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ABSTRACT 

patterns of various sizes, from very small (one, two and 
three nucleotides) to very large (over 300 nucleotides). 
Although the functions of these repeating regions are 
not well understood, they appear important for 
understanding the expression, regulation and evolution 
of DNA. For example, increases in the number of 
trinucleotide repeats have been associated with human 
genetic disease, including Fragile-X mental retardation 
and Huntington’s disease. Repeats are also useful as 
a tool in mapping and identifying DNA; the number of 
copies of a particular pattern at a site is otten variable 
among individuals (polymorphic) and is therefore 
helpful in locating genes via linkage studies and also 
in providing DNA fingerprints of individuals. The 
number of repeating regions is unknown as is the 
distribution of pattern sizes. It would be useful to 
search for such regions in the DNA database in order 
that they may be studied more fully. The DNA database 
currently consists of approximately 150 million 
basepairs and is growing exponentially. Therefore, any 
program to look for repeats must be efficient and fast. 
In this paper, we present some new techniques that are 
useful in recognizing repeating patterns and describe 
a new program for rapidly detecting repeat regions in 
the DNA database where the basic unit of the repeat 
has size up to 32 nucleotides. It is our hope that the 
examples in this paper will illustrate the unrealized 
diversity of repeats in DNA and that the program we 
have developed will be a useful tool for locating new 
and interesting repeats. 
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4 A significant portion of DNA consists of repeating c- 
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INTRODUCTION 

Repeating patterns make up a significant fraction of genomic 
DNA. For example, it has been estimated that from 30 to 50% 
of the human genome consists of repeats of one form or another. 
The exact function of many of these repeating regions is unknown 
but some may function as catalytic, regulatory or evolutionary 
sites (5,11,12,22,26). For example, the centromeric region of 
DNA controls the movement of the chromosome during cell 
division. This region, termed a satellite, consists of many 

contiguous copies of a species specific pattern and may serve 
as a protein binding site (9). 

In some cases, repeating patterns have been implicated in 
human disease. A repeating three nucleotide pattern on the human 
X chromosome is sometimes replicated incorrectly, causing the 
number of repeats to balloon from 50 to hundreds or thousands 
(29). Individuals with this defect suffer from fragile-X mental 
retardation. Several other diseases are also now known to have 
their basis in huge expansions of different trinucleotide repeats 
(8,17,23). 

Besides their importance in DNA function and expression, 
repeating patterns are useful laboratory tools. The number of 
copies of a pattern at a particular site on a chromosome is often 
variable among individuals @oZymorphic). Such polymorphic 
regions are helpful in localizing genes to specific regions of the 
chromosome (linkage) and also in determining the probability 
of a match between two samples of genetic material via DNA 
fingerprinting (6,31). 

Given the importance of repeating patterns and the exponential 
growth in the size of the DNA database, it is important to develop 
efficient methods for detecting repeats. In this paper, we describe 
a new program that does rapid scans of the database to find 
repeating regions where the basic unit of the repeat has size up 
to 32 nucleotides. Our program looks for tandem repeats, that 
is, a repeating region in which copies of the basic repeating unit 
occur one after the other. Besides database scans, our program 
will be usehl as a tool for rapid identification of repeating regions 
in new entries to the database, thus facilitating more complete 
annotation of the sequences. 

Several theoretical algorithms for finding tandem repeats have 
previously been described. One algorithm, (16), searches for 
tangem repeats when the criteria for similarity is either k or fewer 
mismatches (Hamming distance) or k or fewer differences (unit 
cost edit distance). Two other algorithms (2,14) search for non- 
overhpping regions in a sequence that give the best alignment 
score. They can be easily modified to find strictly tandem repeats. 
These two algorithms measure similarity by weighted operations 
for symbol replacement, insertion and deletion (1 8). None of the 
three can be modified to incorporate the more general scheme 
of length dependent gap penalties (10). 

Actual use of these algorithms is problematic for several 
reasons. First, to analyze a single sequence of length n takes on 
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the order of n210g2n time, thus making these algorithms 
inefficient for database searches. Second, the algorithms are 
complex and difficult to program and rely on other complex 
algorithms. Third, in these algorithms, ‘tandem repeat’ means 
exactly two copies of a pattern rather than an unspecified number 
of copies. Since each ‘repeat’ may be composed of many copies 
of a basic unit, finding this unit would require additional 
computation. 

An alternative, more computationally practical approach is 
provided by (19). In this method, a sequence is encoded using 
a data compression scheme. A region in the sequence that uses 
less than the expected number of bits for encoding is a ‘simple 
sequence’ which is composed of a mixture of fragments that occur 
elsewhere in the sequence. This method, too, has several 
limitations. First, the program does not specifically look for 
tandem repeats, and tends to report regions that are a mixture 
of repeats and other fragments. Second, in testing the program, 
we have found that it does not find short, approximate repeats 
that occur tandemly as many as 27 times. We estimate that such 
a region would occur with extremely low probability (randomly 
about once in 1015 random sequences; see Methods section). 
Third, the program output is just a description of the data 
compression encoding. There is no attempt to determine a basic 
repeating unit nor any other elements that are responsible for 
the short encoding. This makes comparison of repeats across 
sequences and species difficult and also precludes observations 
about molecular evolution (see Discussion section). Finally, no 
estimation of the statistical significance of the region is made other 
than that of the compressed encoding length. 

Another algorithm that is useful for computing an alignment 
between a pattern and a sequence has been described by (7,20). 
The algorithm by itself is insufficient forjnding repeating regions 
because the basic pattern of the region must be known in advance. 
In our method, we use this algorithm. More details are provided 
below. 

In contrast to these other algorithms, our method is straight- 
forward to describe and program. We have produced a working 
copy which quickly finds tandem repeats in database files 
containing tens of thousands of sequences. The program looks 
specifically for tandem repeats and can find such regions even 
if they contain only a few copies of a pattern. Additionally, each 
repeating region is reported with an alignment against a likely 
pattern. Using these patterns, it is easy for a user to spot similar 
repeats occuring within a single sequence or amongst several 
sequences and to make observations about the evolutionary history 
of the region. 

The remainder of the paper is organized as follows. In the 
Methods section, we outline the procedures used in our program 
and discuss statistical problems associated with recogniziig when 
patterns repeat significantly more often than expected at random. 
In the Discussion section, we present sample running times of 
our program and some examples of previously unidentified 
repeats from sequences in the primate genomic database. We also 
describe how observation of indel and replacement patterns in 
the repeating regions can suggest the evolutionary history of a 
repeating region, which may be significant when studying 
polymorphic regions. 

. 

.. 

METHODS 

We begin with the definitions of some terms. A pattern is any 
particular sequence of bases. A tandem repeat is the concatenation 

of two or more copies of a pattern. Typically the copies are not 
exact, but contain various deletions, insertions and substitutions. 
A period is a basic unit of a tandem repeat. It is any one of the 
cyclic rotations of the pattern from which the tandem repeat is 
constructed. Often, we will speak of the size of a pattern or 
period. If a pattern or period has size = 7, then it consists of 
7 bases. For example, for the pattern ACG of size 3 ,  we could 
have the tandem repeat shown below: 

A C G A C C A C G A  G A C G A  

Note that not all copies of the pattern are exact, and that there 
is not a complete copy of the pattern at the right end. The pattern 
has three possible periods: ACG, CGA and GAC, any of which 
could be considered the basic repeating unit. 

Program outline 
The program we describe in this paper searches for tandem 
repeats in DNA sequences. For each repeat found, the output 
consists of an alignment with a putative pattern together with a 
similarity score for the alignment. Typically, the user supplies 
the following information: 

1. A DNA database j l e  to be searched. 
2. A period size for the patterns. 
3. A pattern detection parameter (explained below). 
4. A set of similarity parameters for weighting insertions, 

5 .  A threshold value for recognizing significant similarity 

The program works as follows. For each sequence in the database 
file: 

1 .  Scan the entire sequence looking for suspicious patterns. 
Every time a suspicious pattern is detected, do the 
following: 

(a) compute a similarity score for the pattern versus the 
sequence in the region where the pattern was found. 

(b) if the similarity score exceeds a threshold: 
i. compute an alignment of the pattern and the sequence. 
ii. determine a comemw pattern from the alignment and 

recompute an alignment with the consensus pattern. 
111. report sequence identification information and the 

alignment. 

In the remainder of this section, we describe the major tasks 
of the program in more detail. 

Detecting suspicious patterns 
For very small period size, the number of possible patterns is 
small. For size = 3, the number of distinct pattern classes is 
24, where cyclic rotations of a pattern are not considered distinct. 
That is, the three periods CAT, ATC and TAC are all considered 
the same pattern class. Recall that there are 43 = 64, 3 letter 
words, so this grouping of periods into the same pattern class 
produces a significant reduction. Given such a small set of 
patterns, it would not be too costly in terms of time to search 
the entire database for each pattern. 

As expected, the number of distinct patterns grows very rapidly 
with increasing period size. For size = 8, the number of distinct 
pattern classes is 8,230 and for sue = 15, the number is 
71,582,716! Obviously, for such an enormous set of patterns, 
it would be impossible to search each sequence for each pattern 
in a reasonable amount of time. Further, it would be largely 

deletions and substitutions. 

scores. 

... 
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S(i ,  1) = max < 

useless to do so since most patterns could not occur in a single 
sequence. Therefore, we need some method of selectingpattem 
thur achually occur within a sequence. Further, we may want to 
select a pattern that does not achually occur, but is none the less 
the 'best' for a repeating region. These are perhaps the most 
subtle requirements to meet. We use the following approach. 

In a region of tandem repeats, one would expect and indeed 
finds that in spite of the changes due to insertions, deletions and 
substitutions, small contiguous regions remain unaltered. We look 
for a repetition of such regions as illustrated in the following 
example: 

T C T G C A C T A  C. . .  

Suppose we are searching for patterns with size = 7. If a 3 
base string of nucleotides is repeated at an interval of 7, that 
suggests that the pattern between the repeats could be the period 
for a tandem repeat. In the example above, we find CZTrepeated 
at an interval of 7 and conclude that Ci7'GcQ could be a tandem 
repeat period. Note we are not looking specifically for G", only 
for any 3 base string that repeats at an interval of 7. A pattern 
found by this method we denote a suspicious pattern. Finding 
such a pattern triggers the next step of the algorithm which 
computes a similarity score for the pattern and the sequence in 
the region where the pattern is found. 

There is nothing special about the pattern detection parameter 
3 in the discussion above. It can be assigned any of the values 
0, 1, 2, 3, etc. A zero value means every pattern of size 7 that 
occurs in the sequence is suspicious. Using zero will slow down 
the program because every pattern moves on to the next (costly) 
stage. Larger values for the pattern detection parameter require 
the tandem repeat to be highly conserved in some (small) part 
of its extent. We have found that values on the order of 3 to 
8 work well with respect to time and with very little degradation 
in the number of repeats that the program actually finds. 

Selecting a pattern that does not actually occur requires first 
computing an alignment. We put off the explanation of this until 
the section on consensus patterns. S ( i -  1, P )  + p ( i ,  j )  

S(i-1, 1) + 6 
S ( i ,  p )  + 6 

, o  

s i t y  scores 
Having selected a suspicious pattern, we now want to determine 
if the pattern actually is part of a tandem repeat with that pattern 
as period. Here we will compute a similarity score for the pattern 
versus the local region of the sequence. The similarity score is 
a numerical rating of the similarity between the sequence and 
tandem repetitions of our suspicious pattern. 

Computing the similarity scores for local alignment of two 
sequences A=ala z...a,, and B=blb z...bm has been extensively 
studied (4,13,20,21,25). Using a method denoted dynamic 
programming, the computation involves filling out the entries of 
a rectangular array S(i, j), where the row indices ( i )  correspond 
to bases in sequence A and the column indices (j) correspond 
to bases in sequence B. The value in each cell of the array is 
computed via a recurrence formula: 

S ( i , j )  = max < 

S(i-1,j) + 6 
S ( i ,  j - 1 )  + 6 

l o  1 
S ( i ,  0) = 0, S ( 0 , j )  = 0 

using Similarity parameters p and 6 where p( i ,  J )  is the value 
given to a match or mismatch of ai with bj and 6 is the value 
given to an insertion or deletion of a base ( 18). The score chosen 
depends upon whether it is better to match (or mismatch) ai with 
bj, insert ai, delete bj, or abandon the previous best alignment 
altogether and start over. (Note that this computation does not 
allow length dependent gap penalties (10). Such penalties could 
be easily introduced, but their inclusion would make the 
calculations approximately three times slower. We have chosen 
not to include them in our program because the goal is to rapidly 
identify repeats, not to produce the best alignment.) 

To compute the similarity score, we need two sequences. 
Sequence A is the database sequence. Sequence B is the 
concatenation of some number, k, of copies of the pattern. Recall 
that we do not know, a priori, how many tandem copies of the 
pattern occur in the sequence (or in fact if more than one copy 
occurs). In order not to miss a very long string of repeats, k 
should be large. But, the dynamic programming computation 
takes time proportional to the area of the array. If k is large, 
the computation will be very time consuming, even for the most 
frequent cases where the pattern is not part of a tandem repeat. 

Fortunately, there is an elegant solution to these problems. In 
the method of wraparound dynamic programming developed by 
(7,20) the B sequence consists of only a single copy of the pattern. 
Nonetheless, the maximum similarity score (and the 
corresponding alignment) can be computed. 

In wraparound dynamic programming, the similarity scores 
for each row are computed in two passes through the row. We 
use the normal recurrence (defined above) for the cells S(i, j )  
in a row i ,  except for the first cell S(i, 1). Suppose the period 

This second calculation constitutes the wraparound technique, 
since the value in the first cell S(i, 1) is calculated in part from 
previously computed values in the pth cells in rows i and i - 1. 

Once the maximum similarity score is determined using the 
wraparound technique, we compare it against a threshold value. 
If the score exceeds the threshold, then we continue with the next 
step of the program which is determining and reporting the 
alignment. 

Calculating an alignment 
An alignment is a representation of two sequences which indicates 
which bases are matched, substituted, inserted and deleted. For 
example the following is an alignment between the trinucleotide 
repeat CGG and one small stretch of the fragile-X FMR- 1 gene: 

* 
C G T G  C G G  C A G  C - G  C G G  Sequence 
C G - G  C G G  C G G  C G G  C G G  Pattern 

or deletion. Remaining bases are matched. 
Here, * indicates a substitution and - indicates an insertion 
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Every similarity score S(i, j )  corresponds to (one or more) 
alignments of the two sequences A and B. If we choose the 
maximum m r e  obtained in the array S, then an optimal alignment 
for the two sequences can be determined by starting at the 
maximum and tracing back through the array to determine where 
each value came from. The traceback, like the computation of 
scores, wraps around. Using similarity parameters p(i, j) = 2 
for a match, p(i, j ]  = - 1 for a substitution and 6 = -2 for 
an indel, we get the scores S(i,  j) below and the alignment shown 
above. (The boxes below represent the trace back from the high 
score of 21 .) 

Consensus patterns 

A suspicious pattern P may produce an alignment that scores 
above the threshold, but P may not be the best pattern to align 
with the sequence in that region. In fact we often find that an 
extensive region of repeats contains many different suspicious 
patterns, with a range of alignment scores some above and some 
below the threshold. 

Each calculation of an alignment is expensive and we want 
to minimize the number of times we examine the same stretch 
of sequence. In order to do this, we determine a comemuspattern 
from the alignment of P and the sequence in the following way. 
For each position i in P, we choose the majority sequence base 
aligned with that position. For example, in the following sequence 
fragment, P = ACGZT is a suspicious pattern which produces 
the alignment: 

* *  * * *  
ACGAA ACGGTA - C G T T  A C G T -  AGGTA A 
ACGTT A C G - T T  A C G T T  A C G T T  A C G T T  A 

Yet, P is not the best pattern to align with the sequence. 
Selecting a majority base for each position of P, we get a 
consensus pattern P, = ACGTA which produces the alignment: 

* * ,  * 
ACGAA ACGGTA -CGTT ACGT- AGGTA A 
ACGTA ACG-TA ACGTA ACGTA ACGTA A 

Using the scoring scheme from the end of the previous section, 
(match = +2, substitution = - 1 ,  indel = -2), the first 
alignment gives a score of 27 and the second gives a score of 
33, which is the best that can be done here. 

Notice that selecting the consensus pattern can be more 
powerful than mrely selecting suspicious patterns because it may 
produce a pattern that, as in the example, does not actually occur 
in the sequence. The consensus pattern is helpful in other ways: 

i) Suppose we are searching for patterns of size 12. It is often 
useful to exclude patterns that have size 1, 2, 3, 4 or 6. (Each 
of these smaller pattern sizes will show up in a search for patterns 
of size 12.) For example dinucleotide repeats such as (a), 
occur frequently. In order to exclude them, we can easily test 
if a suspicious pattern is itself composed of repeats. Thus, the 
pattern PI = CQCACACA is composed of repeats of the pattern 
CA . A single mutation in a tandem repeat sequence can produce 
a suspicious pattern such as Pz = CCCACACA that has no 
internal repeats. Nonetheless, the consensus pattern will be PI 
and can be rejected. 

ii) Although not illustrated by the example above, the consensus 
for a pattern position might be a deletion and the consensus 
between two pattern positions might be an insertion. If we find 
a majority of deletions at a position or a majority of insertions 
between two positions, the size of the consensus pattern will be 
adjusted. This may result in a different size than the one of 
interest. This information can again be used to reject a pattern 
or to notify that a different size pattern exists in a region. 

Implementation details 
The initial scan of the sequence for suspicious patterns is done 
in a Boyer-Moore (3) style, i.e. matches are checked from right 
to left. For example, suppose the pattern detection parameter is 
4, the pattern size is 10 and we are testing sequence positions 
25-29 versus 35 -39. (We are looking for a suspicious pattern 
that starts in position 25.) First, we test positions 29 and 39 for 
equality. If they match, then positions 28 and 38 are tested, etc. 
Suppose positions 28 and 38 do not match. Then we can 
immediately move the testing positions to 29 - 34 versus 39 -44 
(testing for a suspicious pattern at position 29) since no match 
of length 4 can span the mismatch at positions 28 and 38 (i.e. 
no suspicious pattern can start in any of positions 25, 26, 27 or 
28). 

Each pattern is represented by a number in base 4. For 
example, TACGA is represented by 30120,. This is natural for 
a four character alphabet and also permits using fast bit shift 
operations instead of slower multiplications and divisions. After 
a suspicious pattern is selected, the minimum cyclicpemtation 
of that pattern is found and used as the period for the dynamic 
programming step. The minimum cyclic permutation of TACG4 
is ACGAT = 1203,. Having calculated the alignment, we store 
on a list 1) the period and 2) the region of the sequence used. 
Every time we find a suspicious pattern, we first check the list 
so that the same period will not be tested again in the same region. 
This prevents recomputing the wraparound dynamic 
programming (wdp) step more than once for a suspicious pattern 
that appears repeatedly in the aligned region. Note also that using 
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the minimum cyclic permutation allows any rotated occurrence 
of the same pattern to be recognized. 

Since a suspicious pattern may first appear in the middle of 
a region against which it aligns well, we do wdp both backwards 
and forwards from the location of the occurrence. Initializing 
the alignment score at zero, we do wdp backwards until all scores 
dependent on the occurrence trail off to zero. Reinitializing the 
alignment score to the maximum found in the backwards 
computation, we do wdp forward from the occurrence, until, 
again, all scores dependent on the occurrence trail off to zero. 
If the maximum score found in this second calculation exceeds 
the threshold, then we redo the entire wdp starting from the end 
of the backwards step and use this final calculation for the true 
score and alignment. 

For a pattern that aligns with a score above the threshold, we 
proceed to the calculation of the consensus pattern as described 
in the previous section. When completed, we store the consensus 
period and region of the sequence used on the same list mentioned 
above and then jump to the end of the aligned region to restart 
the search for the next suspicious pattern. 

Statistical considerations 
After calculating the consensus similarity score, we want to 
estimate its statistical significance. Recall that our consensus score 
represents the best scoring pattern of all patterns of a given size. 
Karlin, et al.,  (15), present formulas that can be adapted to give 
Poisson approximations to the significance of the maximum 
number of mct repeats of a given pattern. These approximations 
are a function of the letter composition of the pattern. There are 
several serious drawbacks to the direct application of these results. 
First, the formulas are not valid when applied to similarity scores 
derived from inexact matching. Second, our scores are derived 
from the maximum over all patterns of a given size, rather than 
from a single pattern. There is no known approximation for such 
a distribution, even in the case of exact matching. Finally, for 
larger pattern sizes, almost all of the patterns have negative score, 
the exceptions being those patterns actually or approximately 
occuring in the sequence. Although this sparseness is consistent 
with a Poisson approximation, from a practical standpoint it 
makes approximation by simulation infeasible because of the 
vanishingly small chance of picking a pattern that occurs in a 
sequence. 

The approach we take to these difficult theoretical problems 
is to provide a Poisson approximation for our consensus similarity 
score by numerically estimating two critical parameters identitied 
below. In our model, given a pattern size and similarity 
parameters, we assume that the empirical distribution function 
of maximum scores less than some value f in a sequence of size 
n can be approximated by a function of t and n. Our 
approximation function is: 

-rnS' F(n,  t )  = e 

Models like this are motivated by the distribution of the length 
of the longest head run in coin tossing where P(head) = [. Since 
there are about (1 - [)n tails in n coin tosses, there are that many 
ways to begin head runs. Each of these head runs is t or longer 
in length with probability ['. There are therefore an expected 
number X = (1 -E)@ head runs at least t in length. Poisson 
approximation holds when X is moderate or small in size, so the 
probability of no head runs of length t is 

Empirical distribution 01 maximum =re for pattern sue 5 

A 

Figure 1. Simulated maximum similarity scores. 

Fitting the function F(n,t)=exp(-nab"t) to the data 

"I I 

Figure 2. Transformation (log(-log(daru)) of the data in Figure 1. 

In more general situations, the factor (1 - E )  is replaced by 
another constant y. For a general discussion see Arratia et al. 
(l), and for application to sequence matching see Waterman and 
Vingron (30). 

We test the model by simulation. Each simulated sequence has 
iid letters for a given letter distribution. Initially, we have used 
equal probability for each letter. For each sequence, we run our 
repeats program with the pattern detection parameter set to zero 
and the consensus pattern computation disabled. This allows us 
to find the score for each pattern that occurs in the sequence. 
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Table 1. Table 2. 
~~~ ~ ~ ~ 

Pattern size Sequence length Score Pattern size Detection parameter Threshold Time (min) 

7 
I 

16 
16 
24 
24 

2000 
5000 
2000 
5000 
2000 
5000 

27 
28 
45 
47 
61 
62 

We collect the maximum score from each simulated sequence 
to calculate the empirical distribution. 

In our tests, we used 5000 sequences each for sequence sizes 
n = 500, 1000,2000,5000, 10,000. The distribution data from 
a simulation for pattern size 5 and similarity parameters @ = 
+2 for a match, p = -6 for a substitution and 6 = -9 for an 
indel) are shown in Figure 1. If the data fit our function F(n, 
t ) ,  then after appropriate transformation, (log( -log(data)), the 
data are expected to fit a straight line. Figure 2 shows the 
transformed data. We see consistency of the data with the function 
F(n, t) over the entire range of sequence lengths tested. 

We calculate the parameters y and [ from a linear regression. 
For example, the values for the parameter [ calculated from the 
slopes of the regression lines for the data in figure 2 are SO45 
for n = 500, SO10 for n = 1000, S183 for n = 2000, S100 
for n = 5000 and SO67 for n = 10,000. The values for the 
parameter y, calculated from the intercepts, are less stable. They 
range from a low of 91 to a high of 223. 

Using the similarity parameters described above, and randomly 
generated sequences of size n = 500, we ran simulations for 
various pattern sizes. Scores as large or larger than those shown 
in Table 1 are likely to occur randomly about 5% of the time. 

Given a score t for a repeating region in a sequence S of length 
n,  we can estimate, from our simulations, the probability that 
a score at least that large will occur at random. The probability 
or p-value is computed by the function: 

- 

A -Y"SI 1 - F(n,  1 )  = 1 - e 

In the initial simulations we used iid letters, all with equal 
probability to compute F(n, t). Clearly, sequence characters do 
not have this distribution. But neither does a region where we 
find repeats have the same distribution as the sequence as a whole. 
This suggests several ways to estimate the p-value. The difference 
is how we adjust the frequencies of letters in the random 
sequences in the simulation. We can use equal frequencies as 
above, we can use frequencies matching those of sequence S or 
we can use frequencies matching those in the repeating region 
within S. The first method will tend to give the smallest 
probabilities and the others higher probabilities. As an example, 
in the Discussion section we present a repeating region in the 
sequence HUMCAIIAOl in which the size 7 pattern is ATCCCG. 
The sequence has length approximately 3000. From simulation 
using random sequences with equal letter frequencies, we find 
that a score must be at least 28 to occur about 5% of the time. 
Using frequencies from HUMCAIIAOl (A = 0.214017, C = 
0.293675, G = 0.278974, T = 0.213333) we similarly require 
a score of at least 28 for the 5% level. Using the much more 
skewed frequencies from the matched region (A = 0,1346, C 
= 0.596, G = 0.1346, T = 0.1346) we determine that a score 
must be at least 45 to occur about 5% of the time. 

8 4 
13 4 
16 4 
24 6 
30 8 

80 15 
100 20 
100 26 
150 17 
90 15 

In the next section, we report sample repeats and their scores. 
We have estimated the probability of obtaining these or larger 
scores using the three methods described. In every case, the p- 
value is vanishingly small. (The exponent -ynQ ranges 
variously from for the case of frequencies matching 
those in the repeating region to -10-27 for the case of equal 
frequencies. These correspond to p-values from lop8 to 

DISCUSSION 

We judge the performance of the program by two characteristics. 
The first is the amount of time required to scan a database file 
and the second is its ability to find previously unnoticed repeats. 

Time requirements 
We tested the program on the GenBank primate sequences file 
(December 1993 release). This file contains approximately 29,000 
sequences comprising some 28 million bases. Table 2 gives the 
times for runs of the program using various pattern sizes, pattern 
detection parameters and thresholds. For every run, the similarity 
parameters were p = +2 for a match, p = -6 for a substitution 
and 6 = -9 for an indel. All the tests were run on a Sun 
Sparcstation 10. 

Sample repeats found 
Many of the features detected by our program are already 
annotated in the GenBank entries. They include centromeric 
regions, telomeric regions, repeat polymorphisms, microsatellites 
and minisatellites. Below we present some regions detected that 
are not included in the annotations. All the regions below come 
from the GenBank primate sequence database: 

A size 8 pattern that occurs 45 times. It occurs in an intron of 
the Human int-2 proto-oncogene. 

LOCUS HSINT2 1 
DEFINITION Human int-2 proto-oncogene 
Length: 11608 

Alignment vs ACCCATCC 

(class: 05429) Indices: 4504--4856 Score: 337 

* 
4504 C ACCCATCC ACCCATCC ACCCATTC ACCCATCC ACTCATC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

4544 C ACCCATCC ACCCATCC ATCCATCC ACTCATCC ACCCATC 
7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

* * * 
4584 C ACCCATCC ATCCATCC A-CC-T-- ATCCATCC ATCCATC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 
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** ** 
4620 C ACCCATCC ACCCATCC TTCCATTT ACCCATCC A-CCATC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

4669 C A-CC-T-- ATCCATCC ATCCATCC ACCCATCC ACCCATC 
7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

** 
4696 C ACCCATTT ACCCATCC ACCCATCC ACCCATCC ACCTATC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

* * * 
4736 C ATCCATCC ATCCATCC ACCTATCC ACCCATCC ACTCATC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

* *  * * *  * ** 
4775 C ACTCACCC ATCCACCT ATCCACCC ACCCACTC ACCCAtC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

* *  ** * *  * 
4816 C ATCCACCC ACCCACTC ACCCATCC ATCCATAC ACCTATC 

7 C ACCCATCC ACCCATCC ACCCATCC ACCCATCC ACCCATC 

4866 C A 
7 C  A 

A size 16 pattern that repeats almost 6 times. It occurs between 
the cds  for galactoside 3;(4)-L-fucosyltransferase and an ALU- 
like sequence. 

UICUS HSMlR 
DEFIIITIOI H u u n  Lawis blood group locum . R I A  for alpha(1,3/l.4)fucosyltrens~arasa 
L m g t h :  3019 

Alignment vs ACCTCOCCTGCTOCOG 

(clams: 0392664410) Indices: 1307--1396 Scora: 130 

I 

1307 OCCTQCTAGGC ACCTCOCCTGCTCGCG ACCTCOCCTGTTGGGG A 
6 OCclGCTwoO ACCTCQCCTGCIGGCG ACCTCOCCTGCTOCOC A . . 1 .  

1361 C C T C A C ~ W C G  ACCTCACCTGCTGOOO ACCTTCGCTGCTGG 
1 CCTCOCCrOCTQWO ACCICOCcTacTGMiG ACCTCGCCTGCTGG 

A size 7 pattern which repeats (exactly) over 7 times. It occurs 
in the human carbonic anhydrase II (CAII) gene. 

LOCUS HUnCAIIAOl 
DEFINITION H.sapiens carbonic anhydrase I1 (CAI11 gene, exons 1 and 2. 
Length: 2926 

Alignment vs ATCCCCC 

(class: 03414) Indices: 1420--1471 Score: 104 

1420 CCCCC ATCCCCC ATCCCCC ATCCCCC ATCCCCC ATCCCCC 
2 CCCCC ATCCCCC ATCCCCC ATCCCCC ATCCCCC ATCCCCC 

1460 ATCCCCC ATCCC 
0 ATCCCCC ATCCC 

A size 24 pattern that repeats almost 5 times. It occurs in the 
human GSTmu3 gene for a glutathione S-transferase Mu class 
protein. 

LOCUS HSCSTHU3 
DEFINITIOM 
Length: 1820 

Alignment IS ACACAGTGCTGATTGGTCCATTTT 

Human GSTmu3 gene for a glutathione S-transferase nu class protein, 

(class: 46642029704447) Indices: 1407--1609 Scora: 174 

1407 CATTGGTCCATTTT ACAGAGAGCTCATTGGTCCATTTT ACACAGTG 
10 GATTCGTCCATTTT ACACAGTGCTGATTGGTCCATTTT ACACACTC 

I* 

1463 CTGATICGTCCGTTTT ACAGAGTCCTGATTGGTCTGTTTT ACAGAC 
8 CTCATTOOTCCATTTT ACAGAGTCCTGATTGGTCCATTTT ACAGAG 

1499 TCCTGATTGGT 
6 TCCTGATTGGT 

1 

A size 5 pattern that repeats 19 times. It occurs in the human 
glutathione S-transferase (GST-pi) pi gene, 5‘-flanking region. 

L 

LOCUS HUHGSTPIA 
DEPINITION 
Length: 2669 

Alignment VI AAAAT 

Human glutathione S-transferase (GST-pi) pi gene. 6 ’ - f l d i n g  ragion 

(class: 03) Indica.: 1846--1942 Score: 162 

I *  

I846 AT M A A T  MAAT AAMT AACAC MAAT AAAAT AAAA 
3 AT MAAT AAAAT AMAT AAMT AMAT AAAAT M I A  

1881 T AMAT AMAT AMAT AMAT --*AT M A A T  AAAAT 
4 T AMAT AMAT AAMT AAAAT MAAT MAAT A M A T  

1916 AMAT AAAAT AMAT AAAAT A M A T  A M  
0 AAAAT AMAT M A A T  AAAAT AMAT M A  

A size 13 pattern that repeats almost 16 times. It occurs in an 
intron of the human protein C inhibitor gene. 

LOCUS HullPC1 1 
DEFINITION 
Length: 16671 

Alignment vs ACTCCACTCCTCC 

Human protein C inhibitor g a m ,  completa cdm. 

(class: 07676263) Indicas: 11738--11976 Score: 234 

* I .  

11738 CTCC ATTCCACTCCTCC ACTCCTCTCATCC ACTCCACTCTACTC 
9 CTCC ACTCCACTCCTCC ACTCCACTCCTCC ACT---C-C-ACTC 

.* 
11782 CTCC ACTCCACATCTCC ACTCCACTCCTCC ACTCCACTCCTCC 

9 CTCC ACTCCACTCCTCC ACTCCACTCCTCC ACTCCACTCCTCC 

* 
11826 ACTCCACTCATCC ACTCCACTCCTCC ACTCCACTCCTCC ACTCC 

0 ACTCCACTCCTCC ACTCCACTCCTCC ACTCCACTCCTCC ACTCC 

. *  *. * 
11869 ACTCCTCC ACTCCACTCCACTC A-TCCACTCCACT CITCCATTC 

6 ACTCCTCC ACTCCACTCCTC-C ACTCCACTCCTCC ACTCCACT- . 
11912 CACTCC ATTCCACTCCTCC ACTCCACTCTTCC ACTCCA---CTC 

8 C-CTCC ACTCCACTCCTCC ACTCCACTCCTCC ACTCCACTCCTC 

11963 C ATTCCACTCCTCC ACTCCACTCC 
12 C ACTCCACTCCTCC ACTCCACTCC 
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A size 32 pattern which repeats (exactly) about 4 times. It occurs Alignment vs AAACTTACACACTTAG Period size: 16 

(class: 032645618) Indices: 26--153 Score: 205 
in the human MYCL2 gene. 

LOCUS HUMMYCLZA 
Length: 3854 

Alignment vs ATATATATATCTATGTATATATGTATATATGT 

(class: 858995515859517755) Indices: 2681--2814 Score: 268 

2681 
24 

2727 
6 

2775 
22 

ATATATCT ATATATATATGTATCTATATATGTATATATGT ATATAT 
ATATATGT ATATATATATGTATGTATATATGTATATATGT ATATAT 

ATATGTATGTATATATCTATATATCT ATATATATATGTATGTATATAT 
ATATGTATGTATATATGTATATATGT ATATATATATGTATGTATATAT 

GTATATATCT ATATATATATCTATGTATATATGTATATAT 
GTATATATGT ATATATATATCTATGTATATATGTATATAT 

Evolutionary history 
The ability to look at patterns of various sizes presents an 
interesting opportunity to reconstruct a likely evolutionary history 
for a repeating region. The mechanism for producing repeats is 
not yet understood, but may be due to unequal crossing over (24) 
or slippage during replication (27,28). Consider the following 
region in a retroviral DNA identified by our program as having 
a repeating unit of size 8: 

LOCUS AGHERLTRl  
DEFINITION 
Length: 612 

Alignment va AAACTTAG 

African green monkey endogenous retroviral 5' L T R ,  segment 1 of 2. 

. Period size: 8 

(class: 0498) Indices: 24--155 Score: 173 

I *  * 
24 AAACTTAG AAACTTAT AGACTTAG AAACTTAG AGACTTAG 
0 AAACTTAG AAACTTAG AAACTTAG AAACTTAC AAACTTAG 

* * * 
64 AAACTTAG AGACTTAG AAACTTAG AGACTTAG AAACTTAT 

0 AAACTTAG AAACTIAC AAACTTAG AAACTTAG AAACTTAG 

* * * *  
104 AGACTTAG AAAClTAG AGACTTAC AGACTCAG AAACTTAG 

0 AAACTTAG AAACTTAC AAACTTAG AAACTTAG AAACTTAG 

144 AAAGCTTAG AAA 
0 AAA-CTTAG AAA 

Careful observation reveals that G is periodically substituted 
for A .  Such substitutions are unlikely to occur independently, 
suggesting that the 8bp unit AAA C n A G  was first duplicated and 
then mutated to AGACZTAG and then the two copies were 
duplicated as a single 16 bp unit. Indeed, our program reveals 
just such a pattern (completely automatically) when the sequence 
is examined for a pattern of size 16, reducing the number of 
mismatches from 10 to 5: 

* 
26 ACTTAC AAACTTATACACTTAG AAACTTAGAGACTTAC AAACTT 
10 ACTTAG AAACTTACACACTTAG AAACTTAGAGACITAG AAACTT 

* 
70 ACAGACTTAC AAACTTAGAGACTTAG AAACTTATACACTTAG AA 
6 AGACACTTAG AAACTTAGACACTTAC AAACTTAGAGACTTAG AA 

* * *  
114 ACTTAGACACTTAG ACACTCACAAACTTAC AAACCTTAGA 
2 ACTTACAGACTTAG AAACTTAGACACTTAC AAA-CTTAGA 

Further observation suggests that in one copy of this 16 bp 
unit, a G was mutated to a T, and then that copy was duplicated, 
accounting for an additional two mismatches. 

CONCLUSION 

We have described a new program for rapidly detecting repeating 
regions in DNA sequences where the period of the repeat has 
size up to 32 nucleotides. Our program can be used to quickly 
search the DNA database for a particular size period or to search 
a single sequence for all size periods. We combine our program 
with estimates of the statistics of sequence similarity scores in 
order to estimate the statistical significance of repeats that are 
detected. 

It is our hope that the examples in this paper will illustrate 
the unrealized diversity of repeats in DNA and that the program 
we have developed will be a useful tool for locating new and 
interesting repeats. 

The program written in C will be made available (email: 
gbenson@hto.usc.edu) . 
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