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INTRODUCTION

In the second half of the twentieth century biology has progressed at breakneck speed.
James Watson and Francis Crick in 1953 proposed the now famous double helical struc-
ture for DNA. This structure gave a physical model for how one DNA molecule can
divide and become two identical molecules. On this point they wrote one of the most
famous sentences of science: “It has not escaped our notice that the specific pairing
we have postulated immediately suggests a possibly copying mechanism for the genetic
material.” And that copying mechanism based on the adenine (A)~thymine (T) and
guanine (G)-cytosine (C) base pairing turned out to be correct and is the foundation
of molecular genetics. While about 100 years earlier Mendel gave an abstract model of
inheritance, Watson and Crick gave a specific molecular model that can be studied and
manipulated. The last 50 years of molecular biology has been in large part based on
the Watson-Crick discovery. See Lewin (1990) and Alberts et al. (1983) for excellent
general accounts of the subject.

There are two other macromolecules that must be mentioned. Proteins provide the
structural molecules and enzymes of which organisms are built. DNA was not initially
thought to be the molecule of inheritance as it is composed of only four components
(the bases mentioned above). Proteins with their twenty amino acids seemed far more
likely to hold the complex secrets of inheritance. While it was known experimentally
before Watson and Crick that DNA was the basis of inheritance, their model flushed
the question of the genetic code into the open. How does DNA encode the information
for proteins? Since DNA is a sequence of bases or nucleotides, a sequence n long has
4" possibilities and the seeming simplicity of DNA vanishes. For example, a sequence
of length 1000 has over 10%% possibilities while there are only 10%° elementary particles
in the universe; a sequence of length 133 has about 10%0 possibilities. While some
mathematically clever coding schemes were proposed, nature has chosen a simple three
bases per amino acid code, where the triplets specifying successive amino acids in a
protein appear sequentially and non-overlapping along the DNA sequence.

The third important macromolecule is RNA, another nucleic acid of four bases. RNA
has several roles. One is messenger-RNA (mRNA), a RNA complementary copy of
the DNA or gene corresponding to a protein. The mRNA is read by the ribosome, a
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complex of protein and structural RNA molecules, and is translated into a sequence of
amino acids defining a protein. These structural RNA molecules in the ribosome are
known as rRNA. Originally thought to be less central, RNA has assumed an increasingly
important role in the last decade. Some RNA molecules have been shown to have
enzymatic activity. There is evidence for example that the scores of proteins in the
ribosome are not essential to its activity and that the three structural rRNAs might be
able to translate mRNA into protein unassisted. This lends support to an evolution of
life from RNA molecules, a point of view called “the RNA world.”

The genetic code was worked out in the 1960s and protein and nucleic acid sequences
began to be read. In those early days RNA was more easily sequenced than DNA and
proteins more easily than nucleic acids, but all sequencing was very difficult. Then about
1976 Maxam and Gilbert at Harvard and Sanger at Cambridge proposed two methods
that accelerated DNA sequencing by two orders of magnitude. Almost immediately
exciting and unexpected discoveries were made. One of the first was the so-called intron-
exon nature of eukaryotic genes that we will now describe. In prokaryotic organisms,
those without a nucleus, the gene encoding a protein is an uninterrupted sequence of
triplets (called codons). E. coli, a prokaryote that lives in our gut, had become the model
organism for molecular biology because it is easily grown and manipulated. Imagine the
surprise when it was discovered that eukaryotic genes were interrupted by non-coding
DNA, called intervening sequences or introns. The coding intervals are called exons (for
expressed). This discovery has several implications of interest.

First of all, why would an organism evolve a mechanism such as an intron? At first
glance it seems to be hopelessly inefficient and complex. However, if they were at a
selective disadvantage, introns should disappear. One suggestion is that the exon units
can be more easily recombined into new proteins than the corresponding events would
occur in an uninterrupted gene. Another is that the intron-exon structure of genes is
primitive and that only in the prokaryotic lineage have introns disappeared. The truth
is that no one is certain as to why introns exist.

Secondly, forgetting why introns exist, another question is how we get from the intron-
exon gene to the mRNA to be translated into protein. The answer lies in a mechanism
known as splicing. The DNA is translated into RNA, then the introns are cut out, and
the exons are spliced together to make the mRNA. This splicing mechanism has been
well characterized in the last few years. (See Fig. 1.)

A third point about' introns brings us to a topic in computational molecular biology.
Even in prokaryotic organisms, genes are not entirely trivial to recognize. Three triplets
are stop codons signaling the end of the amino acid chain so one technique is to find
longer stretches with no stops; in addition there is a standard codon ATG found at the
beginning of genes. Even so, mistakes can be made and statistical methods have been
devised. Allowing introns to interrupt a coding sequence of 900 bases, say, and lengthen
the gene into 10,000 or more bases greatly complicates the scientist’s problem of recog-
nizing genes in DNA sequences. Since we can and are sequencing DNA more and more
rapidly, this is a central problem of much practical importance. The most successful
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Figure 1: DNA, RNA, and mRNA

method to date combines several imperfect gene prediction methods via a neural net-
work. Those who desire prediction methods based directly on biological models must
search for an even deeper understanding of the splicing problem.

Nucleic acid sequence data has been collected into international data bases since 1982.
(See Fickett & Burks (1989) for a survey of DNA databases.) The three major databases
EMBL (Europe), GenBank (USA) and DDBJ (Japan) are for practical purposes iden-
tical today although certain distinctions existed in earlier years. The database content
measured in nucleotides approximately doubles every two years. Figure 2 shows this
growth. While sequences over 100,000 bases exist, the median sequence length is about
1000 bases. Of course, there are an increasing number of properties of the sequences
that are of scientific content and only a few of the most important properties such as
gene locations can be found in the databases.

The mathematical discussions in this paper will be organized into three sections.

1. Mapping DNA. Maps are representations of landmarks on sequences and are
consequently less informative than sequences. They are easier to construct and
are very useful. We will briefly mention genetic maps and will present physical
mapping in somewhat more detail.

2. Comparing Sequences. Once sequences are obtained they are compared
with themselves and with other sequences. There is a series of related comparison
problems and solutions and in addition corresponding map comparison problems.

3. Genomes. Finally we will take a quick look at entire genomes—all the DNA
of an organism—and speculate about the problems of the future.
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Figure 2: DNA Database growth.

2. MAPPING DNA

2.1 Genetic Mapping

The idea for chromosome cartography or mapping is based on the idea that genes are
contained in and linearly arranged along (the DNA of) a chromosome. Thomas Hunt
Morgan made central contributions to this area, utilizing the large chromosomes of
Drosophila melanogaster in his research. Sturtevant, who was a student of Morgan,
constructed in 1913 the first genetic map of 6 genes or traits. The map gave the
approximate locations of these 6 traits with different recombination probabilities or
distances between them. In Drosophila there are a number of single genes with mutations
causing observable traits such as curly wings, white eyes, or stubbly bristles that can
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@ % ATECGOATGCCCAARGGGCCCCTCGGARRGTGOAA
B: ATGCGOATGCCCAARGTGICCCTCGGAANGCGORA
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Figure 3: (a) Two DNA RFLP's; (b) Three genotypes on a Southern blot.

be mapped. What is important is that a single chromosome location can be associated
with an observable trait in the organism.

Genetic mapping in the post Watson-Crick era is undergoing massive growth. This
is due to the 1980 suggestion of Botstein et al. (1980) that slight variations in DNA
sequence between a pair of homologous chromosomes could provide such markers for
humans and other eukaryotes. The pair of homologous chromosomes refer to the pair
of chromosomes, one from the mother and one from the father. Two unrelated humans
differ in about 1 base per 1000 so such variation between homologous chromosomes is
expected. Secondly there are developed for use a few hundred restriction enzymes that
cut double stranded DNA at short specific locations on the double helix. Variations
in sequence implies variation in the distance between cutting sites or restriction sites
since cutting sites can appear or disappear because of variation in the DNA sequence.
Since these fragment lengths can be measured, this gives a large number of chromosome
locations and observable traits without the necessity of finding single genes with muta-
tions that result in observable traits. The restriction fragment length polymorphisms
are called RFLPs. An ultimate goal of mapping these variations is to then determine
the approximate location of various disease genes. Recently molecular geneticists have
approximately located genes with mutations that result in Huntington’s disease, cystic
fibrosis, polycystic kidney disease and others. The genes for Huntington’s disease and
cystic fibrosis have both subsequently been cloned and sequenced. The book by Ott
(1991) is a general reference to genetic mapping in human chromosomes.

To return to the Botstein idea, variation in DNA can cause restriction sites present
in one sequence to be absent in another. In Figure 3 the restriction enzyme under
consideration is Hhal that cuts at the sequence GCGC. Our Figure 3 is modeled after
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Lander(1989). Notice that the complementary strand of the double helix, read .from
right to left, is also GCGC. The feature holds for almost all these patterns. In Figure
3(a) the top chromosomal sequence < GCGC occurs twice while in the bf)tt'om sequence
B it occurs three times. Therefore the top sequence will have one restriction fragment
while the bottom has two. They can be visualized in a Southern blot where patterns
for aa, af and B are shown.

Returning to our mapping problem, there is an unknown probability 6 of a recombir}z.i-
tion between the RFLP and another trait locus. The maximum likelihood estimate § is
used as a measure of linkage between the loci. The probability 6 = 1/2 means the loci
are unlinked while 8 = 0 means they are at essentially the same chromosome location
with no recombination possible between them.

Modern genetic mapping is not restricted to RFLPs. Other genetic vz?.riation or poly-
morphisms can be used. One such polymorphism comes from a variable number of
tandem repeats of a fairly short sequence (VNTRs). These VNTRs are more ’polymor-
phic than RFLPs and can distinguish the DNA of a parent from their child’s. Other
repetitive sequences, the minisatellites, have variable numbers of repeats 'fmd can b‘e
used for mapping. For example there are many CA repeats. All of these loci }mve their
own set of experimental and analytical positive and negative features, creating a very
active area of research.

2.2 Physical Mapping

In genetic mapping, the goal is to locate genes or loci on the chromosome where' the
distance between them is the recombination distance. Now we turn to more direct
measurements of the distance between loci, in particular where the distance is measured
in number of nucleotides. Qur initial problems will arise from the ability to cut DNA
with restriction enzymes and to measure the length of the resulting restriction fragments,
as discussed in Section 2.1. The goal is to obtain the map of the order and location of
the restriction enzyme sites along the DNA molecule. In Figure 4 maps are shown for
two enzymes & and S, and o« and S together. There are 3 possible maps, & a.lone, 8
alone, and a and 3 together. The physical distance between the sites is proportional to
number of nucleotides.

Some nice graph theory is associated with these maps. Interval graph theory qriginated
with the biologist Benzer (1959) who was studying the structure of bacterial genes.
While every schoolchild today knows a gene is a linear word over a four ietter alphabet,
Benzer's work was basic to deciding that fact. He had experimental data on the overlap
of pairs of fragments of the gene and he showed the data consistent with line'ar'{ty,
founding a new ares of discrete mathematics. The corresponding data 'for restriction
maps is knowledge about whether or not intervals between restriction sites overlap or
not.

When the digest goes to completion, that is the enzyme cuts at all sites, we obtain all
intervals between adjacent sites. The intervals are arbitrarily indexed in Figure 5.

Overlap data can be summarized in incidence matrices, (e, B) = (i;), where
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Figure 4: The three possible restriction maps from two enzymes a and 3.

s = { 1 if a—fragment (i) N f—fragment (5) # @
ij

0 if the intersection is 0 .

It is elementary to show

Io,B) = I{e,a AB)*(B,a A B) .

How do we know that I(a, B) is consistent with a restriction map and how do we find

that map from (e, 8)? For our probiem,

I{a,f) =

(=R e B ]

1

By rearranging rows and columns, we obtain the following staircase shape for the matrix
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Figure 5: Restriction maps from two enzymes « and § with labelled intervals.

This staircase property of the permuted incidence matrix is a characterization of bipar-
tite interval graphs with no isolated vertices. Griggs amd Waterman (1986) apply the
ideas and results of interval graphs to restriction maps.

There is a concept and experimental practice of partial digestion. In these experiments
a site is cut with probability p € (0,1), not p =1 as in complete digestion. This raises
the possibility of intervals, such as 5— 7 — 1 in the a A 8 map, composed of adjacent
single digest intervals. For the a, 8 overlap graph we introduce two such intervals in
addition to the complete digest intervals.

1 2 3 45 3-5-2

1 01000 1
2 01001 1
I"'=3 00010 0
4 10111 1
=2\1 1 1 1 1 1
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A row permutation, this matrix becomes

1 2 3 45 355=-2
1 01 000 1
2 01 001 1
=211 11 1 1
4 10111 1
3 0 0010 0

Notice that in the columns 1's occur uninterrupted by 0’s. This consecutive ones
property for columns characterizes interval graphs: a graph whose vertices can be
put into 1-1 correspondence with a set of intervals of real numbers whose vertices are
f:on.nected if their corresponding intervals have non-empty intersection. This of course
is a version of the original problem of Benzer and was established by Lekkerkerker &
Boland (1962). Linear time algorithms for obtaining and testing for interval graphs can
be found in Booth and Leuker (1976).

2.2.1 The Double Digest Problem

With Southern blots as symbolized in Figure 3, we obtain length measurements of all
single and double digest fragments. Often these measurements are only approximate.
For the example of this section, let 1, 2, z3, z4 denote the lengths of the 4 a-digest frag-
ments, y1,Y2...ys the length of the 5 B-digest fragments, and 21,22,... 23 the lengths
of the a A 3 digest. Given these lengths, the double digest problem DDP is to find
the maps consistent with the data. Nathans and Smith (1975) introduced the idea of
constructing restriction maps from length data. Generally we have

A={zy,...,z,},

B={y1,---,ym} y
and

AAB={z-- -z}

If there are no coincident cut sites, ! = n+m-1. Taking the ideal case of no measurement
errors,

n m !
EZ;:Zy.-:ZZi‘

=1 i=1 i=1

We have not made precise our criteria for a good solution. Most approaches to this
problem fall into two categories. The first is what we call the travelling salesman or
permutation approach. In this setting the task is to find permutations ¢ € S, and
i € Sm so that (o, u) specifies a map. Set

r t
S={s:s=2a,(,~)or zb“(,-): 1<r<n, 1§t_<_m}
=1 i=1
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Index S so that

sj < 8541, and sp = 0. The double digest implied by S is

D(o,u) = {zi(o,p) = sj—sj—1 for je[L,l]}

The quality of D(c, 1) is measured by how near it is to the real double digest data,
||D(o, 1) — A A B||. In Goldstein & Waterman (1987), || - || was defined by

Zi

ID(o,p) = AABl =)

1

Various approaches have been taken to solve the problem. Pearson (1982) simply looked
at all nlm! permutations of the single digests. Goldstein and Waterman proposed a sim-
ulated annealing algorithm. Any heuristic approach to the traveling salesman problem
should be adaptable to this problem.

Another approach to DDP is the set partition approach. That is for the o digest, for
example, partition the ! double digest lengths into n disjoint classes:

211 eee 21y
22,1 .- 22m,
Zndl -e¢ Znm,

and check the fit by

n n;
YUYz -l
j=1

i=1l

Fitch et al. (1983) ‘proposed a solution that took essentially this approach.

As shown in Goldstein & Waterman (1987), it is relatively straightforward to show
DDP is in the class of NP complete problems conjectured to have no polynomial time
solution. Garey & Johnson (1979) is a standard reference to NP complete problems.
More surprisingly, if we lay down restriction sites according to a Poisson process, i
can be proved that there is an exponentially increasing number of exact solutions as
the length increases, with probability one. Only one (or two if we consider left/right
symmetry) can be biologically correct. Therefore it is hard to find a solution which ir
turn is unlikely to be that in which the biologist is interested. Biologists cope with this
problem by staying safely on this side of asymptotics. Schmitt & Waterman (1991) loo}
at the multiple solutions more closely, and a complete solution to characterization o
these multiplicities is given in Pevzner(1994).




2.2.2 Partial Digest Problems

We clel:ve mentiom?d pe?.rtia.l djgesf,ion above in the introduction to Section 2.2. The
(I;?,ial ure for partial digest mapping is experimentally demanding but mathematically
The DNA is end labelled, so that when the lengths are measured we “see” only pieces
that have the label. In the example shown in Fig. 6 with the a partial digest we would

ly gm 8 1 these fO (S} hs a Illa.p 18 easlly constr ucted
on see tlle fla ents hown. IVIeasuI I ur l t.
g g )
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Figure 6: A Partial Digest.

When the DNA is not end labeled, the mathematical complexi

e DN , plexity changes greatly. This
new partial digest problem (PDP) can be stated as follows. Given a set £, = {z1, y Zn}
of lengths, the problem is to find distinct points on the line 1 <c2<...such tha,t

= U {a-q}.

1<i<y

There is a beautiful algorithm for PDP based on Rosenblatt & Sevmour (1

pr%e.nted by Lenke & Werman (1992) and by Skiena et al. (1990). 13:1 Na.or(( 398922)) at!lll(:

algorithm, which computes all possible generating functions for possible maps, is shown

to be pseudo-polynomial. That is the time complexity is bounded by a pélynomial

function of the size of the problem, n, as well as the largest fragment length. Naor also

E:resents a backtracking algorithm more appropriate to real dats with multiplicities and
OrS.

Naor also studies a related problem, the probed partial digest problem, PPDP. In this
problem, an interval is labeled and all partial digest intervals containing that interval
are measured. The formal statement is that the PPDP length set L is solved by a set
of p + ¢ distinct points on a line z; < z2 < - - - < Zp <y1--- < yq where

L= U {y; — =i} .

1<igp

——————
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Newberry & Naor (1992) give a lower bound on the multiplicity of solutions to this
problem.

3. COMPARING SEQUENCES

Actually it is profitable to look at a DNA sequence as the finest scale map it is possible
to make of DNA. As we suggested in the introduction, the total database of sequenced
DNA is approximately doubling every two years, and with genome projects gaining
momentum, this rapid increase will continue for some time. In this section we will
survey a few aspects of nucleic acid and protein sequences. First of all, since obtaining
sequence is so important, we first outline the simplest and often used technique of
shotgun sequencing. Then we survey the area of sequence comparisons.

3.1 Sequencing DNA

Most currently employed techniques for sequencing DNA rely on the ability to routinely
read a small segment of DNA sequence of length I, where | € [300, 500} bases, with
reasonable accuracy. Essentially, this is accomplished by dividing the DNA into four
samples and treating each sample with an enzyme that cuts after a specific letter. Then
the samples are run side by side in a gel and the sequence can be read from the gel. Let

us assume this technology is available.

The technique we now describe for obtaining sequences longer than l is known as shotgun
sequencing. The idea is to break the longer sequence of length L into random fragments
of length I. That is any interval I, |I| =1 has the likelihood (L — 1+ 1)~1. Then these
fragments are read sequentially. The longer sequence is determined by the ability of
the experimenter to find overlaps of the sequenced fragments and to put the sequence
together like a jigsaw puzzle. See Figure 7 for a schematic of this process.

Sampled Fragments

DNA Sequence

Figure 7: Sequencing fragments
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Obviously, there must be a minimum believable overlap, t. ¢t = 1 for example would
Pave 'overlap “seen” every 1/(2 x p) comparisons where p = P (Two random bases

identical). With independent, identically, and uniformly distributed letters, p = 1;?
We need to set ¢ so that we have a small chance ¢ of calling overlap. Sup o’sg 1:— th'
number of fragments. Then the chance of spurious overlap is &stimat;ad byp -

P (spurious overlap) = P(U {fragment i and fragment j overlap by >t}
i)

o (5) g sa(s) -

k<t 1-p

2 (g) lzj-tp -

Therefore if n = 1000, € = 10~2, and P =1/4, we have t = 13. Since there is more data

:a7n ju.;t pairwise overlaps in sequence assembly, the ¢ used in practice is often as small
or 8.

Solving

Another analytic question of much im i
: portance is how large n must be to obtain 95% of
the underlying sequence of length L. Some formulas developed by Lander & Watemzan

I(1 gifi)ofor the progress of physical mapping experiments are relevant here. First set the
n

length of DNA to be sequenced

length of sequenced fragments

number of sequenced fragments

n/L

:.;?ount of overlap needed to detect overlap
1-6

redundancy of coverage = nl/L.

(]

]

L
l
n
a
t
0
o
c

Several assumptions underlie the formulas given below. We assume L = L -1 4+ 1 so

that, for example n/L & probability of a base startin
: g a new fragment. We al
all overlaps > t are detected perfectly, with no errors. g e also assume

As sequencing proceeds, the fragments fall into apparent islands of one or more members
based on their sequence. Of course some actual islands go undetected because of small
overlap. Islands are often called “contigs” and the gaps between islands are called
oceans. All claims below are approximate for n large.

L. The expected number of apparent islands is ne=<.

II. The expected number of apparent islands with j 2 1 fragments is

ng?e? (1 - e=7)i~1
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II1. The expected number of apparent islands of at least two fragments is

ne~? — ne~%7

IV. The expected number of fragments in an apparent island is €.
V. The expected length of an apparent island is

co
L[e 1+1—a‘] .
[+

VL. The probability an ocean of length at least kl follows an island is e~<(¢+9),

3.2 Sequence Comparison

Given a sequenced DNA, both RNA and protein sequences can be inferred. One way
to understand the function and evolution of sequences is to compare a sequence to
all sequences already collected in the databases. It can be enormously useful to know
that the sequence has a unusual, non-random similarity to a sequence already in the
database. Evolution maintains useful sequences over vast evolutionary time so that
sequence similarity can be suggestive of the original biological function of the sequences.
For example, before the defective gene for cystic fibrosis was finally cloned (Riordan et
al., 1989) and sequenced there was no hypothesis about the structure or function of the
gene. After sequencing the gene, the inferred protein sequence was compared to the
protein sequence database, and a family of membrane transport proteins were similar.
This gave an immediate hypotheses as to the structure and function of the gene that
turned out to be extremely valuable in guiding the next experiments.

How then are sequence comparisons performed? While there are a wide range of meth-
ods, here we will present a family of dynamic programming methods for sequencing
comparison. The following discussion based on Waterman (1984) and Waterman (1989).
The dynamic programing methods are quite simple to write down and they give rigorous
answers to these questions. Let us first look at the problem of comparison, often called
alignment. Take two sequences X = Z1Z2...%n and y = y192...Ym. We compare the
sequences by aligning them, writing the x-sequences over the y-sequence. Two aligned
letters § denote the identity as in 4 or a substitution as in 4. To complicate things, let-
ters can be inserted or deleted (an indel), denoted by #. This means an A was inserted
into the x-sequence or deleted from the y-sequence. Alignments can be enumerated by
identifying the “matched” letters. If there are a total of k identities and substitutions.
then there are (})() corresponding alignments. Summing over k

=) 6) = 037

indicating a huge number of alignments for sequences of length 1000.
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The idea of optimal alignment is to assign a score to each alignment. The simplest
scoring schemg is to give s(z,y) to each matched : and to give —§ for each deletion

f or ; Usually s(z,z) > 0 and s(z,y) < 0 for at least some z, y pairs. Other more

complex scoring schemes will be discussed later.

3.3 Global alignment

This section continues the above discussion: how to find optimal alignments of x =
T1Z3' - Tn'and ¥ = Y19 ... ym With scoring function s(z,y), where s(z,—) = s(—,y) =
—6. Dynamic programming provides an elegant way to find these optimal alignments.
Set

S(x, y) = max {score : all alignments of x and y}.

For our algorithm,
Sij =8 ...z5,1...95)

and So’j = S(@,m ...yj) = -6 x j, S,',o = S(z; . ..'c,-,¢) =-4x i, So,o = S(o, @) =0.
The algorithm is based on the three ways an alignment can end:

oo T§ R 11 cre ™
or or B
..y" P "'yj

The optimal score S;; must correspond to alignments that end in one of these three
ways. The sequence prior to the ending must be optimally aligned. Therefore

Sij = max {S;1,j-1 + 8(2:,¥;), Si-1,j =6, Sij—1— 6} .

The cases where i and/or j equal 1 are handled by the boundary values for Sk, when
k-1=0.

) G G T G A A A G G c

6 -2 -4 -6 -8 -10 -12 -14 -16 -18 =20
-2 -1 -3 -3 -5 -7 -9 -11 -13 -15 -17
-4 -3 -2 -4 -4 -4 -6 -8 -10 -12 -14
-6 -5 -4 -3 -5 -3 -3 -5 -7 -9 -1
-8 -7 -6 -3 -4 -5 -4 -4 -6 -8 -10
-0 -9 -8 -5 4 -5 -6 -5 -5 -7 -9
-12 -11 -10 -7 -6 -5 -6 -7 -6 -6 -8
-4 -11 -10 -9 -6 -7 -6 -7 -6 -5 =7
-6 -13 -12 -9 -8 -7 -8 -7 -8 -7 -6
-8 -15 -12 -11 -8 -9 -8 -9 -6 -7 -8
-20 -17 -14 -13 ~-10 -9 -10 -9 -8 -5 -7

QANSQANNNERNS

Table 1: Table comparison matrix

iy
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Figure 8 shows the schematic (or cartoon as molecular biologists put it) of an alignment.
An example is now given where x =TAATTTGTGG y =GGTGAAAGGC and

1, z=y, _
s@u)={_] giy0="2

VAN AN/l

Figure 8: Global alignment

T A ATTTGTG GG -

G G-TGAAAGGSC

Table 2: Global alignments

The time cost of the algorithm is clearly O(n?). The optimal alignments are obtained
by starting at Sy, and asking what S; ; lead to Sy,m. Each such S;; is one pa.rt of an
alignment. This so-called backtracking scheme recursively gives all optimal alignments.
For our example the optimal alignments are in Table 2.




3.4 Fitting in .

In many examples a pattern or sequence of interest will be known and the problem is
to fit the pattern into a larger sequence. That is, find those contiguous subsequences of
Y =Yy1...Ym wWhere X = x; ...z, is well aligned. Formally

F(x,y) = max {S(x,yx...y): 1<k <I<m} .

This problem too is easily solved by the above recursion with a subtle but essential
modification. Set Fo0 =0, Fy; =0 and Fi,0 = —18. Then, as before, compute

Fij =max{Fi_1 -1 + s(zi,y;), Fic1,j ~ 6, Fijo1 — 6} .
The score F(x,y) is obtained by

_ F(x,y) =max{F,;: 1<j<m}.
The schematic for this problem is in Figure 9.
VAL ’

Figure 9: Fitting in alignment.

The logic behind this recursion is of course closely related to that for global alignment.
Deletion of the initial part of the y sequence should have 0 cost; that is accomplished
by Fy,; = 0. Deletion of the final part of the y sequence also should have 0 cost; this is
accomplished by equation 3 maximizing over F, j, which deletes g1 -+ - ym at 0 cost.

3.5 Local alignment

We now come to the most useful algorithm for sequence studies, the so-called local
algorithm. When a new sequence is compared to a database of sequences, there is no
clear idea of what might be found. The entire search sequence x might be very close to a
sequence in the database, so that we should compute S(x, y). The entire search sequence
might be within a database sequence, so that we should compute F(x, y). The search
sequence might contain an entire database sequence so that we should compute F(y, x).
Or even more likely, a portion of the sequence, x will have an unusual resemblance to
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Figure 10: Local alignment

a portion of y and none of the above solutions are correct. The schematic for thi§ new
problem is in Figure 10 where the boxes indicate the portions of x and y to be aligned.

Formally define
H(x,y)=max{S(z;...z5,yk..-.m):1<i<j<n, 1 <k<l<m}.

Again a delicate modification of the basic recursion will do the trick. Set H;; = 0 if
i-4j = 0. Then define

Hji =max{S(zi---zj,yc---4):1<i<j and 1< k<i}.
The modified recursion is
H;j = max {H;_1,j-1+ 8(%i,y5), Hic1j — 6, Hij1 — 6,0} .
The original problem is solved by proving that
H(x)y)=max{H;;:1<i<n,1<j<m}.

The new subtlety is the introduction of “0.” This acts to eﬁmin?,te any aligm‘x‘xent
that has negative score, allowing an alignment to begin anywhere with 0 cost for “end
deletion.”

The example treated earlier is now recalculated in Table 3 for the local algorithm. The

best local alignment is found by tracing back from Hg4 = 3 resulting in an identical
GTG from each sequence.

-_-—-_—-—0 R OO0 0o|q
N=O-HOOOO0OoOIN
" cCONOHm Lo O~|N
—TWONOOOOOOIN
N=HOOOO =m=mO|x
COO0OO0OO0OOON~OIN
COO0OOOO=N~O|N
-—-—0 =00 =00 OoIQ
NHOROOOOO0O|R
coocoocoococolq

QAN RN

Table 3: Local alignment example
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3.8 Indel costs

In biology, long stretches of sequence can be inserted or deleted in one evolutionary step.
It does not seem correct to weight a deletion of k letters by —ké. Instead we might
weight such a deletion by —w(k), where w(k) is an arbitrary non-negative function. The
global alignment algorithm becomes

Si,j = max {Sz’—l,j—l + 3(-‘¢nyj),max {Si—k,j - w(k) i1 S k S 1:’
max {S;;-x —w(k): 1<k <j}} .

The time cost escalates from O(n?) to O(n3).

When w(k) = a + Bk, it is possible to reduce the cost to O(n?) again by running 3 re-
cursions instead of 1 as for the original algorithm. See Gotoh (1982) for this algorithm.
It is possible to argue that slowly increasing functions, such as w(k) = a + blog(k) are
even more appropriate. For these concave indel functions more complex algorithms run-
ning in time O(n?logn) are presented in Miller & Myers (1988) and Galil & Giancarlo
(1989).

4. GENOMES

The word genome is defined as the collection of DNA contained in an organism. In
the case of humans it means the DNA in the 23 linear chromosomes, about 3 x 109
nucleotides. In E. coli the genome is one circular chromosome of about 4.7 x 108
nucleotides. Recently “genome analysis” has become a hot topic with the advent of
the Human Genome Project. We will discuss the U.S. project but it is worldwide,
coordinated by HUGO. Roughly speaking the Project’s goal is to characterize the human
genome, although it is actually much broader than that. The publicity of the project has
created much scientific interest in the general area, including so-called informatics that
has been defined to mean anything computational or mathematical relating to biological
information. Below Section 4.1 discusses the Human Genome Project in more detail,
Section 4.2 sketches a recent topic in molecular sequences and human evolution, and
Section 4.3 concludes with a sampling of the new challenges that the Human Genome
Project brings to the mathematical sciences.

4.1 The Human Genome Project

The usual description of the broad goal of the HGP is to acquire basic information
needed to further basic scientific understanding of human genetics and of the role of
various genes in health and disease. This is a goal that can easily be described to a
politician or to a non-scientist. It is our belief that the goals are much deeper and
broader. To understand human biology it is necessary and much easier to study the
biology of a wide range of organisms. This is basically due to the conservative nature of
evolution. Important molecules are conserved over vast amounts of evolutionary time.
Plants have a version of the hemoglobin molecule, as do bacteria which have been on this
planet for 3.5-4 x 109 years. Obviously these molecules have evolutionary descendents
that are utilized for new purposes but much can be learned from these comparisons. Of
course it is much easier to grow bacteria than mammals to mention only practical and
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not ethical considerations. Two humans differ by about 1 base in 1000; we are 99.9%
similar. A human and a chimpanzee differ by about 2 bases in 100; we are 98% similar.
Lab animals, especially the laboratory mouse, are used for experiments vital to human
health. It would be a waste of money and time not to have parallel genome projects
for other organisms. These organisms are called “model organisms” in the literature
of the HGP and include E. coli as well as other bacteria, the yeast S. cerevisiae, the
fruitfly Drosophila melangaster, the worm C. elegans, and the mouse. The collection of
map and sequence information from these and other organisms will be the foundation
of biology for the next century.

Let me now sketch some of the goals of the first five years of the pro ject as they appear in
a joint U.S. National Institutes of Health and U. S. Department of Energy publication,
Understanding Our Genetic Inheritance: The U.S. Human Genome Pro ject.
Of course the outline below reflects that of the publication.

4.1.1 Mapping and sequencing of the human genome

It is estimated that there are 50,000 to 100,000 human genes, but this number is not
well estimated. Some 2,000 of these genes have been mapped. Since there is variation
in human sequence, the question of “whose sequence?” often arises. Actually “the”
initial sequence will be a composite of many human genomes. Population variations are
important and can be pursued as well; they just are not the initial goal.

Genetic maps were briefly discussed above. Genetic maps are sequences of markers
separated by estimated genetic dictators. The unit of distance is a centimorgan, after
the geneticist T.H. Morgan. A centimorgan roughly corresponds to 10° bases of DNA.
The 5 year goal is to provide a fully connected genetic map with markers an average of
2 to 5 centimorgans apart. Each marker is to be identified by a short DNA sequence
that is unique in the human genome, a sequence tagged site or STS.

Recall that physical maps are sequences of sites with the intersite distances measured
in physical length, such as number of bases. There are many variants of physical maps.
One 5 year goal is to produce STS maps of all chromosomes with the markers at ap-
proximately 100,000 base intervals. Another type of physical map is an overlapping
clone map. DNA can be inserted into various types of clones: X clones of 15,000 bases,
cosmids of 34,000 bases, BACS (bacterial artifical chromosomes) of 10° bases, or YACS
(veast artificial chromosomes) of 10° to 10® bases. The 5 year goal is to cover large
parts of the human genome with overlapping clone maps.

The physical maps of overlapping clones for the smaller size clones is a useful preparation
for DNA sequencing. The 5 year sequencing goal is to sequence 107 bases of human
DNA in large continuous stretches. This goal is to help develop and validate technology.
In addition, the 5 year goal is to improve existing and develop new methods of DNA
sequencing that will speed up sequencing and reduce the cost from $1 per base to $.50
per base.
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4.1.2 Model organisms

Some reasons for studying model organisms were given above. The mouse is an ex-
tremely important model organism for the HGP and the 5 year goal is to construct 5
genetic map of the mouse genome. In addition 2 x 107 bases of DNA from a variety of
model organisms is to be sequenced, on sequences that are 10® bases long, in the course
of improving existing and developing new methods of DNA sequencing.

4.1.3 Informatics: data collection and analysis

Here the goal is to develop effective software and database designs for support of large
mapping and sequencing projects. Key to the sub ject of the present paper is the devel-
opment of algorithms and analytic tools to interpret genomic information.

Other goals relate to ethical, legal and social considerations, research training, technol-
ogy development and transfer.

Notice that the emphasis is on the data collection aspects of the HGP and scant attention
is given to the understanding of the data. This is misleading of course. As soon as the
cystic fibrosis gene is cloned and sequenced the race is off to understand the gene and its

defect, and to devise treatments including gene therapy. This is a general rule: produce
the information base and science will proceed at a rapid pace.

4.2 Mitochondrial Eve

Evolution has been discussed briefly at several places in this paper. In this section we
look at a recent controversy in human evolution resulting from the analysis of DNA
sequences. The root question of the time and place of human origins as well as mech-
anisms of evolution is of great interest. Molecular data hold great promise, but as the
following discussion shows, progress is made with great difficulty. Yet it is just these
questions that must be addressed with the flood of molecular sequence data. These are
serious challenges for mathematical biology. '

The late Allan Wilson and colleagues used mitochondrial (mt)DNA to address evolu-
tionary questions. mtDNA is useful because it accumulates substitutions rapidly and
because it is matriarchal, passed from mother to offspring, and can be used to trace
ancestry without the recombination occurring in the lineage of most genes. In Cann et
al. (1987) they argued that the most recent common ancestor of all mtDNA sequences
in human populations today lived in Africa around 200,000 years ago. The paper locates

mitochondrial Eve in time and place and made a huge impression on the scientific and
popular press.

How was such a wonderful conclusion reached? First of all, the data was the presence
or absence of 195 restriction sites from 147 individuals who were Africans, Asians,
Caucasian, native Australians, and New Guineans. Secondly the data was analyzed by
the method of parsimony. In parsimony analysis, the goal is to find the evolutionary
tree of minimum length, where length is the minimum number of evolutionary changes
along the tree to explain the existing data. A central problem is that at about 15
species or individuals all possible trees cannot be exhaustively searched by brute force.

&
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At 147 individuals, no known method can rigorously search all trees. Heuristics must
be employed as the problems are NP hard.

Cann et al. (1987) found a tree with 312 evolutionary cha.nges: The first branch hz;;: all
Africans on one branch and a mixture of African and non-Afrlcafls on the ot.her. ol:n
this an African origin was argued. That takes care of place. Time was estimated by

7 assuming a uniform rate of change in mtDNA. The statistical issues here have not been
“ satisfactorily resolved.

. Since the paper appeared several studies have cast doubt on the analysis. See Golc(i)nazxa
:' & Bartony for an excellent overview (1992). It turns out that there are at least 10,

trees with only 307 changes, most of which do not indicatfa an African origin. In a;ddsl:)x::lx;
the parsimony analysis does not always give the b&sF es'tlmate 'of the txjue tr‘ie. gdel e
well-defined situations, the method of maximur'n likelihood is su'perlori‘k " ;n del of
evolution along the branches of the trees is specified and the maximum li eth ooin ree
is to be chosen. Here the computational requirements are even more severe than

case of parsimony.

4.3 Challenges of the Future

The last section was meant to illustrate the new Problems m(.)tiva.tec} by the I;Ciz’
and by modern molecular biology in general. Eyolutlonary q.uw.tlons arise ever%;ve; 15
Discover the evolutionary history of genes, species, groups \-mthm species, .. t e
no one model that is adequate. For example, the sunp}e binary, branc.hxngh l;ee ax;n:c)t
be made completely invalid by transfer of genetic ma‘tenal betwee:n species tha cT no
interbreed. Mathematical models of evolution led bxolog)" early in this centu;y. 10d }é
we are behind the experimentalist who has data and questions far beyond our knowledg
and power to answer.

Sequences occupied much of this paper. As databases grow e?cponentially and the c?éxll-
parison questions grow rapidly as well, we must devise entirely new ways ‘to r‘apx h'y
compare strings. It may even be that analog will replace digltal.com;?utatlon mbt is
area. Certainly people in the field of combinatorial pattern matching will be kept busy
by these new problems.

Of course there are genome maps of every flavor being produced. How t(; Somparieca
maps is an active area. Huang & Waterman (1992)' look at ext.ensx.ons oS y}r{x:fxfn&
programming sequence comparison algorithms to physical map .co'mparxsons. a.r;ments
Goldstein (1989) take on a new problem when 'they look at minimum rearrang

of gene orders to change one chromosome map into another.

This paper has not discussed one of the most import.ant and difficult problle':ms in thel:;rrtla;
ical biology, that of predicting 3-dimensional protein structure frqm the linear seq o
of amino acids. See Creighton (1989) for example. No clean solution has })een propose
thus far and this field will remain very active as DNA sequences along with the protein
sequences they encode continue to appear.

There are important and fascinating new problems ?n this area. Qenerally th;zyt al:}S,e
in connection with specific biological data and questions. It is our job to translate the
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biology into mathematics and computer science to obtain relevant problems for our
subject as well as for biology.
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INTRODUCTION

How do cells move? There is no shortage of theories, but a definitive answer is still clusive. Here
we will present some models for cell motions along with proposals for experiments to address the
theories. We will restrict ourselves to the problem of cell protrusion, although the models apply to
other motility phenomena as well.

Different protrusion phenomena extend at different characteristic rates. Figure 1 shows data for
protrusion rates of lamellipodia, filopodia and the acrosomal process of Thyone. Their velocities
vary dramatically, which suggests that the force driving them may originate from different physical
mechanisms. We will present here models for each of these processes.

LAMELLIPOD PROTRUSION

Lamellipodia are broad, flat cytoplasmic protrusions that spread out in front of a moving cell.
Experiments have shown that there is surface flow of cytoplasm rearward from the leading edge as
the lamellipodium extends forward [20]. Conservation of mass ensures that there must be a central
flow of cytoplasm forward to provide the material for extension. The question we address is: what
forces drive the extension of the leading lamella? Amoebae pseudopodia bear superficial
resemblance to lamellipodia, but there is evidence that they may operate by a different mechanism,
and so we will not deal with them here; models of the «frontal contraction” and “cortical tractor”
hypotheses for amoeboid motion can be found in [16, 17, 25, 26, 27].

An elegant set of models have been developed by Dembo, Alt, and their coworkers based on the
idea that cytoplasm can be modeled as a “contractile fluid” {1, 7, 8, 9]. They model the cytogel as a
two-phase, viscous fluid (i.c. a Navier-Stokes systemn) with a term added that permits the gel phase




