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Physical maps can be constructed by "hgerprint- 
ing" a large number of random clones and inferring 
overlap between clones when the fingerprinta are suf- 
ficiently similar. E. Lander and M. Waterman (Geno- 
mice 2 231-239, 1988) gave a mathematical analysis 
of such mapping strategies. The analysis is useful for 
comparing various hgerprinting methods. Recently 
it has been proposed that ends of clones rather than 
the entire clone be fingerprinted or characterized. 
Such fingerprints, which include sequenced clone 
ends, require a mathematical analysis deeper than 
that of Lander-Waterman. This paper studies clone 
islands, which can include uncharacterized regions, 
and also the islands that are formed entirely from the 
ends of clones. o IOBS Academic R-, 1n0. 

1. INTRODUCTION 

An increasing number of approaches to the physical 
mapping of genomes have been developed. A physical 
map consisting of overlapping clones that span the ge- 
nome of an organism is the goal of these approaches. 
The map is then the basis for further genetic analyses 
such as gene location or sequencing of specific regions. 
Early physical maps were constructed for Saccharo- 
myces cerevisiae (Olson et al., 1986), Caenorhabditis 
elegans (Coulson et al., 19861, and Escherichia coli (Ko- 
hara et al., 1987), and these efforts have been extended 
to many other organisms. 

While many variations have been developed, the ba- 
sic principle of many physical mapping projects is first 
to fingerprint the clones and then to infer the overlap 
of clones when there is sufficient similarity of finger- 
prints. The three projects cited above all used clone 
restriction fragment information as a basis for the fin- 
gerprint. In other approaches STSs or anchors are used 
to overlap the clones containing a given anchor. All 
of these projects have a combinatorial aspect: a large 
number of clones are chosen at random from a library 
and fingerprint data are used to infer overlap. If there 
are 10,000 clones, there are approximately (~o*.") = 
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5 x lo' pairs of clones so that the true genomic overlaps 
must be located in a large number of potential overlaps. 

Lander and Waterman (1988) gave the fist mathe- 
matical analysis of genome mapping by fingerprinting 
random clones. For fixed-length clones they model the 
fingerprinting schemes by the parameter 8, the fraction 
of clone overlap needed to detect true genomic overlap. 
They give formulas for expected number of islands, con- 
tigs (islands of two or more clones), and expected island 
length. These formulas have proved to be useful in ana- 
lyzing potential mapping strategies. Later, several pa- 
pers described the mathematical properties of genome 
mapping by anchoring random clones (Arratia et al., 
1991; Barillot et al., 1991; Ewens et al., 1991; Torney, 
1991; Marr et al., 1992). These papers required a more 
mathematically sophisticated analysis. These prob- 
lems fall under the general heading of coverage pro- 
cesses, and we recommend the excellent book by P. Hall 
(1988). 

More recently another mapping strategy has been 
proposed in which the ends of clones are characterized 
but the central region of the clone is not. See Edwards 
and Caskey (1991) and Richards et al. (1994). The easi- 
est model to picture is when the clone ends are se- 
quenced, say 500 bp at each end. Of course, it is possible 
to apply any fingerprinting scheme to these clone ends. 
Clone overlap is then inferred from end overlaps. It is 
possible to have two clones overlap where the charac- 
terized end of one clone lies in the uncharacterized 
center of another, and therefore the overlap cannot be 
detected. Variations of this scheme using end sequenc- 
ing are discussed in Chen et al. (1993) and Smith et al. 
(1994). Their results combine a physical map with the 
partial sequencing of the results from sequenced ends. 

In this paper we describe the mathematical proper- 
ties of genome mapping with end-characterized clones. 
While the overlap model of Lander and Waterman us- 
ing the parameter 8 is used, the straightforward analy- 
sis of Lander and Waterman cannot be directly carried 
over dub to the more complex statistical dependence 
between clone ends. We are only able to handle h e d -  
length clones. In the course of our work we found two 
additiopal formulas for the Lander- Waterman setting, 
which we include in Section 2. In addition, we'include 
a modification of these results for the case where there 
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is differential cloning efficiency in the genome. Then in 
Section 3.1 we study the properties of what we call 
gapped islands, where the islands consist of the over- 
lapped clones. Note that these islands can contain un- 
characterized regions, which we refer to as “gaps.” We 
are able to obtain results only for islands that satisfy 
a special condition. Then in Section 3.2 we study block 
islands, which are islands of overlapped characterized 
ends. In Section 4 we present graphs of some relevant 
quantities for certain biological examples. 

2. MAPPING BY CLONE OVERLAP 

In Lander and Waterman (1988) physical mapping 
by fingerprinting random clones is addressed. Lander 
and Waterman used a discrete model in which each 
basepair (bp) is effectively an integer. In Arratia et 
al. (1991) a related analysis is conducted for physical 
mapping by random anchors, which involves aligning 
clones in a library where they share a short DNA se- 
quence or marker unique in the genome called a se- 
quenced tagged site (STS). We present here the 
Lander-Waterman model for physical mapping by ran- 
dom clones in a continuous setting. We essentially fol- 
low the setup of Arratia et al. (19911, which models 
clone locations by a homogeneous Poisson process. This 
allows us to present the results about progress in a 
physical mapping project using the Lander- Waterman 
model of clone inserts and overlap and the gapped clone 
model of Section 3 within the same framework. Addi- 
tionally, in this section we give two new results, Theo- 
rem l(v’) and (vi), for the Lander-Waterman model. 
These results for the expected length and genomic cov- 
erage by islands of at least two members (contigs) are 
a useful addition to the earlier results. 

First we define the Lander-Waterman model and 
give some notation. For a given genome of length G, 
we assume a uniformly representative genome library 
with clone inserts of equal length L. It is convenient to 
rescale length by L,  so that clone lengths are taken to 
be LIL = 1, and the genome corresponds to an interval 
of length g = GIL. Note that in this scaled metric each 
basepair corresponds to an interval of length 11L. We 

, ‘ will use a continuous model. 
Here we will use the following symbols: 

, G = genome length; 
L = clone insert length; 
N = number of clones with right ends in (0, G); 
c = LNIG, expected number of clones covering a ran- 

T = length needed to detect overlap; 
0 = TIL; 
g = GIL; 
cr = 1 - 0 .  

Assume that clones are placed on the real line R by 
a homogeneous Poisson process with rate c = LNIG = 
Nlg. The genome corresponds to the interval (0, g) .  The 
process of the location of right ends of clones can thus 
be modeled as a Poisson process : i E Z} labeled by 

dom point; 

Note that N is now the random number of clones whose 
right ends belong to (0, g )  and that N has a Poisson 
distribution with mean cg. In formulas below, for con- 
venience N appears as a constant. Those formulas can 
be translated into probability statements if desired. 

There is a boundary effect that occurs since some 
clones with lefi ends before 0 might have right ends 
inside (0, g) ,  and some clones beginning in (0, g )  might 
have right ends greater than g .  As we will see, these 
boundary effects become negligible as we take g going 
to infinity. 

Throughout the paper almost sure convergence will 
be shown by the usual equal sign. By the ergodic theo- 
rem, e.g., we write 

limNlg = c,  
g- 

while the left side is a random variable equal to c with 
probability 1. 

Recall that for a Poisson process with rate c the inter- 
arrival times Ai - Ai-l are independent, identically dis- 
tributed exponential variates with mean llc and den- 
sity cepCr, x > 0.  A useful property of exponentials is 
the lack of memory property: If X is an exponential 
variate, then 

P(X > t + SIX > t )  = P(X > s). 

Hence, the distribution of the set {Ai : i E Z, i f 01, 
conditioned upon the event @, = O}, is the same as the 
distribution of the set Ui : i E Z} before conditioning. 
We use this fact repeatedly in what follows, referring 
to a “given clone’’ when we are conditioning on having 
a clone at a given location. Finally we note that the 
choice of right clone ends is arbitrary, so that, for exam- 
ple, the process of left clone ends (or the process of 
centers of clones) is also a Poisson process with rate c. 

Next we give the Lander-Waterman results for com- 
pleteness and add the new formulas (v‘) and (vi). While 
(vi) holds only for 0 < i, a general formula (not shown 
here) has been derived by David Torney at Los Alamos 
National Laboratory. The word “apparent” is used to 
emphasize the distinction between actual genome is- 
lands and those detected by the scientists. 

THEOREM 1 (Lander-Waterman). With the above 

( i )  The expected number of apparent islands is Ne-‘“. 
( i i )  The expected number of apparent islands con- 

notation and assumption 

sisting of j clones, j = 1, 2 ,  . . . , is 
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(iii) The expected number of contigs is I-- e---l 

- x 4  

(iv) The number of clones in an apparent island is 

(v) The expected length of a n  apparent island is LA, 
geometrically distributed with mean ecO. 

where 

A = (e"" - l)/c + 1 - a. 

(v') The expected length of a contig (non-singleton 
apparent island) is LA', where 

(vi)  If 8 < f, the expected fraction of the genome cov- 
ered by contigs is 

(vii) The probability that an ocean of length at least 
xL occurs at the end of a n  apparent island is e-c(x+l-a! 
I n  particular, taking x = 0, the probability that an  ap- 
parent ocean is real (as opposed to an  undetected over- 
lap occurring) is 

(viii) The corresponding results for the actual islands 
that would result i f  all overlaps could be detected are 
obtained by setting 0 = 0. For example, the expected 
number of actual islands is Ne-". 

Part (v) is proved in Lander and Waterman 
(1988) using Wald's lemma (Hoe1 et al., 1971). We pres- 
ent an alternative ergodic argument for the case 8 < 
2, because this gives us a simpler example of the ergodic 
argument that we apply in Section 3 in a case where 
Wald's lemma fails. 

Just as in Arratia et al. (1991), we form the process 
of the right ends of apparent islands. Because clone 
length is constant, one apparent island cannot be com- 
pletely contained in another apparent island. There- 
fore, we can order apparent islands, using either the 
right or the left end of islands. Hence we label apparent 
islands by their right ends {Ej : j  E Z} with 

Proof: 

1 

so that K is the random number of apparent islands 
that have their right ends in the genome (0, g).  Clearly 
the set of right clone ends 1Ai : i E Z} 2 {Ej : j E Z}. 
Although there is a positive probability that an appar- 
ent island with a right end in (0, g )  begins before 0 and 
that an apparent island with a right end greater than g 
begins inside (0, g) ,  these boundary effects will become 
negligible as g becomes large. 

Let Sj be the length of thejth apparent island, and 

c 2 r  y - 

6 
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FIG. 1. Two apparent islands covering a k e d  point t = 0. 

let X,  be the number of apparent islands containing t 
E (0, g).  If 0 < f, then X,  s 2. If ri is the probability 
that a point is covered by exactly i apparent islands, it 
follows that ro + rl + r2 = 1 and 

l K  1 lim - C Sj = lim - r X , d t  
g-gj=1 g , , g  0 

' 

= E(Xl) = rl + 2r2 = 1 - ro + r2. [21 
(If 8 > f then we can have X,  s 3. Note that Lander 
and Waterman (1988) show that Theorem l(v) holds 
for all 8 E [O, 11.) 

We also utilize the fact that by stationarity, the label- 
ing of the points in the genome (0, g )  was arbitrary, 
and we can relabel our coordinate system when it is 
convenient. 

A point is not covered by a clone with probability ro 
= e-'. To calculate r2, fix a point t E (0, g).  For t to be 
covered by two apparent islands there must be at least 
two clones covering t. Moreover, every clone covering t 
must have an end within 8 o f t ,  since any clone with 
both ends of distance greater than 8 from t would over- 
lap any other clone covering t. Referring to Fig. 1 with 
t = 0, we see that there must be at least one clone C1 
with a left end in (t - 8, t )  and another clone C2 with 
a right end in (t,  t + 8)  such that no other clones overlap 
both of these two clones by more than 8. The overlap 
between C1 and C2 must be less than 8. Now let X be 
the distance from t - 8 to the first such clone C1 with 
a left end in (t - 8, t). This corresponds to the first right 
clone end occurring in (1 + t - 8, 1 + t )  = (a + t ,  1 + 
t). Let Y be the distance from a + t to the first right 
end occurring before a + t ,  and denote this clone by C2. 
Hence we have that X E (0, e), and given X = x ,  Y E 
(1 - 8 - X ,  1 - 8)  = (a - x ,  a). Note that these condi- 
tions are independent oft, as is implied by stationarity 
of the lAi} process, so we may relabel t by 0. Let D = 
{(x,  y )  : x E (0, 81, y E (a  - x ,  a)] .  This set characterizes 
the event that t is covered by two apparent islands. 
The random variables X and Y have independent expo- 
nential distributions with mean l/c. 

, 
I 

, 

r2 = J JD f ( x ,  Y)dXdY 

= JOo J:-x c2e-c(x+Y)d YdX 

= [c(l - a)  - lle-cO + e-'. 
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By Eq. [21, 

[31 
l K  lim - C. Sj = 1 + (ce - l)e-'". 

km g j = 1  

Also, by the ergodic theorem, 

since clones end with rate c ,  and a clone is the end of 
an island with probability e-'". Thus Eqs. [31 and 141 
imply that the expected length of an apparent island 
is 

e'" - 1 = l - a + -  
C 

To prove (v'), we label the right ends oL contigs .,y 
the process 

so that K' is the random number of contigs that have 
their right ends in the genome (0, g). 

Let Sj be the length of thejth contig. Define 

As in Eq. [41, the ergodic theorem yields 

[61 

since c is the clone rate, e-cu is the probability that a 
clone is the right end of an island, and 1 - e-'" is the 
probability that the clone is in a contig. 

By similar reasoning, 

1 lim - (No. of singleton islands) = ce-&". 
kmg 

Hence, using Eq. 131, 

1 K  lim - z Sjr 
km g j = 1  

1 
= lim - Sj - - (No. of singleton islands) 

km c" j = 1  g 

Thus, by Eqs. El, 163, and [71, a cpntig has expected 
length 

- 
lim S', = 
km ce-'"(l - e-'") 

1 + (ce - ,)e-'" - ce-&" 

To prove (vi), recall 6 < f and we have each point of 
the genome in at most two islands. The fraction of the 
genome covered by contigs is 

where S* = length of the genome covered by two con- 
tigs. 

The first term of Eq. [81 is given by Eq. [71. To calcu- 
late the second term in Eq. [81, fix t E (0, g) and define 
X ,  Y, C1, and C2 as in the proof of Eq. [31 and Fig. 1. 
Then t is covered by two contigs if and only if C1 and 
C2 are not singleton clones. Figure 1 shows then that 
there must be a clone C3 with a right end in (X + a, X 
+ 20) overlapping C1, and a clone C, with a right end 
in (-Y, -Y + a) overlapping C2. Since these two inter- 
vals are disjoint and both of length a, this event has 
probability (1 - of occurring, so the probability 
that t is covered by two contigs is 

x ([c(l - a) - lle-'" + e-'). 

By the ergodic theorem, 

1 lim - S* = ri. 
kmg 

191 

Equations [71, [81, and [9] then imply, as g -, to, that 
the proportion of the genome covered by contigs is 

One assumption underlying Theorem 1 is that the 
rate of the Poisson process of right ends of clones is 
constant. This assumption was stated in the original 
paper as having a perfectly representative genome li- 
brary. Bias in cloning efficiency will of course result 
in less rapid progress. We model this bias using an 
inhomogeneous Poisson process with rate c( t )  at point 
t E (0, g). The number of clone ends in (s l ,  s2) is Poisson 
with mean c(tMt. When c( t )  = c ,  the mean is c(s2 - 
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sl) as in the earlier model. The total number of clones 
is now s8 c(t)dt. The analog of Theorem 1 is given next. 
Implications of this theorem are discussed with a nu- 
merical example in Section 4.1. 

With the above notation and assump- 
tion 

THEOREM 1'. 

( i ' )  The expected number of apparent islands is 

J o  

(iii') The expected number of contigs is 

J o  

(vi') The probability that a point t is covered by is- 
lands is 

and, when 0 < 8 < $, t is covered by contigs withproba- 
bility 

J L 7  1 

(ui i ' )  The probability that an ocean of length at least 
xL occurs at the end of an apparent island ending at t 
is exp(-s:I:+"c(s)ds). In particular, taking x = 0, the 
probability that an apparent ocean is real is 
exp(-s:I:c(s)ds). 

Lee (1992) gives results generalizing the work of Ar- 
ratia et al. (1991) for mapping by anchoring random 
clones. Lee's work generalizes the Poisson process of 
anchor locations to general renewal processes. Karlin 
and Macken (1991) have formulas for expected number 
of contigs and expected coverage for the case of 8 = 0 
with random clone length, and clones are located by an 
inhomogeneous Poisson process. 

3. MAPPING BY GAPPED CLONES 

As discussed in the introduction, there are several 
situations in which the ends of clones are characterized 
or fingerprinted. These characterized ends will be re- 

I 

FIG. 2. A gapped clone with blocks of length 1. 

ferred to as blocks. See Fig. 2. Then mapping proceeds 
by comparing the fingerprints of the blocks. When the 
blocks of two clones have enough fingerprint in com- 
mon, the clones are overlapped as in the preceding sec- 
tion. The fact that there is an uncharacterized region 
or gap in the middle of clones makes the physical map 
more complex. There is one class of islands that result 
from block overlaps themselves that we will call block 
islands. These islands consist only of the characterized 
part of the clones. Obviously block islands have a de- 
pendence structure and are more complex than the is- 
lands in the previous section. Then there are the is- 
lands that result when the entire clones are taken to- 
gether. These can have uncharacterized regions in 
them and we call these gapped islands. See Fig. 3.  

The notation from the previous section is main- 
tained: g is the genome length, N is the number of 
clones, 1 is the clone length, and c = N/g. There is a 
new parameter 1 that is the (scaled) length of a block. 
See Fig. 2. For mathematical reasons, we require that 
(2a + 111 < 1, and therefore a block in one clone cannot 
simultaneously overlap both blocks of another clone. 
Two clones are declared to overlap if their blocks over- 
lap by amount 81, where 0 s 8 s 1. The case 8 = 0, 
closely corresponding to characterizing by sequencing 
the ends, is the easiest to establish results, but we 
include all 8 in our theorems. 

3.1. Apparent Greedy Islands and Contigs 

This section presents results that are analogous to 
those in Theorem 1. The results that we give below are 
about "greedy islands" instead of gapped islands. To 
motivate this, recall that our method of proof is to com- 
pute the probability that a fixed clone is the right end 
of an island. Consider clones that prevent a fixed clone 
from being the right end of a gapped island. We divide 
these clones into two classes. Class 1 clones have left 
ends in the "No Clone" regions of Fig. 4. These include 
all clones that sufficiently intersect either end of our 
fixed clone and prevent an island end. Class 2 clones 
are all clones that extend the island to the right but 
establish connection with the given clone through other 
clones in the island. See Fig. 5 for illustration of class 
1 and class 2 clones. 

We count as greedy islands those that end by the 
"class 1" condition; that is, that satisfy the conditions of 
Fig. 4. The results for greedy islands (Theorem 2) give 
an overestimate for the number of gapped islands and 
an underestimate for the average length of gapped is- 
lands. Jared Roach pointed out to us that greedy islands 

' 

' 
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I 

Gsppal Islands I I -  

FIG. 3. Apparent block islands and greedy islands with 6' = 0. 

and gapped islands are not equivalent. We include the 
results for greedy islands in the belief that it is the first 
step toward determining the corresponding theorem for 
gapped islands. We anticipate that the expected number 
of gapped islands is Nepkoz, where X > 3. 

With the 
same notation as above, assume that 1 < 1420. + 1). 
Then 

(i)  p = e-3co1 is the probability that a right end of a 
clone is the right end of an apparent greedy island, and 
the expected number of apparent greedy islands is Np. 

( i i)  The expected number of apparent greedy islands 
consisting o f j  clones (j = 1, 2, . . .) is 

THEOREM 2 (apparent greedy islands). 

(iii) The expected number of clones in an  apparent 

(iv) The expected length of an apparent greedy island 
greedy island is llp. 

is U., where 

eaaI - 
A =  + 81 + ( 1  - 1 - 2al)e2""'. 

C 

(v) The proportion of the genome covered by apparent 

Proof: Throughout this subsection, island refers to 
greedy islands is 1 - e-'. 

greedy island. 

(i) Label the right end of a clone with coordinate 1. 
The right end of this clone is the right end of an island 
if and only if there are no clones with a left end in (0, 
al) or in ( 1  - 1 - al, 1 - 1 + al) = ( 1  - 1 - al, 1 - 81). 
See Fig. 4. This event occurs with probability e-coze-2coz 

number of times that we exit a clone without detecting 
overlap, the expected number of islands is Np. 

(ii) The above reasoning shows that the number of 
clones J in an island follows the geometric distribution 
with mean l l p ;  that is, the probability that an island 
contains exactly j clones is 

- - e-3col = - p .  Since the number of islands is equal to the 

(1 -py'-$. 

It follows that the expected number of apparent islands 
withj  clones = (Np)(p(l  - py'-'). 

(iii) This follows immediately from (ii). 
(iv) Consider an apparent island consisting of J 

clones, where J is geometrically distributed with mean 
llp. We order the set of clones tC' : j  = 1, . . . , J) in the 
apparent island from right to left, so that C1 is the 
rightmost clone, and CJ is the leftmost clone in the 
apparent island. Let Aj' be the right end of clone Cj, j 
= 1, . . . , J .  Notice that unlike the Lander-Waterman 
model of Section 2, there may be clones overlapping 
(A;, Ai) that are not included in the apparent greedy 
island, so that Uj,j = 1, . . . , J) may not be a contiguous 

i 

FIG. 4. The right end of an apparent greedy island, beginning at  an arbitrary point 0. 
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D4 

DI 

D. 

'4. ........ No Clone ........... *...No Clone-" 

FIG. 5. Islands contain DO (0 = 0). (a) D1 and 0 2  are of class 1. (b) D1 and 0 2  are of class 2 since D1 is connected to DO via 0 3  and 
04, while 0 2  is connected to DO via 0 3 .  

subset of {Ai : i E HI. See for example Fig. 3. Define the 
coverage of clone Cj to be 

P(X > x) = P (no clones have right end in (0, al)) 
or in (1 - 1 - oZ, x)) 

- e - C o l  -c(x-(l-l-ol)) = e-c(-1+1+201) -a e e .  X. = A !  - A !  - 
J J .l+1 

(d) 1 - (1 - o)Z s x < 1. P(X > x) = p = e-3co1. for j  = 1, . . . , J - 1 and& = 1. Let G(x) = P(Xl > 2). 

Using the lack of memory property, we next show that 
the Xi are identically distributed with 

Hence we have shown Eq. [lo]. Therefore 

EX = G(x)dx 
G(x) s 

0 s x < oz, 
az s x < 1 - (1 + a)Z, 

, 1 - (1 + o)Z s x < 1 - (1 - all, 1J ajl is determined byX,, . . . ,Xj - l ,  so J i s  a stopping 

1 - (1 - a)Z s x < 1, time. Wald's identity (Feller, 1971) then implies the 
expected length of an apparent greedy island, 

e -3col 

J x 3 1. 
E(C x,) = ~(J)IE(Xl) 

j = l  
[lo1 

Equation [lo1 can be proved in the following way. We 
consider four cases: 

(a) < Then P(x > = (no 'lone' have (VI The coverage of the genome by greedy islands is 
the same as that for traditional recombinant libraries, 

a right end in (0, x)) = e-=. 

clones have a right end in (0, al)) = e-co1. 
(b) < - (l + Then P(x > = p (no included here for completeness. 

(c) 1 - (1 + o)Z s x < 1 - (1 - a)Z. Then Recall that a contig is an apparent greedy island with 
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FIG. 6. Two block islands covering 0. 

j > 1 clones. The next theorem gives the corresponding 
results for contigs. We were unable to derive a formula 
for coverage by contigs. 

Under the 
same assumptions and notation as Theorem 2 and p = 
e-%al. 

1 + l / p .  

THEOREM 3 (apparent greedy contigs). 

(i)  The expected number of contigs is Np(1 - p).  
(ii) The expected number of clones in a contig is 

(iii) The expected length of a contig is h'L, where 
1 

Proof: (i) The expected number of contigs equals 
the expected number of islands minus the expected 
number of singletons. The expected number of single- 
tons is Np'. 

(ii) From the proof of Theorem 2 (iii) we see that EJ 
= l lp,  and 

P(J = k ( J  3 2) = ( 1  - p)"'p, k = 2, 3, . . . . 
Thus, E[JIJ 3 21 = (1 + p)/p. This proves (ii). 
(iii) 

J 1 J 

i J J 

i J 

i J 

The result follows from Theorem 2(iv). 

91 

3.2. Coverage by Block Islands 

The 2N characterized blocks will themselves form 
islands and contigs based on their overlap. See Fig. 3. 
The block islands are dependent due to the coupling of 
the two blocks of the same clone. We emphasize the 
fact that the process of the 2N right block ends is not 
a Poisson process. Nevertheless, the results below are 
identical to those of Theorem 1 with 2N clones of length 
1 (or ZL, if clone length is L). The variance of these 
quantities is increased, however. 

THEOREM 4 (apparent block islands). With the same 
notation as above, 

( i)  The expected number of apparent block islands is 
2Ne-2ca1 

(ii) The expected number of blocks in an apparent 
block island is 

(iii) If 6 < f, the expected length of an  apparent block 
island is UL where 

1 e-2cal - 
x = e +  

2cl 

( iv)  The proportion of the genome covered by appar- 
ent block islands is 1 - e-%'. 

Proof: (i) We label the right ends of apparent block 
islands by 

so that K is the number of apparent islands that have 
their right ends in the genome (0, g) .  

Let p( t )  = P (a block ending at t is the right end of 
an apparent island I a block ends at t). Stationarity 
implies that p( t )  is independent of t. Let p1  denote the 
common value of p(t) .  We next calculate the value of 
pl .  Without loss of generality we set t = 0. It is the 
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right end of an apparent block island if and only if We begin by considering all the ways that 0 can be 
there are no clones ending in (1 - 1, 1 - 01) or (0, al), covered by two apparent block islands. Figure 6 demon- 
and this occurs with probability e-2c0'. Then strates that 0 is covered by a block if and only if there 

is a right block end in (0, I )  or in (1 - I ,  1). Note that 
Unumber of apparent block islands in (0, g)) the latter case corresponds to a left block of a clone 

covering 0. Recall that the set of right clone ends Mi : 
= 12cp( t )d t  = acgp,. i E Z} is a Poisson process with rate c. Let 

I The factor of 2 comes from the fact that there are 
two blocks in each clone. This implies Theorem 4(i). 

(ii) Let Mj be the number of blocks in thejth appar- 
ent island whose right end is in the genome (0, g) .  The 
average number of blocks per island is 

l K  
K j=1 

Mg = - C. Mj. 

Just as in Arratia et al. (19911, we can ignore boundary 
effects. Then Mj is equal to the number of blocks 
in (0, g) .  Thus, 

l K  1 lim - C. Mj = lim - (W = 2c, 
km g j=1 F - g  

and by the ergodic theorem, 

Hence 

g l K  
km F- K g  j=1 

lim M = lim - - Mj = g 

This implies Theorem 4(ii). 
(iii) Suppose that the j th  apparent block island has 

length Sj. Let 

be the subsets of clone ends corresponding to all blocks 
covering 0. Since (20 + 1)Z < I ,  J and B are disjoint. 
To compute the probability r2, we define the following 
four random variables analogous to those in the proof 
of Theorem Uv). Let 

XI = {distance from al to the first Ai in J after al}, 

Yl = {distance from al to the last Ai in J before ol}, 

X2 = {distance from 1 - 01 

to the first Ai in B after 1 - el}, 
Y2 = {distance from 1 - 01 

to the last Ai in "B before 1 - OZ}. 

To see how the block islands overlap in terms of these 
variables, start at ol and move toward 0. The first right 
block end encountered is at a distance Y = minIYl, Y21 
from ol. Moving in the other direction we encounter 
the first right block end at a distance of X = minlX,, 
X2} from al. We next compute the joint distribution of 
X and Y. Fix x and y such that 0 s x, y < 1 and let Il 
= (al - y, al + x), I2 = (1 - 01 - y ,  1 - 01 + x). Then 
(20 + 111 < 1 implies 111 U 121 = 2(x + y). Hence 

l K  

K j=1 

P(X > x, Y > y )  = P(X1 > x, Y1 > y, x, > x, Y2 > y )  sg = - C. sj. 
= P(no right clone ends in Il U Z2) 
- -2c(x+y) - e  9 

SO for 0 s x, y s I ,  X and Y have joint density 

Since for 0 < 8 a point can fall in at most two apparent 
block islands, it follows that ro + r1 + r2 = 1, where ri 
is the probability that a point is covered by precisely i 
apparent block islands. Then 

l K  lirn - C Sj = rl + 2r2 = 1 - ro + r2. 
km g j=1  

Fix a point t in the genome that as usual we suppose 
has coordinate 0. 0 does not belong to any apparent 
block island if and only if there are no clones ending 
in (0, I )  or (1 - I ,  11, and this event occurs with probabil- 
ity = ro. 

The calculation of r2 is similar to the calculation 
made in the proof of Theorem l(v), but is more involved. 

As in the proof of Theorem l(v), 0 is covered by two 
apparent block islands if and only if X E (0, all, given 
X = x, Y E (ol - x, all. Hence 
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Thus 

and 

l K  lim - 
g- g j=1  

S j  = 1 - ro + r2 

1 + 2cele-2c0L - e-2cul 
- - 2ce-2cul 

2c . 
THEOREM 5 (apparent block contigs). (i)  The ex- 

pected number of apparent contigs is 2Ne-2cuL(1 - e-2cul). 
(ii) The expected number of blocks in  a contig is 1 + 

e%OL 

(iii) If 8 < i, the expected length of an  apparent contig 
is X'1L where 

1 e2cul - 
= tu + 

( iv )  I f  8 < t, 1 < (4 - 28)-l, then the proportion of 
the genome covered by contigs is 

1 + e-4"uL[(2c81 - 1)(2 - e-2eu1) - 2clI 
- e-2c1(1 - e-2cuL)2* 

Proofi (i) As in the proof of Theorem 4(i), label the 
right ends of contigs of blocks by 

so that K' is the number of contigs that have their right 
ends in the genome (0, g) .  Recall that characterized 
block ends appear at rate 2c in (0, g) ,  so the expected 
number of contigs is 2 ~ g p i ,  where 

p i  = P (a block ending at t 
is the right end of a contig 1 a block ends at t). 

To calculate p i  fix a point t E (0, g ) and label it with 
coordinate 0. The event for p i  occurs if and only if no 
clones end in (0, al) or in ( 1  - 1, 1 - 1 + al), and there 
exists a clone ending in (-al, 0) or (1 - 1 - al, 1 - 1). 
Since clone ends occur at rate c, 

(ii) Let Mj' be the number of blocks in thejth contig 
with right ends in the genome (0, g ) ,  and let 

As before we have 

K' lim - = 
g- g 

A block ending at t = 0 is a singleton if and only if 
there are no clones ending in either (-al, +al) or 
((1 - 1) - al, (1 - 1) + 01). The probability of this event 
is e-4c01. Then 

Thus, 

g l "  
g- km K' g j=1 
l i m a g  = lim-- Mj' 

= 1 + 
(iii) As in the proof of Theorem 4(iii), let Sj' be the 

length of thejth contig. Let 

Then using Eq. [14] 

4 "  + K  

Thus 

1 e2cul - 
- - (el + - e2€01 -) . [161 1 - e-2cul 2c 

This implies Theorem 5(i). 
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(iv) We assume that I < (4 - 28)-l and 8 < i. We 
define the approximate proportion of the genome cov- 
ered by contigs to be 

[171 

where R' is the length of the genome covered by two 
contigs. The first term is given by Eq. [15]. For the 
second term, 

R' lim - = r;, 
€?g 

where r6 is the probability that a point is covered by 
two contigs. 

Let A be the event that 0 is covered by two block 
islands, and B be the event that 0 is covered by two 
contigs. Equation [131 in the proof of Theorem 4(iii) 
tells us that P(A) = r2. Referring to Fig. 6 and the proof 
of Theorem 4(iii), let X be the distance to the first block 
with a right end after ul, and call this block D1. Let Y 
be the distance to the last block with a right end before 
ul, and call this block D2. Then A is equivalent to the 
event that D1 and D2 both cover 0 and are in different 
apparent islands, and B is equivalent to the event that 
A occurs and neither D1 nor D2 are singletons. 

Recall that a point can be covered by at most two 
contigs, since B < i. To calculate r6, fix a point t E (0, 
g) and label it with 0. Then as in the proof of Theorem 
l(v'), B givenA occurs if and only ifDz is the rightmost 
block of a contig and D1 is the left most block of a contig. 
These intervals are disjoint when 1 s (4 - 281-l. Thus, 

P(BIA) = (1 - e-2c"z)2, 

and since B E A, 

So by Eqs. [131, [151, 1171, and [181, we get 

4. DISCUSSION OF THE RESULTS 

4.1. Lander- Waterman 

In Section 2 we gave an addition to the Lander- 
Waterman results in Theorem l(vi), the expected cov- 
erage by contigs. Of course, expected coverage by clones 
is 1 - e-', the Carbon-Clark formula, which by itself 
is not a very revealing indication of progress. The quan- 
tity 1 - e-' is an upper bound for coverage in Fig. 7, 
which in addition to 1 - e-' shows contig coverage for 

B = 0, 0.1,0.25,0.5. These quantities are of interest in 
comparing genome coverage by clones (1 - e-') with 
that by contigs. 

We now investigate the effects of an inhomogeneous 
clone rate c(t) on a physical mapping project. To relate 
this discussion to what follows, we suppose that clones 
correspond to 1000 bp of sequenced DNA. We use the 
parameters G = 200 kb, L = 1000 bp, N = 1000, B = 
2511000. 8 is derived from the assumption that 25-bp 
overlaps can be detected. We consider clone ends oc- 
curring with rate 

2.5, 0 s t < GI2 

7.5, GI2 s t s G 
(ii) c(t) = 

or with rate 

0.5, 0 s t < GI2 

9.5, GI2 s t s G. 
(iii) c(t) = 

In both of these cases the expected number of clones N 
= (11L) sf c(t)dt = 1000 and average clone rate F = (1 / 
G) sf c(t)dt = 5 .  In Table 1 we compare results for 
physical mapping with clone end rates described by (ii) 
and (iii), and Lander-Waterman mapping with con- 
stant rate c = 5 (i). 

Table 1 contains several features of interest. We are 
able to tabulate quantities not given in Theorem 1' 
since our model (ii), for example, essentially divides 
into two Theorem 1 regions with Nl = 250 and N2 = 
750. We have separated the calculations into two com- 
ponents, those resulting from [0, GI21 and [G/2, GI, to 
reveal the difference between those two intervals. For 
example, while in model (ii) genome coverage by contigs 
is 94.9%, that for [O ,  GI21 is 89.9% and for [G/2, GI is 
99.9%. In model (iii) where the ratio of coverage is 9.51 
0.5 = 19, the genome coverage by contigs is 60.2% while 
only 20.5% in 10, G/2]. The second interval is saturated 
by clones, while obviously the first interval is not. 
We remark that the estimate of the number of islands 
is not accurate for extremely large N as Ne-'" = 

+ 0 as N -+ 03. This is because islands are 
counted by right-hand ends. If an island covers G, that 
island is not counted. Therefore, in the limit, there is 
one more island than the expression Ne-"" counts. 

N~ -NLuIG 

4.2. Gapped Clones 

Despite the increased complexity of the mathemati- 
cal models for gapped clones, the results in Section 3 
about number of islands and contigs are closely related 
to the Lander-Waterman formula. Thus, for the num- 
ber of islands, the relevant graphs differ just by scale 
changes. See Figs. 8 and 9. We give some intuition 
for these results as follows. In the Lander-Waterman 
clone overlap model, there are N clones each with end 
of island or exit probability of e-'". For greedy islands 



MAPPING BY END-CHARACTERIZED RANDOM CLONES 95 

0 1 2 3 4 I 
C 

Ob 1 1 .s 2 
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FIG. 7. Expected genome coverage by clones (dashed curves) and by contigs (0 = 0, 0.1,0.25,0.5). The remaining curves corresponding 
to 0 can be distinguished by line thickness, which varies with 0. The thinnest line is 0 = 0, e.g., (a) Lander-Waterman and (b) coverage 
by block contigs. Note that the horizontal axis is in units of c in a and d = cl in b. In b we require 1 < (4 - 2W1, so c > (4 - 20)d. 

r 
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FIG. 8. Expected number of islands 0 = (0, 0.1, 0.25, 0.5, 0.75). (a) Lander-Waterman in units of GIL, (b) greedy islands in units of 
GllL, and (a)  block islands in units of GAL. The horizontal axis is in units of c in a and d = cl in b and c. 
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(.I 

c 

d (-dl d (-dl 

FIG. 9. Number of contigs 0 = (0, 0.1, 0.25, 0.5, 0.75). (a) Lander-Waterman in units of GIL, (b) greedy islands in units of GILL, and 
(c) block islands in units of GIZL. The horizontal axis is in units of c in a and d = cl in b and c. 

the interplay between the two clone ends gives an exit 
probability of e-3cu'. (In the gapped clones, al plays the 
role of a). For block islands, there are 2N blocks that 
occur in pairs at rate c, hence naively with an exit 
probability of e-2c0z. The expected number of contigs 
follow Np(1 - p ) ,  where p is the exit probability. 

The formulas for expected island length are not so 
easily related to one another. In most of the formulas 
there is a natural parameter d = cl,  but in the case of 
expected length for greedy islands a separate graph 
must be drawn for each value of 1. In Fig. 10 we graph 
expected island length and in Fig. 11 expected island 
length divided by expected contig length. 

Edwards and Caskey (1991) introduce the ideas of 
mapped gap sequencing. The ends of clones are se- 
quenced, and in our tables we assume that the se- 
quence lengths (block lengths) are T = ZL = 250, 500, 
and 1000 bp. We assume that 25 bp is a minimum 
overlap required. Therefore, 0 = 0.1, 0.05, and 0.025, 
respectively. Table 2 considers a G = 60 kb project with 
plasmid inserts of L = 1500 bp and depth c = 5.  The 
coverage by greedy islands is high, 99%, with 21 islands 

for 0 = 0.1 and 2 islands for 0 = 0.05. The block islands 
of sequence show a different picture. For 8 = 0.1, there 
are 89 sequence islands and 81% sequence island cover- 
age. For 0 = 0.05, there are only 17 islands and 96% 
coverage. 

In Table 3, we consider a larger project. Here, G = 
900 kb, and we have cosmids with L = 40,000. Because 
the sequenced ends are such a small fraction of the 
cosmid inserts, we take c = 20. Clearly the entire 900 
kb will be covered by greedy islands. The block islands 
show interesting features. The block island coverage is 
22% for 0 = 0.1, 40% for 0 = 0.05, and 63% for 0 = 
0.025. The number of islands also varies at 719, 560, 
and 540, respectively. 

In Chen et al. (1993), ordered shotgun sequencing is 
proposed in which a YAC is subcloned into plasmids, 
plasmid ends are sequenced, and the end sequences 
(our blocks) are overlapped to create a plasmid map. 
The remainder of the strategy includes complete se- 
quencing beginning with the plasmids that have been 
overlapped. The idea is to sequence the YAC with mini- 
mal redundant sequencing. The initial steps of the or- 
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c 

FIG. 10. Expected island length (a) Lander-Waterman 6' = (0, 0.1, 0.25, 0.5, 0.75) in units of L, (b) greedy islands 6' = (0, 0.1, 0.25, 
0.5) with 1 = 0.25 in units of L, and (0) block islands in units of ZL6' = (0, 0.1, 0.25, 0.5). The horizontal axis is in units of c in a, b, and 
units of d = cl in c. 

dered shotgun strategy clearly coincide with the models 
that we analyze in Section 3. Next, we show some asso- 
ciated numerical results. Let the YAC have G = 100 
kb. The parameters are coverage c = 5, plasmid length 
L = 5 kb, T = ZL = 250 or 500 with 6 = 0.1 or 0.05, 

quences from plasmids. Theoretical results for both 
gapped plasmid maps and the end sequence maps ap- 
pear in Tables 4a and 4b. Chen et al. (1993) carried 
out simulations using four published sequences and 
obtained values very close to those given here. Exact 
comparisons are unavailable, as their results are given 
by a graph. 

r respectively. Here N = 100, so there are 200 end se- 

7 

4.3. The Models 

Experimental results seldom fit a model's prediction 
perfectly. In the experiments modeled in this paper, 

there are many possible sources for differences. Bias 
in cloning efficiency has already been mentioned. The 
perfect 6-overlap detection is not achieved in practice. 
Clone lengths are not constant. Mathematical models 
that realistically account for these features have not 
yet been studied in detail and except for simple cases 
like Theorem 1' are likely to be very difficult to study 
analytically. See Port (1994) for generalizations of The- 
orem 1' corresponding to some of our results on gapped 
clones. 

Recall that in Section 3.1 we were able to establish 
results only for greedy islands. For any 0 3 0, it appears 
to be very difficult to obtain the corresponding results 
for gapped islands. We conjectured the expected num- 
ber of gapped islands to be of the form Ne-hcu1, where 
A > 3. 

One realistic generalization for the gapped clone 

Number of islands Number of contigs Model 

Ne-'" 

Ne-""' 
Ne-3CCl 

Lander- Waterman 
Greedy islands 
Block islands 
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TABLE 1 

Map Characteristics for Three Models of Cloning Efficiency 

(ii) (iii) 
0.5, 0 s t GI2 

9.5, GI2 c t s G 

1000 

2.5, 

7.5, 

0 s t < GI2 

GI2 s t s G 
c(t) = 

1000 

{ 
(i) 

c = 5  c(t) = 

Number of clones 1000 
Number of islands 7.63 21.84 + 0.50 = 22.35 30.7 + 0.09 = 30.80 

Island length 26 kb (4.2)(21.84) + (199.7)(0.50) = 8,57 kb (1.3)(30.7) + (1108.9)(0.09) = 4.54 kb 
22.35 30.80 

Coverage by islands 

Number of contigs 

Contig length 

0.9179 + 0.9995 = o.9586 
2 

0.993 

7.58 19.94 + 0.50 = 20.43 

26 kb 89.73 + 99.95 = 9.28 kb 
20.43 

0.3932 + 0.9999 = o.6967 
2 

11.85 + 0.09 = 11.93 
20.145 + 99.80 = kb 

11.93 
249.95 + 749.45 = 44.71 50.04 + 948.186 = 32.41 

22.35 30.80 
Number of clonesfisland 133 

0.8988 + 0.9995 = o.949 
2 

Coverage by contigs 0.993 0.2049 + 0.9999 = o.602 
2 

I '  I 
0 2 4 0 e 

C 

0 0-251 d (-dl 

FIG. 11. Expected island length divided by expected contig length. (a) Lander-Waterman B = (0, 0.1,0.25, 0.5,0.75), (b) greedy islands 
0 = (0,  0.1, 0.25, 0.5) with I = 0.25, and (c) block islands B = (0, 0.1, 0.25, 0.5). The horizontal axis is in units of c in a and b and in units 
o f d  = c l  in c. 
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TABLE 2 

Results for G = 60 kb, N = 200, c = 5, L = 1500 

LL 
e 

250 
0.1 

500 
0.05 

(a) Greedy islands 

Total number of 

Number islands 21 1.73 
Island length 6157 bp 35,586 bp 

I Coverage by islands 0.993 0.993 
Number contigs 19 1.715 
Contig length 6705 bp 35,884 bp 
Number of clonedisland 9.5 116 

plasmids 200 200 

(b) Block islands 

Total number of 
plasmids 

Number islands 
Island length 
Coverage by islands 
Number contigs 
Contig length 
Number of clonedisland 
Coverage by contigs 

200 
89 
547 bp 
0.81 
69 
633 bp 
4.48 
0.79 

200 
17 
3434 bp 
0.96 
16 
3563 bp 
23.73 

The formula fails because 1 = 500/1500 = > (4 - 219-l. 

model is to keep the blocks with fixed length 1 but to 
let clone length L be a random variable. End sequenced 
cosmids certainly have this property. This creates 
mathematical difficulties that invalidate all of our 
proofs. It is easy to believe that the expected number of 
block islands remains We-&"'. If L is variable enough 
relative to 1, then the expected number of greedy is- 
lands should be about Ne-&"'. We are not sure of the 
technical conditions required to make this true or what 

TABLE 3 

Results for G = 900 kb, N = 400, c = 20, L = 40,000 

LL 250 500 1000 
e 0.1 0.05 0.025 

(a) Greedy islands 

Total number of cosmids 400 400 400 
Number islands 321 221 104 
Island length 50 kb 64 kb 105 kb 

Number contigs 92 112 80 
Contig length 75 kb 87 kb 124 kb 
Number of clonedisland 1.40 2.04 4.32 

Coverage by islands 1.0 1.0 1.0 

(b) Block islands 

Total number of cosmids 
Number islands 
Island length 
Coverage by islands 
Number contigs 
Contig length 
Number of blockdisland 
Coverage by contigs 

400 
719 
2.8 kb 
0.22 
145 
3.6 kb 
1.25 
0.085 

400 
560 
6.3 kb 
0.40 
212 
8.5 kb 
1.61 
0.26 

400 
340 
16.8 kb 
0.63 
211 
20.9 kb 
2.65 
0.58 

TABLE 4 

Results for G = 100 kb, N = 100, c = 5, L = 1500 

LL 250 500 
e 0.1 0.05 

(a) Greedy islands 

Total number of plasmids 100 

Coverage by clones 0.99 

Number of islands 51 
Island length 7,733 bp 

Number of contigs 25 
Contig length 10,567 bp 
Number of clones per island 1.96 

(b) Block islands 

Total number of plasmids 
Number of islands 
Island length 
Coverage by blocks 
Number of contigs 
Contig length 
Number of blocks per island 
Coverage by contigs 

100 
128 
309 bp 
0.39 
46 
413 bp 
1.57 
0.19 

100 
24 
12,362 bp 
0.99 
18 
14,693 bp 
4.16 

100 
77 
818 bp 
0.63 
47 
1018 bp 
2.59 
0.48 

the general result is. We suggest variable clone length 
L as another area for future research. 

The results in this and other papers are expected 
or mean values: expected number of islands, expected 
coverage, etc. The distribution of the random variables 
would be of interest instead of just the expected values. 
Hall's (1988) book has some results related to these 
difficult questions. We hope that future research ad- 
dresses them, as they could provide an answer to the 
variation expected from the models. 
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