Without reference to an actual RNA sequence it is 
an interesting problem to enumerate the distinct secondary structures that are 
possible under various restrictions suggested by biology. The number of structures 
for a sequence of length n satisfies a recursion related to the Catalan numbers. 
There is even a vector recursion that is “Catalan-like”. 

Next, a definition of secondary structure is given. Label n points on the x-axis: 
1,2, . . . , n. The points correspond to the nucleotide sequence of the RNA. Choose 

s 

= 
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a subset of 2 j  points, 0 < 2j  < n. The 2 j  points are arranged into j disjoint pairs 
and the pairs are connected by arcs, subject to the following conditions: 

1. Adjacent points are never connected by an arc. 
2. Any two points connected by an arc must be separated by at least m points. 
3. Arcs cannot intersect. 
Condition 2 comes from restrictions on the bending of the sugar-phosphate 

backbone. In RNA m = 3 or 4 is realistic. Condition 3 comes from eliminating 
structures with “knotted” loops. There are a few examples in biology where con- 
dition 3 is violated and no combinatorics has yet been done for those cases. 

In the next section, computer prediction of secondary structures for RNA se- 
quences is briefly discussed. As was the case for sequence alignment, the associated 
dynamic programming algorithms are closely related to enumeration of the con- 
figurations. 

3.1. Prediction of secondary structure 

Several attempts were made on the secondary structure “problem” before dynamic 
programming was first proposed. The basic problem is to find the minimum free- 
energy structure where negative free energy is assigned to the base pairs and 
positive energy is assigned to end loops, unpaired bases in helical regions, and so 
on. The energy rules are not too well understood. The subject is reviewed in Zuker 
and Sankoff (1984) and here a very simple version of the problem is solved: find 
the secondary structures that have the maximum number of base pairs. 

Theorem 3.1. Let x = ~ 1 x 2 .  ‘x,, be a sequence over {A ,  C ,  G ,  U } ,  1 < m, and p : 
{A ,  C ,  G ,  U }  x {A ,  C, G ,  U }  4 {0,1}. Define F( i ,  j )  = maximum number of base 
pairs of all secondary structures over x i . .  ‘x i ,  where a pair can be formed if and 
only if p ( . ,  .) = 1. Set F(i ,  j )  = 0 whenever j 6 m + i .  Then 

F(i ,  j )  = max { F ( i ,  j - I), [F(i ,  k - 1 )  + F ( k  + 1, j - 1 )  + l]p(xk, x j ) ;  

l + k + m < j } .  

Proof. The proof of the recursion is based on the observation that either x, is 
unpaired or it is paired with a base xk. To satisfy the constraints, m 6 j - k - 1. 
The boundary conditions simply reflect the fact that no pairs can form unless the 
constraint is satisfied. 

The recursion can be performed in O(n2) time and space. Unfortunately the 
structures predicted by this algorithm usually do not correspond to those known to 
exist in nature and more complicated algorithms must be employed. A very useful 
algorithm has been devised, again based on dynamic programming, that takes time 
O(n3) and O(n2) space (Zuker and Sankoff 1984). This method employs a shortcut 
and until recently no polynomial-time solution was known for the general problem. 
In Watermand and Smith (1986) a general solution was given that takes time O(n4) 
and space O(n3). Since sequences of interest are often 5000 long and range up to 
20000, there is a need for more work in this area. See Galil and Giancarlo (1989). 
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3.2. Counting secondary structures 

Let S,(rn) = S, be the number of secondary structures possible for a string or 
sequence of length 0. For this discussion the structures need only satisfy the con- 
ditions stated above - no sequence-specific pairing is considered. The results are 
taken from Stein and Waterman (1978) and Howell et al. (1980). 

Theorem 33. For 1 < m, SO = S1 = . . . = Sm-l = 0 and S, = 1 are boundary val- 
ues. Then 

sm+j = Sm+j-I + sm+j-2 + . . . + s j - 1  + c sism+j-2-i  
O<i<m+j-2 

Proof. The proof is similar to the proof of the algorithm given for Theorem 3.1. 
Consider adding the base m + j .  If base rn + j does not pair we have Sm+j-l struc- 
tures. Otherwise the base pairs with a base with subscript i + 1 from 1 to m + j - 2 
and the number of structures is the product of the possibilities from the strings 
1 . . i and i + 2 .  . rn + j - 1. The boundary conditions give the recursion in the 
above form. 

If we set rn = 0 and consider the above recursion, 

Sn(O> = S, = S,-I+ s j s n - 2 - j  
O<j<n-2 

where Sn(0)  = 1. This recursion generates the Motzkin numbers (Sloan 1973) and 
they have an explicit solution: S,(O) = C j 2 0 c j + l  (G). This formula is a consequence 
of Theorem 3.3 below, where we define the Catalan numbers c,+l by 

Cj+l = 0' + 1)-l(?). 

Next define the convolved Fibonacci numbers f n ( r ,  k) by 

(1 - x - x2 - . . - xr)pk  = Cfn(r, k)xn.  
n>O 

Theorem 33. For 1 < m, set 

g(x )  = cs .xn.  
n>O 

Then 

j 2 0  n)O 

This relation can be derived by squaring the generating function, using the re- 
currence relation with some manipulations. Next asymptotics for s, are presented. 
The proof is based on the folklore theorem of Bender (1974). 
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- rm+l)s + rm. Let r > 0, s > Theorem 3.4. Define F ( r ,  s )  = r2s2 - (1 - r - r2 - 
So be the unique real solutions of the system F ( r ,  s )  = 0, Fy(r,  s )  = 0. Then 

The following special cases hold: 
I. s,, (0) N ,/37@3n-3/23n. 

2. s,,(I> - J ; 1 5 + 7 J s N o n - 3 / 2 ( ( 3  + &)/2)". 

The behavior of S,,(m) is governed by r(m)-" ancl r (m)  can only be numexally 
determined for m 2 3. Still, it can be shown that r (m)  is monotonically increasing 
and r (m)  + 1/2 as m + 00. 

3. ~ ~ ( 2 )  J;-n-3/2(1 + JZ).. 

Next a closer examination of S,,(m) = S,, is made. Set 

R" = (rgn, r;, rz", . . .) 
where r; = 1 and rr is the number of secondary structures with i base pairs for a 
sequence of length n. Also define a * b = c by 

c k  = a ibk- i ,  
O<i<k 

and let [(ao, a l ,  . . .) = (O,ao,al,.  . .). 
Theorem 3.5. Set RO = R1 = R2 = (l,O, 0, .  . .). Then for n 2 2, 

l<j<n-1 

Proof. There can be no pairs for n < 2, so the boundary conditions hold. Next, 
the number of structures with i + 1 pairs for a sequence of length n + 1 is derived. 
If base n + 1 is unpaired, structures exist with i + 1 pairs. If instead base n + 1 
is paired with base j ,  then to have i + 1 pairs i additional pairs are needed. If k 
pairs exist for bases 1 to j - 1, then i - k pairs must exist for bases j + 1 to n. 

4. Maps of DNA 

For many years maps of the relative location of genes on chromosomes have been 
constructed by a technique known as linkage analysis. Before 1980 it was required 
that the genes have observable mutations available as genetic markers. Since fruit 
flies have many visibly distinguishable mutants, the relative locations of many of 
the corresponding genes have been mapped. Bacteria and yeast have also been 
extensively mapped. In 1980 it was realized that measurable changes in the DNA 
itself can be used for genetic mapping (Botstein et al. 1980). The changes are in the 
lengths of restriction fragments and the resulting mapping techniques have been 
very important in localizing genes associated with major diseases. 
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Site-specific restriction enzymes were discovered in 1970 in bacteria (Nathans 
and Smith 1975). These enzymes cut double-stranded DNA at the locations of short 
specific patterns, usually from four to six letters in length. The restriction enzyme 
HhaI cuts at GCGC while EcoRI cuts at GAATTC. Mutations at a single letter 
of DNA can cause the appearance or disappearance of a restriction site. It is easy 
to see that insertions and deletions of a segment of DNA can also cause variation 
in the restriction sites. The fragment lengths then become the genetic markers for 
linkage analysis. This is a quite active research area and there is currently some 
mathematical activity in devising efficient algorithms (Lander and Botstein 1986). 

In linkage analysis, map distance might not relate linearly to physical distance 
or number of bases. Soon after the discovery of site-specific restriction enzymes 
biologists learned to construct another type of map known as a restriction map. 
In restriction maps all the enzyme sites are approximately located on the DNA. 
Such maps usually cover a few thousand bases of DNA but much longer stretches 
of DNA have been mapped (Isono et al. 1987). This section will discuss in some 
detail the difficulties in restriction map construction. First, restriction maps are 
related to interval graphs. 

, 

, 

4.1. Maps as interval graphs 

Interval graph theory began with Benzer’s study of the structure of genes in bac- 
teria (Benzer 1959). Benzer was able to obtain data on the overlap between pairs 
of fragments of DNA from a gene. He was successful in arranging the overlap 
data in a way that implied the linear nature of the gene. Soon after this, Fulkerson 
and Gross (Golumbic 1980) studied interval graphs and incidence matrices; that 
study is closely related to Benzer’s analysis. Today the linear nature of the gene is 
well established but interval graphs also arise in connection with restriction maps 
(Waterman and Griggs 1986). 

Representing an interval of DNA as a line segment, the biologist indicates the 
location of restriction sites along the line segment. Circular DNA does occur in 
nature but this discussion is restricted to the linear maps of two restriction enzymes. 
Next the two restriction enzymes are designated by A and B. Figure l a  gives an 
example of a two-enzyme A / B  map while the single-enzyme maps appear in fig. 
lb. Biologists are able to measure the lengths but not the order of the intervals 
between sites, so they are labeled arbitrarily. The intervals are called restriction 
fragments and form the nodes of our graphs. 

Label the ith fragment from enzyme A (B) by Ai (Bi).  Define the incidence 
matrices Z(A, B), Z(A, AIB),  and Z(B, A / B )  where, for example, Z(A, B)i,, = 1 if 
Ai n B, # 0 and 0 otherwise. It is sometimes experimentally feasible to determine 
Z(A, A / B )  and Z(B, A / B ) .  It is then a simple matter to compute Z(A, B). 

Proposition 4.1. Zf  ZT is the transpose of Z, then 

c 

1 

Z(A, B )  = Z(A,A/B)ZT(B,A/B). 

Proof. The result follows from the observation that the (i,j)th element of the 
matrix product is equal to the number of A / B  intervals in both Ai and Bj. 0 
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I I I 1 I 

A B A A B 
I AIB (4 

I I I 

A A A 
A 

I I 

E B 
B 

Figure 1. The two enzyme A/B map (a) and the single enzyme (A and B) maps (b). 

Constructing a restriction map from Z(A, B) is equivalent to finding an interval 
representation of a bipartite graph G(A, B) defined in a natural way. The vertex 
set V ( A ,  B) is the union of the set of A intervals with the set of B intervals; the 
edge set E(A, B) consists of those sets {A i ,  B j }  where Ai n Bj # 0. If we delete 
the endpoints of the fragments from the line segment, we obtain an open-interval 
representation of G(A,  B). Restriction maps can be characterized by known results 
on interval graphs (Golumbic 1980). 

Theorem 4.2. The following are equivalent: 
1. G(A, B )  is a bipartite graph constructed from a restriction map. 
2. G(A,  B )  is a bipartite interval graph with no isolated edges. 
3. Z(A, B )  can be transformed by row and column permutations into a staircase 

form with each row or column having 1’s in precisely one of the steps. 

With the identification of G(A, B) as an interval graph, it is routine to adapt a 
general algorithm of Booth and Leuker to recognize G as an interval graph and 
to give its representation in linear time (Booth and Leuker 1976, Waterman and 
Griggs 1986). As is the case in many problems in biology, the overlap data is usually 
given with errors. Then the problem of finding the “interval graph” becomes much 
harder. 

4.2. Constructing maps 

It is experimentally possible to apply restriction enzymes singly or in combination, 
and to estimate the lengths of the resulting fragments of DNA. The problem is 



1996 M.S. Waterman 

to construct the map of location of the enzyme sites along the DNA from this 
fragment-length data. The results are from Goldstein and Waterman (1987). 

4.2.1. Simulated annealing 
Here we consider the simplest problem of interest that involves linear DNA, two 
restriction enzymes, and no measurement error. We will refer to this problem as 
the double-digest problem or problem DDP. A restriction enzyme cuts a piece of 
DNA of length L at all occurrences of a short specific pattern and the lengths 
of the resulting fragments are recorded. In the double-digest problem we have as 
data the list of fragment lengths when each enzyme is used singly, say, 

> 

A = {ai: 1 6 i 6 n from the first digest}, 
B = {bi:  1 6 i 6 m from the second digest}, 

as well as a list of double-digest fragment lengths when the restriction enzymes 
are used in combination and the DNA is cut at all occurrences specific to both 
patterns, say 

C = {ci: 1 6 i 6 n12); 

only length information is obtained. In general A, B, and C will be multisets; that 
is, there may be values of fragment lengths that occur more than once. We adopt 
the convention that the sets A, B, and C are ordered; that is, ai 6 aj for i 6 j, 
and similarly for the sets B and C. Of course 

since we are assuming that fragment lengths are measured in number of bases with 
no errors. 

Given the above data, the problem is to find orderings for the sets A and B such 
that the double-digest implied by these orderings is, in a sense made precise below, 
C. This is a mathematical statement of a problem originally solved by exhaustive 
search. 

The double-digest problem can be stated more precisely as follows. For permu- 
tations u E (12 - . - n ) ,  p E (12 - em), call (u, p )  a configuration. By ordering A and 
B according to u and p, respectively, the set of locations of cut sites is obtained * 

The set S is not allowed repetitions; that is, S is not a multiset. Now label the 
elements of S such that 

S = (si:  0 < j < n1,2} with Si < S j  for i 6 j. 
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The double-digest implied by the configuration (a, p)  can be defined by 

C ( a ,  p )  = {ci(a,  p ) :  ci(a, p)  = si - si-l for some 1 < j < n1,2}, 

where it is assumed as usual that the set is ordered in the index i .  The problem 
then is to find a configuration (a, p)  such that C = C ( a ,  p). As discussed below, 
this problem lies in the class of NP-complete problems conjectured to have no 

In order to implement a simulated annealing algorithm, an energy function and 
a neighborhood structure are required. The energy function is a chi-square-like 

* polynomial-time solution. 

* function 

f(a, P )  = (ci(a, P )  - ci)2/ci. 
1 <i<nl,z 

Note that if all measurements are free of error then f attains its global minimum 
value of zero for at least one choice (a ,p) .  Following Goldstein and Waterman 
(1987), we define the set of neighbors of a configuration (a, p )  by 

N ( a ,  P )  = ((7, PI: 7 E N ( 4 )  u {(a, V I :  V E N ( P ) } ,  

where N ( p )  are the neighbors used in studies of the travelling salesman problem 
(Bonomi and Lutton 1984). 

With these ingredients, the algorithm was tested on exact, known data from 
the bacteriophage lambda with restriction enzymes B a d 1  and EcoFU, yielding a 
problem size of [AI! x IBl! = 6!6! = 518400. See Daniels et al. (1983) for the com- 
plete sequence and map information about lambda. Temperature was not lowered 
at the rate c/ log(n) as suggested by the theorem in Geman and Geman (1984), but 
for reasons of practicality was instead lowered exponentially. On three separate 
trials using various annealing schedules the solution was located after 29 702,6895, 
and 3670 iterations from random initial configurations. 

4.2.2. Multiplicity of solutions 
In many instances, the solution to the double-digest problem is not unique. Con- 
sider, for example, 

A = {1,3,3,12}, 

B = {1,2,3,3,4,6,}, 
C={l,1,1,1,2,2,2,3,6}. 

This problem, of size 4!6!/2!2! = 4320, admits 208 distinct solutions. That is, 
there are 208 distinct orders which produce C. We now demonstrate that this 
phenomenon is far from isolated. 

Below, we use the Kingman subadditive ergodic theorem to prove that the num- 
ber of solutions to the double-digest problem increases exponentially as a function 
of length under the probability model stated below. 
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For reference, a version of the subadditive ergodic theorem is given here (King- 
man 1973). For s ,  t non-negative integers with 0 < s < t ,  let X,,t be a collection of 
random variables which satisfy 

1. whenever s < t < u, X,,,, 6 X,,? + Xt,,,; 
2. the joint distribution of {X,,?} is the same as that of {Xs+l,t+l}; 
3. the expectation gI = E[XO,~]  exists and satisfies gI 2 -Kt for some constant 

K and all t > 1. 
Then the finite limt+OO Xo,?/t = A exists with probability one and in the mean. 

Theorem 4.3. Assume the sites for two restriction enzymes are independently dis- 
tributed with cut probabilities P I ,  p2 respectively and pi E (0,l). Let Y,,, be the 
number of solutions between the sth and the tth coincident sites. Then there is a 
constant h > 0 such that 

J 

Proof. Let a coincidence be defined to be the event that a site is cut by both re- 
striction enzymes; such an event occurs at each site independently with probability 
p1p2 > 0, and at site 0 by definition. On the sites 1,2,3,. . ., there will be an infi- 
nite number of such events. For s, u = 0,1,2,. . ., 0 < s < u we may consider the 
double-digest problem for only that segment located between the sth and uth co- 
incidences. Let y,,,, denote the number of solutions to the double-digest problem 
for this segment. 

Suppose s < t < u. A solution for the segment between the sth and tth coinci- 
dences and a solution for the segment between the tth and uth coincidences can be 
combined to yield a solution for the segment between the sth and uth coincidences. 
Thus 

ys,u 2 Ys,tYt,u. 

We note that the inequality may be strict as Y,,, counts solutions given by orderings 
where fragments initially between, say, the sth and tth coincidences now appear 
in the solution between the tth and uth coincidences. Letting 

Xs,t = - log Ys,t, 

we have s < t 6 u implies X,,,, < X,,t + Xt,,,. 

theorem. 

4.2.3. Computational complexity 
Given the definition of a restriction map as permutations of the various digest 
fragments, it is no surprise that the double-digest problem is NP-complete. See 
Garey and Johnson (1979) for definitions. 

L 
Additional technical details can be established to complete the proof of the 

1 

Theorem 4.4. The double-digest problem is NP-complete. 



Combinatorics in molecular biology 1999 

Proof. It is clear that the DDP described above is in the class NP, as a nondeter- 
ministic algorithm need only guess a configuration (a, p)  and check in polynomial 
time if C(a, p)  = C. The number of steps to check this is in fact linear. To show 
that DDP is NP-complete, the partition problem is transformed to DDF! 

In the partition problem, known to be NP-complete (Garey and Johnson 1979), 
a finite set Q, say lQl = n is given along with a positive integer s ( q )  for each q E Q, 
and we wish to determine whether there exists a subset Q' c Q such that 

Cs(q) = 4 q ) .  
4EQ' qcQ-Q' 

If CqcQ s ( q )  = 5 is not divisible by two, there can be no such subset Q'. Otherwise, 
input to problem DDP the data 

A = { s ( u ~ )  : 1 6 k 6 n}, 

B = {J/2, 5/21, 

It is clear that any solution to problem DDP with this data yields a solution to 
the partition problem through the order of the implied digest C. Therefore DDP 
is NP-complete. 

Biologists have routinely been solving DDPs for inexact length measurements. 
They of course are generally unaware of the results presented here, and search for 
the length and enzymes that allow a solution. To contribute usefully to this field 
the challenge is to find algorithms that will extend their capabilities. 
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