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Abstract. The Chen-Stein method of Poisson approximation has been 
used to establish theorems about comparison of two DNA or protein se- 
quences. The most usefil result for sequence alignment applies to align- 
ment scoring with no gaps. However, there has not been a valid method to 
assign statistical significance to alignment scores with gaps. In this paper 
we extend Poisson approximation techniques using the Aldous clumping 
heuristic to a practical method of estimating statistical significance. 
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1. INTRODUCTION 

Since the invention of rapid gene sequencing tech- 
niques in the mid-l970's, new genetic sequences from 
a wide range of organisms have been determined. 
The DNA sequences have been placed into interna- 
tionally available databases since about 1984. Fig- 
ure 1 gives the growth of the DNA sequence data in 
GenBank, the database funded by NIH. The DNA 
Data Bank of Japan (DDBJ), the EMBL Data Li- 
brary, and GenBank are collaborating and virtu- 
ally equivalent databases. The doubling time for 
the DNA data is approximately 2 years. In addi- 
tion there are protein sequence databases where the 
amino acid sequences of genes are stored. These se- 
quence databases are an important resource for bio- 
logical sciences. New sequences are quickly entered, 
making the databases very dynamic. Not only are 
the sequences themselves stored but basic biological 
information about the sequences and relevant refer- 
ences are included as well. 

All new DNA or protein sequences are compared 
to the appropriate sequence databases to fmd se- 
quences that are "close" in a sense to be made pre- 
cise later. These searches have become central to 
the practice of modern molecular biology, and they 
are based on ideas from evolution. The evolutionary 
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FIG. 1. DNA database size. 

process usually proceeds by utilizing existing genes. 
If mutation of a current gene gives a selective advan- 
tage, then that mutation has an increased chance of 
being fixed in the population. Thus all or part of a 
protein sequence in one organism might appear as 
all or part of another protein sequence in the same 
or another organism; knowing this relationship be- 
tween a new sequence and an already studied se- 
quence can give valuable clues as to the function of 
the new sequence. Many important discoveries have 
resulted from sequence database searches. A simi- 
larity between the human cancer related viral v-sis 
oncogene product and platelet-derived growth factor 
(Doolittle et al., 1983) gave valuable insight into how 
the cancer was regulated. The sequence similarity 
was great with a stretch of 60-60 identical amino 
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acids. Other similarities are just as important but 
less dramatic at the sequence level. Cystic fibrosis 
is a recessive genetic disease carried by about & of 
the Caucasian population. Recently the gene of the 
most prevalent allele for the disease was cloned and 
sequenced (Riordan et al., 1989). A database search 
showed that the gene product is similar to a fam- 
ily of related protein sequences that bind ATP and 
are involved in the transport of small hydrophilic 
molecules across the cytoplasmic membrane. While 
the similarity was weaker, it allowed a structure and 
function of the gene product to be proposed. 

A nice, well-studied example is the family of 
hemoglobin sequences, which are used to illustrate 
the ideas developed in this paper. Hemoglobin is a 
protein of red blood cells that binds oxygen. This 
molecule is very important as larger organisms (ani- 
mals) cannot obtain oxygen simply by diffusion from 
the air. A similar molecule is found in all verte- 
brates and in many invertebrates. The most prim- 
itive globin is a protein of about 150 amino acids 
and is utilized in insects, worms and some fish. 
In higher (more recently evolved) organisms there 
are two kinds of globins that apparently came from 
gene mutations and duplications. The two globins, 
a and B,  appear in a complex of four globin se- 
quences, two a-globins and two B-globins, that com- 
prise the hemoglobin molecule in higher vertebrates. 
In addition, there is apparently another evolution- 
ary sequence of events leading to the y-globin used 
in embryos and to the &globin found only in adult 
primates. There is even a hemoglobin-like protein 
expressed in plants. Thus this is a well-studied and 
varied family of proteins that can test our ability to  
understand the results of database searches. 

The outline of the paper is as follows. Sequence 
comparison will be reviewed. The dynamic pro- 
gramming comparison algorithms in Section 2 are 
motivated by the biology just discussed. Each 
comparison results in a score that is the basis of 
determining possible similarity. Then the known re- 
sults for assigning statistical significance to the com- 
parison scores are discussed in Section 3. The sta- 
tistical distribution of scores depends critically on 
certain parameters of the algorithm. Some of the 
most useful results are motivated by the Chen-Stein 
method of Poisson approximation. In Section 4 this 
method is extended by the Aldous clumping heuristic 
to  a practical method of estimating statistical signif- 
icance for the most usehl part of the algorithm pa- 
rameter space. The model is tested on simulated data 
in Section 5. A numerical method is presented in 
Section 6 to estimate the two parameters of Poisson 
approximation, and the quality of approximation is 
studied. The technique is applied to a database 
search using a globin sequence. Finally, in Section 8 

data from a database search are used to test the 
model and to improve the parameter estimates. 

2. ALGORITHMS 

In this section we present the basic dynamic 
programming algorithms used to compare genetic 
sequences. See Waterman (1984) for a review. 
Two nondynamic programming algorithms, FASTA 
(Lipman and Pearson, 1985; Wilbur and Lipman, 
1983) and BLAST (Altschul et al., 19901, for rapid 
database searches are very well known and widely 
used. Both these algorithms are faster than the 
quadratic algorithms presented below, and both can 
be considered heuristics for the comparison score we 
compute here using dynamic programming (Pearson, 
1991). Thus the statistical methods we present can 
be used for these rapid search techniques, and in the 
case of BLAST are already an integral part of the 
algorithm. 

Let us set the stage. Given are two sequences 
x = x1x2 . . x,, and y = y l y z  - - ym over a finite alpha- 
bet. For DNA the alphabet has 4 letters; for protein 
sequences it has 20 letters. Later the letters will be- 
come random; for now they are deterministic. There 
is a scoring function s ( x ,  y )  for aligning letter x with 
letter y .  Not only do letters change ( y is “substituted” 
for x )  but they are inserted or deleted (an indel). For 
example, let 

and score indels by -6. The alignment 

ATAGC 
AAGCC 

scores 2 - 3p .  The score can be changed with appro- 
priate indels: 

ATAGC- 
A-AGCC 

scores 4 - 28. Which is preferable depends on the 
value of (p, 6). Our problem is to compute the global 
alignment score S(x, y) = maximum alignment score 
over all alignments of x and y. Alignment score can 
be computed from specifying the k aligned letters 1 5 
i l < i Z < . . . < i k 5 n a n d l p j l <  j z < . . . <  jksrn,  
fork 2 0, so there are a total of 

alignments. In the alignments above, k = 5 and 4, 
respectively. See Figure 2. Instead of maximizing 
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FIG. 2. Global alignment with k = 7. 

over this exponential number of alignments, S(x, y) 
can be computed in O(nm) steps. 

Define 

' with So, = -6j and $ 0  = - S i .  Then the recursive 
step of the algorithm is 

(1) 

The score is found by S",,,, = S(x, y). The algorithm 
is derived from considering the three ways an align- 
ment can end, 

j = max{ Si - 1, j - 6, Si, j - 1 - 6, 
S i - l . j - 1 +  s ( x i , y j ) } *  

xi - xi 

- Y j  Y j '  

and assuming that the other letters are optimally 
aligned. In Table 1 we present a small example of 
sequence alignment with 

and 6 = 1. The two optimal alignments are shown 
by the two boxed patterns in the matrix in Table 1 
and are 

FIG. 3. Local alignment of intervals I and J .  

and 

GATCAATT- - CGCA 
TATC--TTAACGCC' 

GATC--AATTCGCA 
T ATCTTAA-- CGCC 

TABLE 1 
Global alignment 

Such alignments where all letters from each se- 
quence are in the alignment are called global align- 
ments. Next we turn to local alignments, where in- 
tervals of x and y are optimally aligned. See Figure 
3. Actually local alignment is 

global alignment problems since, for example, there 
are ~)+n+lintervalsxixi+l . . .xj  with 1 I i 5 j ~n 
including the empty interval. Our objective function 
is H(x, y): 

The quantity 0 comes from the empty intervals and 
getting S(@, @) = 0. There is a nice recursion for this 
quantity, too. Define 

- T A T C T T A A C G C C  
- 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 

-5 -6 -7 -8 -9 -8 -9 -10 
-3 -4 -5 -6 -7 -8 -9 -10 

T -3 -1 -1 0 -1 -2 -3 -4 -5 -6 -7 -8 
0 -1 -2 -3 -4 -5 -6 

-1 0 -1 -2 -3 -4 
c -4 -2 -2 
A -5 -3 -1 
A -6 -4 -2 -2 
T -7 -5 -3 -1 -1 
T -8 -6 -4 -2 
c -9 -7 -5 
G -10 -8 -6 
c -11 -9 -7 
A -12 -10 -8 

0 -1 -2 
0 -1 -2 

-3 -1 -1 
-4 -2 -2 0 
-5 -3 -3 -1 -1 -1 
-6 -4 -4 -2 0 0 0 0 2 
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TABLE 2 
Local alignment (a)  optimal alignments and (b)  declumped matrix with second-best alignment 

(a) 

- T A T  
- 0 0 0 0  

c o o 0 1  
A O O l O  
A 0 0 1 0  
T O 1 0 2  
T O 1 0 1  
c o o o o  
G O O 0 0  
c o o o o  
A O O l O  

C T T A A  
0 0 0 0 0  
0 0 0 0 0  

_ 0 0 0 1 1  
1 1 1 0 0  
3 2 1 0 0  
2 2 1 2 1  
1 1 1 2 3  
1 2 2 1 2  
1 2 3 2 1  Q 2 1 2 2 1  
1 1 1 1 1  
1 0 0 0 0  
0 . 0 0 1 1  

C G C C  
0 0 0 0  
0 1 0 0  
0 0 0 0  
0 0 0 0  
1 0 1 1  
0 0 0 0  
2 1 0 0  
2 1 0 0  

1 1 3 3  

to be the best score of m y  intervals ending at xi and 
y j  or 0 if no such alignment scores positive. The al- 
gorithm begins with Hi, j = 0 if i e j = 0. Then 

just as in (1) except for the initial conditions and0 in 
the recursion. We find 

The local algorithm is known as the Smith- 
Waterman algorithm (Smith and Waterman, 1981). 
See Table 2 for an example of this algorithm with 
s(x, y )  = 1, x = y ,  s(x, y )  = -1, x # y  and S = 1. The 
optimal alignments are 

ATC- - AATTC GC 
ATCTTAA- - C GC 

and 

ATCAATT- - C G C  
ATC-- TTAACGC’ 

The nonuniqueness of optimal alignments is typ- 
ical. In fact around a high-scoring alignment there 
are many intersecting alignments that are optimal or 
near-optimal and differ in small details only. Some- 
times it is of biological interest to debate these small 
details but usually we are only concerned if there 
are any other high-scoring alignments that are not 
too dependent on the first alignment. Motivated by 
this we define a clump of alignments to be the set of 
alignments sharing at least one pair of aligned letters 

with a given alignment. When calculating H order 
( i ,  j ,  H i , j )  by * as follows: ( i ,  j, Hi, j )  t (k, 1,  if 

The optimal alignment first output ends at ( i ,  j, Hi, j ) ,  

which is largest under >. We pick one of the align- 
ments ending at ( i ,  j) with score H i , j .  Then we de- 
clump by removing the effect of all alignments in the 
clump; Hirj is the matrix computed by not allowing 
any aligned pair in the output alignment. Let (k, 1) be 
the upper-left position of aligned letters in the align- 
ment. Then 

H:j = Hi, j w h e n i < k o r j < l ,  

and 

H ~ , = m a x I O , H , * - l , , - S , H ~ , - l - S ) .  

The remainder of the row (k, j), 1 < j, can be com- 
puted term by term until Hk, = HC j .  Then there is 
no need to continue, as the recursion will now always 
return H k , j  = HC for the rest of the row. Declump- 
ing continues by switching from row to column until 
the effects of the alignment clump are removed. This 
is much cheaper in time than just redoing the entire 
matrix. The K best clump scores can be found in this 
manner: H(1, 2 H(2, I 

The results of the local alignment in Table 2 are 
now analyzed by the declumping algorithm. As be- 
fore, s ( x ,  y )  = +1 if x = y ;  s ( x ,  y )  = -1 if x + y ;  and 
6 = 1. The two optimal alignments are 

- 

I H ( K )  

ATCTTAA-- CGC 
ATC--AATTCGC 
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and 

ATC--TTAACGC 
ATCAATT--CGC‘ 

There are several next-best alignments of score 2. 
The first is shown in Table 2, with the entries 
changed by declumping the best alignments outlined. 
The first local alignment after declumping is also out- 
lined: 

AT 
AT. 

In biology indels larger than one letter often ap- 
pear, and they are likely to be the result of one event 
rather than the sum of one-letter events. Thus it is 
desirable to score such indels as one event. Compu- 
tational efficiency can be obtained for the gap penalty 
-g(k)  = -a! - p k  for an indel of k letters. The first 
letter costs a! + p,  and each succeeding letter costs 
p. Three recursions are required: E, F and H .  Set 
Ei, = Fi, = Hi,j = 0 if i j = 0. Then the recursion 
due to Gotoh (1982) is 

- 

Ei, j = mu{Hi, j - 1  - (a! + p).  Ei, j - 1  - B ,  0). 
Fi, j = max{ Hi-1, j - (a! + Fi-1. j - B, O}, 
Hi, j = max{ Hi - I ,  j - 1 + s (xi 9 yj), Ei, j 9 Fi. j 9 0) 

For declumping, all three matrices must be recom- 
puted, stopping in a row or column when all these 
agree with the earlier matrices. 

3. DISTRIBUTIONAL RESULTS 

Now take random sequences X = X1X2 . - . X , , ,  Y 
= Y1Y2 e Y,,, where Xi and Yj are iid. Given a scor- 
ing scheme 

with p 2 0 and 6 2 0, our interest is in the random 
variable HKY) .  When we do database searches 
with a new sequence X there are tens of thousands 
of database sequences Y, so with no biological simi- 
larity we will see large-deviations behavior. Before 
moving to a study of what scores should surprise us, 
it is instructive to ask about the growth of score with 
sequence length. This is motivated by the variety of 
sequence lengths in the database. 

- 

First we consider global alignment scores. Let 

s,, = S ( X 1 .  * * x,, Y 1 .  - - Y,,) 

and observe that 

moreover, S ( X , , + l - - . X , , + m ,  Y , , + 1 * * * Y n + m )  equals S, 
in distribution. The theory of subadditive sequences 
implies that the following limit exists: 

In fact Kingman’s subadditive ergodic theorem 
(Kingman, 1973) applies, giving 

Sfl a (p ,  6) = lim - 8.5. and in L1.  
n + w  n (4) 

When p = 00 and 6 = 0, S,, is the length of 
the longest common subsequence of X l X 2  X,, and 
Y l Y 2 . .  Y,, and a(00, 0)  is the Chvdtal-Sankoff (1975) 
constant. Unfortunately, even for P ( X i  = 0) = 
1 - P ( X i  = 1) E (0 , l )  the constant is unknown. 

Now S,, I H ( X 1  a X,,,  Y 1 . .  Y,,) = H,,, so that 

and the asymptotic growth of H,, is “caught” between 
a(p, 6)n and n. In fact it is not too surprising and can 
be proved that, when a(p,  6) > 0, 

Hn B lim - = a(p ,6 ) )  + I. 

Moreover, when a(p, 6) < 0 it can be proved that H, 
grows like a constant time log(n). When a(p, 6) < 0, 
there is a constant b such that, for all E > 0, 

(n+w n 

and H,,/log(n) + 2b is conjectured to hold. Having 
divided the growth of H,, into linear and logarithmic 
regions, it should also be noted that ( (b ,  6):a(p, 6) = 
0) defines a line in [O, 0 0 1 ~  separating (a < 0) from 
(a > 0). Of course (00,0) and (0,O) E (a > 0) while 
(00,00) E (a < 0). Thus there is a phase transition 
between linear and logarithmic growth in [0,0012. A 
graph of the parameter space with the phase transi- 
tion curve appears in Figure 4. These results appear 
in Arratia and Waterman (1994). 

Moving back to biological motivation for a moment, 
recall that we wish to find aligning intervals that 
have more similarity than random sequences. It is 
not productive to use (p,  6) E {a > 0) since even if 
there are such intervals they will be surrounded by 
or even obscured by alignments that have only ran- 
dom sequences aligned. In the linear region, it is 
not penalized just to wait for another well aligned 
pair because the penalty for poorly aligned pairs and 
indels is too low. Thus we are motivated to use log- 
arithmic penalties. For a discussion of the effects of 
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FIG. 4. Phase transition curve. 

parameter choice on biological sequence alignment 
see Vingroii and Waterman (1994). 

Just where does the logarithmic region come from? 
A simple heuristic can be given and later made rig- 
orous. Take = S = 00 and let 

p = P ( X  = Y ) .  

Then Zi, j = 1 if a match of length k starts at Xi and 

and, neglecting end effects, 
yi (zi,j = ~ ( X i X i + l " ' X i + k - l  = Y j Y j + l " ' Y j + k - l ) )  

If the longest match occurs about once, take 

2 k  l = n  p 

and solve for k ,  obtaining 

k = 2 log,,,(n). 

Aldous has formulated the Poisson clumping 
heuristic which we use as the basis of our calcu- 
lation of alignment p-values. The heuristic is em- 
ployed in cases where occurrences happen in clumps 
and where the distribution of the number of clumps 
is approximately Poisson. The approximation is to 
locate the clumps according to a Poisson process 
and then assign iid clump sizes to the locations. 
Aldous formalizes this approximating process as a 
mosaic process. 

Our use of Poisson approximation is not rigorous; 
for the full range of parameters where we believe and 
provide evidence that Poisson approximation holds, 
we are unable to give a theorem. Special cases have 
been proved, however, and to this end we give two 

theorems on Poisson approximation by the Chen- 
Stein method as they appear in Arratia, Goldstein 
and Gordon (1989). It is not the purpose of this pa- 
per to give careful proofs of all results, but these the- 
orems allow easy proofs of some important results 
and moreover provide a nice guide for our intuition 
in other situations. 

Define the total variation distance between two 
random variables U and V by 

IlL(U)-L(V)II = ~ s u P I P ( U  € A ) - P ( V   EA)^, 
A 

where, the sup is over all subsets of the reals. The 
bookkeeping is done in the following way. There is a 
finite or countable index set I. For each a! E I, Ua is 
a Bernoulli random variable and 

- 

p, = P(Ua = 1) > 0. 

Set 

a-€ I 

and assume 

a r l  

Take Z to be Poisson(A). For each a! E I we have a set 
B, c I with a! E B, to be a set of indices where /3 Ba 
implies U, and Up are independent. Then define 

and 

where 

The following theorem gives error bounds on the 
approximation of W by a Poisson random variable Z .  

THEOREM 1. Let W = Caef Ua be the number of 
occurrences, and let Z be Poisson with 0 I = EW = 
EZ < 00. Then 

and 
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There is a process version of the theorem that 
proves to be very useful in our application. 

THEOREM 2. Let Z = {Za)aeI be an independent 
Poisson process with Za of mean Pa. The total varia- 
tion distance between Z and U = {Ua)a E I satisfies 

The length of the longest head run R, in n inde- 
pendent coin tosses is closely related to the longest 
matching between two sequences. First we set a test 
length t so that runs of length t occur with small 
probability. While it seems that counting these runs 
should give a Poisson random variable, the clumping 
or overlapping of the runs makes this idea fail. Given 
a run of length t, there is a geometric number of runs 
in a clump. Instead we count the clumps by counting 
the leftmost t-run in each clump. The iid sequence 

The index set is {l ,  2,. . . , n}. The leftmost run of 
length r has indicator 

: 

- 

Vi, V2,. . . has p = P(Vj = 1) = 1 - P(Vj = 0) E (0,l). 

and for a! > 1 we declump by requiring VU-1 = 0: 

As above, the sum of indicators is 

n - t + l  

w = C 
a = l  

Note that 

( R ,  < r )  = {W = 0) 

and 

h = hn(r) = E(W) = p'{ (n - r ) ( l  - p )  + I}. 

So if we obtain a Poisson A, (t) approximation for W ,  

P(R, 2 t )  * 1 - exp[ - ~ , ( r ) ] ,  

To obtain bounds for the approximation set Ba = { B  E 
I :  la -61 5 r) .  It follows that bl < h2(2r + l ) /n  + 2hp' 
and b2 = 0. To have an interesting approximation, 
we need h bounded away from 0 and 00, which holds 
if and only if r - logl,,(n) is bounded. In this case 
bl = O(log(n)/n) -+ 0 as n + 00. 

Extending this result to sequence matching is done 
by setting I = ((i, j): 1 5 i 5 n, 1 5 j 5 m ) .  The de- 
clumped random variables Ua = U(i, j )  are defined by 

if i or j = 0, and otherwise by 

Uij =lI{Xi-1$Yj-1 and 
XjXi + 1 * * Xi + t  - 1 = YjYj + 1 * Yj + r  - 11. 

The dependence set for a! = ( i ,  j) E I is 

B~ = ( ( i ' ,  j ' )  E I :  li - i'l 5 t or l j  - j'l 5 r]. 

For this situation, 

bl < (n - t + l)(m - t + 1)(2r + ~ ) ~ p '  

and 

= L , m ( t )  = p'( (n +m -2t - 1) + (n - t ) (m -t)(l- p ) ) .  

Therefore t = logl,,(nm(l - p ) )  + c will keep h be- 
tween 0 and 00. When n = rn, A is approximately pc .  
Therefore we can derive bounds on 

IP(Hn,m < t )  - exp( - L , m ( t ) ) l ,  

providing a Poisson approximation for pure matching 
between two sequences of lengths n and m. 

Several extensions of these results have been 
made. For the longest match between two random 
sequences where the fraction of identities is B > p, 
see Arratia, Gordon and Waterman (1990). There, 
no indels are allowed, only mismatches. The ballot 
theorem is used for a much more complicated depen- 
dence structure. Neuhauser (1994) extends those re- 
sults to cover a fraction of indels. While these are 
mathematically nontrivial results, they fall far short 
of covering our general random variable H, . 

The most useful analytical result in this area cov- 
ers the case 6 = 00 so that there are no indels. The 
scoring function must satisfy E(s(X, Y)) < 0 for ran- 
dom letters X and Y. A widely used scoring func- 
tion on amino acids that fulfills the criterion is the 
PAM250 matrix (Dayhoff, Barker and Hunt, 1983). 
Let p E (0,l) be the largest root of 

1 - ] E ( ) I - S ' X -  Y') = 0. 

Then 

with probability 1. This was proved by Arratia, 
Morris and Waterman (1988) and generalized for 
more general scoring by Karlin and Altschul(1990), 
who presented the following Poisson approximation. 
Let t = logl/,(nm) + c. Then 

P(H(X, Y) > t = logl/,(nm) + c) 
(6) * 1 - exp(-ynmp'), 
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where y is found by numerical solution of an 
equation. 

4. THEMODEL 

Above, reasons were given to restrict attention to 
algorithm parameters in the logarithmic region. In 
the logarithmic region, the expected score per letter 
is negative, and positive-scoring local alignments are 
rare events. Certainly, positive-scoring local align- 
menta occur in clumps, and we even have an algo- 
rithm to declump. In coin tossing we take the left- 
most run of length t and no runs overlapping that 
clump of t-runs. In sequence matching we take an 
alignment ending at ( i ,  j )  and no alignments inter- 
secting that alignment. Neuhauser (1994) follows 
this approach of Waterman and Eggert (1987) when 
studying Poisson approximation of alignments with 
indels. Our model is to follow the Aldous clumping 
heuristic (Aldous, 1989). Alignment clumps are laid 
down by a Poisson process, and each alignment clump 
is assigned an independent clump size. The num- 
ber of clumps with scores larger than a test value 
t = (center + c) has a Poisson distribution with mean 
An, ,,, (t). We will apply this in the form 

P(at least one score exceeds t )  
= 1 - P(no score exceeds t )  
= 1 - e-1. 

To relate this to alignment, set 

W ( t )  = number of alignment clumps of score 
greater than or equal to t .  

W ( t )  can be calculated by applying the declumping 
algorithm until H(i1 < t .  

Our goal is to show that equation (6)  fits well in the 
entire logarithmic region. We will estimate the pa- 
rameters y and p in that equation, where t = center 
+ c = logl,,(mn) + c. In carrying that formula over 
to the logarithmic region, we implicitly make several 
assumptions. We want to identify and then test the 
following three assumptions: 
(Al) W ( t )  is approximately Poisson distributed [with 

mean )in, ,,, (t) = E( W ( t ) ) l .  
(A2) IE(w(t)) = j+‘. 
(A3) p= ymn. 

These three assumptions are suflicient to approxi- 
mate the significance of alignments with gaps. As- 
sumption (All is used to estimate the significance of 
optimal and suboptimal scores; (A21 allows us to in- 
terpolate the mean of the Poisson in the tail where 
simulations rarely yield sufficient data to estimate 
E(W( t ) ) .  Assumptions (Al) and (A2) together mean 

that the empirical distribution function of optimal 
scores less than r is approximated by exp(-pp‘); (A3) 
allows us to normalize scores for sequences of differ- 
ent length from only knowing y and p. 

5. TESTING THE MODEL 
All our tests rely on simulated alignment scores ob- 

tained for sequences with iid letters for some given 
letter distribution. In the remainder of the paper we 
will study protein sequences with the alphabet of 20 
amino acids. For our protein sequence simulations 
we will use the amino acid distribution of McCaldon 
and Argos (1988). The scoring matrix and gap penal- 
ties are chosen in the logarithmic region. To test 
(Al), we collected scores of suboptimal alignments 
for many (between 1,000 and 10,000) alignments of 
sequences of length n = m = 900 with PAM250 and 
g(k) = 12 + 3k. Then, for given threshold t, the 
number of clumps that score above t is counted. The 
quality of the approximation depends strongly on the 
threshold chosen. Generally the higher the thresh- 
old, the better is the empirical distribution approx- 
imated by a Poisson. Figure 5 shows data for dif- 
ferent thresholds. Those thresholds for which the 
approximations look very good are at approximately 
the t 7 80 level and higher in the distribution func- 
tion, as can be seen from the first value in the bar 
diagrams. The high quality of the Poisson approxi- 
mation for large t is exactly what we need to assign 
the statistical significance of large scores. 

We use m = n = 900 in our simulations while pro- 
tein sequences are often smaller than this. For pa- 
rameter estimation discussed in the next section, re- 
peated declumping is necessary. The larger values of 
m and n allow enough “area” for declumping to give 
us a large number of nonoverlapping alignments. We 
tested other pairs of lengths, such as m = n = 400 
and m = 200,n = 800. The results are essentially 
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FIG. 5. Poisson apprmimatian. 
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the same. As computation time is proportional to mn, 
it is best for our declumping estimates to minimize 
boundary effects with m = n.  

Testing (A21 was done by accumulating subopti- 
mal solutions from 10,000 comparisons and counting 
the number above a threshold t with PAM250 and 
g(k) = 12 + 3k. The logarithm of the resulting curve 
is shown in Figure 6. The regression line is based on 
the interval 135, 601. For t larger than 75 the data 
are sparse. 

Assumption (A3) implies that log(A(r)) derived 
from sequences of different length should give par- 
allel lines with the parameter settings of Figure 5, 
PAM250 and g (k) = 12 + 3k. While this holds in gen- 
eral, boundary effects seem to be responsible for cer- 
tain limitations in the validity of this assumption. 
For example, the slopes (of the logarithm shown in 

Figure 6) derived from the simulations of n = m = 
900 long sequence pairs and from n = m = 1,000 
long sequence pairs are -0.1995 and -0.1972, re- 
spectively, For short sequences of length 300, it is 
-0.2043. It is thus easy to normalize the parameters 
derived from sequense pairs of lengths 900 each to a 
600-by-600 comparison. However, applying these pa- 
rameters to short sequences will lead to significant 
error. Figure 7 illustrates the effect of normalization 
for different lengths on the estimation of statistical 
significance. 

6. PARAMETER ESTIMATION 

By testing the validity of our assumptions we have 
presented two different ways of estimating y and p .  
These methods estimate the parameters assuming 
a certain scoring scheme [s(x, y) and a gap penalty 
function] and a certain letter distribution. For our 
examples we use PAM250 and g(k) = 12 + 3k. 

The obvious method is to apply the algorithm in 
equation (2) many times to statistically independent 
sequences and to calculate the empirical distribution 
function of optimal alignment scores, that is, the frac- 
tion of alignments with score less than t .  The Poisson 
clumping heuristic suggests that the probability for 
an alignment to score less than or equal to t is given 
by exp(- ymnp').  ARer appropriate transformation 
[log(- log(data))l, the empirical distribution function 
is expected to form a straight line. In fact, linear re- 
gression gives a correlation coefficient above 0.99. It 
is then straightforward to estimate the parameters 
y and p ,  and we call this method of derivation direct 
estimation. 

Yet the true power of the theory sketched above 
comes to bear in the second method, which we call 
&clumping estimation. Instead of many optimal 
alignments, from a few comparisons we calculate 
H(1),  H(2), . . . , H(N) using the declumping algorithm 
described above. The crucial observation is that the 
mean A of the Poisson can be estimated from this 
data set as the average number of H(i) exceeding a 
threshold t. Based on the theory, these data can 
be fitted by a function of the form ymnp'. Simula- 
tions show that plotting the empirical data on a log- 
arithmic scale leads to an almost perfect straight line 
(Figure 6). Estimation of y and p is then straightfor- 
ward. As we will demonstrate, both approaches pro- 
vide almost equally good estimates of statistical sig- 
nificance, thus supporting, by their agreement, the 
assumptions on which they are based. 

For the direct estimation we usually run 1,000 se- 
quence alignments before deriving y and p .  Given 
that each alignment takes time quadratic in the 
sequence length, this may take a very long time. 
The declumping estimation on the other hand can 
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simulation - 
direct . -. -. -. - 

be done from 10 comparisons, collecting approxi- 
mately 300 suboptimal solutions for each pair. For 
sequences of length 900 this computation can be done 
in 1.5 minutes on a Sun SPARC 10. This brings the 
estimation of the parameters for alignment signifi- 
cance into the realm of interactive computing. De- 
clumping estimation, however, does not produce re- 
liable results when done on short sequences. This 
probably is due to the fact that a small comparison 
matrix will soon be exhausted when taking out too 
many clumps, and independence between the clumps 
will be lost. 

7. TESTING THE APPROXIMATION 
Using the parameters derived by either of the 

above methods, we predict the distribution function 
of optimal alignment scores. To test the quality of 
the approximations given by our two methods, we 
derive the empirical distribution function from ex- 
tensive simulations. First we tested the no-gap case. 
There the agreement between the empirical distribu- 
tion function and either direct or declumping simula- 
tion is extremely good. There is hardly any difference 
throughout the range of the distribution function (not 
only in the tail). Both in terms of the agreement of 
the parameters and in overall approximation quality, 
our results are essentially the same as those obtained 
analytically by Karlin and Altschul(1990). 

For Figure 7, parameters were derived from se- 
quences of length 900 each. The rightmost group 
of three distribution functions shows declumping 
and direct estimation compared to the empirical dis- 
tribution function. Notice that approximating the 
empirical distribution function by direct estimation 
amounts to fitting a double exponential. This in it- 
self is not a test of the method. For the declumping 
estimation, however, the parameters for the approx- 
imation are derived from totally different data, and 
all three curves agree remarkably well. The other 
groups of curves in Figure 7 illustrate the quality of 
the normalization for length and thus prove our point 
with respect to both declumping and direct estima- 
tion. We normalized the parameters derived from a 
900 x 900 comparison to approximate 600 x 600 and 
300 x 300 comparisons. Only in the latter case is 
there some deviation between the empirical distri- 
bution function and the approximation. 

These Poisson approximation methods also pro- 
vide the approximate distributions of the suboptimal 
scores H(1) 2 H(2) 2 2 H(k) 2 ... (Goldstein and 
Waterman, 1992): 

1 1 

score H 

FIG. 8. Estimates of the distribution function of the optimal H(1) 
and suboptimal ( H ( z )  and H(s))  scores. 

Figure 8 demonstrates the quality of approximat- 
ing the significance of suboptimal solutions; y and 
p were derived by direct simulation for sequences of 
length 300. The empirical distribution is based on 
4,000 comparisons of random sequences, collecting 
the best, second-best and third-best solutions. The 
precision of the approximation is extraordinary. 

Our assumptions are guided by the idea that in 
the logarithmic region the statistical behavior is es- 
sentially similar to the no-gap case. We therefore 
also want to show how the method fails in the linear 
region. It was pointed out before that direct esti- 
mation without length normalization is nothing but 
fitting an empirical distribution function with a dou- 
ble exponential, which may be deceptively easy. It 
is therefore not surprising to find that, even in the 
linear region, one can approximate an empirical dis- 
tribution function using direct estimation. However, 
applying the length normalization, the approxima- 
tion fails totally. Similarly, attempting declumping 
estimation in the linear regions, one quickly finds 
that the logarithm of the number of clumps above 
a threshold does not form a straight line, and it is 
impossible to fit a mean of the form pp'. 

' 

8. DATABASE SEARCHES 

Several new challenges arise when a query se- 
quence is used to search a database. There are of 
course a wide variety of sequence lengths, families 
of closely related sequences and even duplicated se- 
quences. Certainly, real protein sequences do not 
have iid letters. The model has been fitted using 
sets of sequences of identical length and with iid let- 
ters. The tests were made with other such sets, some- 
times with length changed. While this is encour- 
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aging, it remains to test the model on real protein 
databases. 

To remove the effects of duplicate sequences we use 
Newat, a protein database put together about 1986 
by R. Doolittle (1981) to have one representative from 
each protein family. Most duplicate sequences have 
thus been removed, and the database has N = 1,358 
sequences. 

The most optimistic approach to our problem is to 
estimate ( y ,  p )  from simulation of random sequences 
of length n = 900. However, when we compare our 
query sequence of length m with the N database se- 
quences, we get score Hi for a sequence of length 
ni, i = 1,. . . , N. These Hi are not identical. Recall 
that 

P(H, 5 t )  = exp( - yrnnip'), 

so that the distribution functions of the various 
scores are not identical. Later this will be looked 
at again, but now just perform the probability inte- 
gral transform: 

Ti = exp( - ynimp"') 

and 

Hi* as the score H in 

is distributed as U(0,l). Ordering T(1) 2 T(2) 2 
2 T(N) ,  we note that ]E(T(i)) = i / ( N  + 1). Denoting 

we "expectn 

to fall on an approximately straight line. To increase 
resolution we take a log-log transformation moving 
log nmi to the left-hand side: 

To illustrate this transformation, we take the de- 
clumping estimates from Figure 7 applied to iid se- 
quences of length n = 300, there shown in cdf 
form, and apply this log-log transformation. The re- 
sults are presented in Figure 9. In Figure 10, the 
data points come from the log-log transformation ap- 
plied to scores obtained by comparing human alpha 
hemoglobin to the Newat database. In Figure loa, y 
and p are estimated from length n = 900 sequences 
by direct estimation, and in Figure 10b they are esti- 
mated by declumping estimation. Ideally they would 
cluster around the solid line drawn at  45". Some 

outliers have been removed to make the difference 
more striking. The slope p looks about right and 
y is too large. This gives conservative p-value esti- 
mates for a real database, which are actually quite 
good. 

The observation that protein sequences do not 
have iid letters leads us to simulate sequences 
with the same first-order Markov statistics as the 
database sequences. In Figure 11 we see that the 
difference between our ( p ,  y )  fit and the data is al- 
most identical to that in Figure 10. The lack of sen- 
sitivity of score distribution on biological sequence 
higher-order dependencies was noted early (Smith, 
Burks and Waterman, 1985). There is an effect but 
it is numerically insignificant here. 
This returns us to the central question about the 

above lack of fit. The length 900 = m = n se- 
quences used to estimate p and y are far longer than 
those used on most of our comparisons. Recall the 
Poisson mean 1 = ymnip'. If we interpret ymni to 
be the area that clumps can be placed in, then it is 
plausible that shorter sequences have an effective 
area smaller than the factor y would indicate. To 
test this idea, we simulated sequences of length 142 
(that of alpha hemoglobin) and 350 (about the me- 
dian database sequence length). The improved fit is 
shown in Figure 12. 

Recall that in the Introduction the globin family 
of proteins was introduced. We used significance es- 
timates derived from the last estimates of y and p 
discussed above to evaluate the output of a PIRl 
database search done with the sequence of human 
LI! hemoglobin. There were 25 sequences unrelated 
to globins that ranked higher in score than leghe- 
moglobin, a distantly related plant globin. When 
instead the ranking is done according to estimated 

10 12 14 16 18 20 22 
-logM-Hlog@) 

FIG. 9. Declurnping estimation (n = 900) fit to length n = 300 
sequences. 
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(a) 

FIG. 10. (a) Direct estimation with n = 900; 

W 

FIG. 11. Estimation with Markov sequences. 

statistical significance which accounts for sequence 
lengths, only 10 nonglobins rank higher than leghe- 
moglobins. 

Notice that we have fit the distribution of database 
scores without looking at the data itself, but just us- 
ing our model and the statistical (letter) composition 
of the database. It is worth looking at the prob- 
lem of fitting y and p from the results of a database 
search using maximum likelihood estimation (MLE). 
In Mott (1992) a four-parameter extreme value dis- 
tribution is fit by MLE to the scores from a database 
search using a Smith-Waterman algorithm. The ex- 
treme value distribution was used earlier (Arratia, 
Gordon and Waterman, 1986) for sequence matching 
and is another side of Poisson approximation. Other 
early approaches to fitting database scores to esti- 
mate statistical significance appear in Smith, Burks 
and Waterman (1985); Coulson, Collins and Lyall 
(1987); and Collins and Coulson (1990). 

6 6 10 12 14 16 i 8  io 
-log(r)-Hlog(p) 

(b) 

(b) Declumping estimation with n = 900. 

6 8 10 12 14 16 18 20 
-~ogM-HWP) 

FIG. 12. Estimation using m = 142 and ni = 350. 

Recall that, if the model is true, 

P(Hi 5 t )  = exp( - ymnip') 

and has density function 

We will assume the sequences are all independent. 
The likelihood of HI e - HN is 
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and 
N 

logIL = log(ym)N + Nloglog 

N 

logp - ym CnipHi.  
i = l  

The derivative with respect to y is 

aiogL N 
-= - -  m CnipHi ,  

aY Y i = l  

SO aL/ay = o gives 

A N 
Y =  

mCiN_lnipHi' 

We will go on with the MLE, but let us apply this to 
the result of Figure 10. The value of p there looked 
good while y was too large. Using that estimated p*, 
we compute 

h N 
Y =  

and recompute the ordering T(1) 5 - < T(N), giving 
the results in Figure 13. This is very much better 
than both Figure 10 and Figure 12. Returning to 
MLE estimation, 

m CY= 1 ni (p*)~i  

so 8 log ILpp = 0 implies 

I I 

../. I 

FIG. 13. Correcting y by MU. 

FIG. 14. M U  estimated parameters. 

which with 

(8) 

comprise the MLE equations. 
Solving the MLE equations gives y and p for Fig- 

ure 14. While Figure 13 appears to be a better fit, the 
likelihood IL for Figure 13 is exp{-9,971) and that for 
Figure 14 is exp{ -9,953). 

9. DISCUSSION 
A common practice for assigning statistical signif- 

icance is by simulation. A random sample of scores 
is created by comparing pairs of random sequences. 
After computing the mean and standard deviation 
of the sample, an alignment score from comparing 
biological sequences is reported as the number of 
standard deviations above the mean. Essentially the 
alignment score is normalized to give a z-value so 
that there is an assignment of significance using the 
normal distribution. This is incorrect. The tails of 
the normal converge to 0 very rapidly (quadratic in 
the exponent) in comparison to the distribution func- 
tion we study (linear in the exponent). This means 
that the normal assumption will give p-values that 
are too small. 

In our section on database searches we looked at 
the collection of p-values 1 - exp(-ymnipHg), one p- 
value for each sequence comparison. Of course this 
is a test of N hypotheses, and in the larger context of 
the search no individual p-value is correct. Instead 
we feel it is appropriate to rank the importance of an 
alignment score by the p-values since matches with 
long sequences can yield larger scores simply due to 
sequence length. The other alternative is to consider 
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the database one sequence of length In; and com- 
pute a p-value for matching the search sequence with 
this long artificial sequence. This amounts to rank- 
ing by score size without considering sequence length 
n; . This in fact is what Karlin and Altschul recom- 
mend in their treatment of the no-gap case. This 
practice is conservative but of less use in evaluat- 
ing those important cases on the boundary of sta- 
tistical significance. This list of matches ranked 
by individual p-values is often different from rank- 
ing by score and, we feel, more biologically informa- 
tive. 

We approached estimation of y and p in two dis- 
tinct ways. Both the direct and declumping esti- 
mates use simulated sequences to estimate y and 
p .  Then the estimated y and p are applied to the 
results of a database search. In contrast, MLE uses 
the set of scores from a database search to obtain the 
estimates of the parameters y and p .  It is perhaps 
remarkable that these two approaches are in such 
good agreement. 

The database Newat that we used has one repre- 
sentative of each sequence family, in contrast with 
the usual protein databanks. MLE could be degraded 
by having multiple members (not independent) of a 
family. Also, it is likely that within a database, sets 
of independent sequences exist with different values 
of p. Understanding of these topics could profit from 
further investigation. 

10. PROGRAMS 

Programs for local alignment and p-value esti- 
mation can be obtained by anonymous ftq from 
hto-e.usc.edu. 
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