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Multiple Filtration and Approximate Pattern Matching’ 

P. A. Pe~zner’.~ and M. S. water ma^^'.^ 

Abstract. Given a text of length n and a query of length q, we present an algorithm for finding all 
locations of m-tuples in the text and in the query that differ by at most k mismatches. This problem 
is motivated by the dot-matrix constructions for sequence comparison and optimal oligonucleotide 
probe selection routinely used in molecular biology. In the case q = m the problem coincides with the 
classical approximate string matching with k mismatches problem. We present a new approach to this 
problem based on multiple hashing, which may have advantages over some sophisticated and 
theoretically efficient methods that have been proposed. This paper describes a two-stage process. The 
first stage (multiple filtration) uses a new technique to preselect roughly similar m-tuples. The second 
stage compares these m-tuples using an accurate method. We demonstrate the advantages of multiple 
filtration in comparison with other techniques for approximate pattern matching. 

Key W o k  String matching, Computational molecular biology. 

1. Introduction. Suppose we are given a string of length n, T[1*. n], called the 
text, a shorter string of length q, Q[1 -*-q], called the query, and integers k and 
m. The substring matching problem with k-mismatches [CL] is to find all “starting” 
locations 1 I i 5 q - m + 1 in the query and 1 I j I n - m + 1 in the text, such 
that the substring of the query Q[i, i + 1,. . . , i + m - 13 matches the substring of 
the text T [ j , j  + 1, . . . , j  + m - 11 with at most k mismatches. In the case q = m 
the substring matching problem yields the approximate string matching problem 
with k-mismatches. 

The approximate string matching problem with k-mismatches has been intens- 
ively studied in computer science (see, for example, the review [GG3]). For k = 0, 
it reduces to classical string matching which is solvable in O(n) time [KMP], 
[BM], [GS]. For k > 0 the naive brute-force algorithm for approximate string 
matching runs in O(nm) time. The first advanced algorithm for approximate string 
matching with running time O(f(k)(n + m)) was devised by Ivanov [I]. Ivanov’s 
algorithm is very complicated and the function f ( k )  grows very fast. Landau and 
Vishkin [LVl], [LV2] gave a much simpler algorithm with better running time 
O(kn + km log m). Galil and Giancarlo [GGl], [GG2] improved the Landau- 
Vishkin algorithm, achieving a time performance O(kn + m log m). For a fixed-size 
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alphabet these results reduce to O(kn). All these algorithms and their improved 
versions (see [LV3] and [TU]) are based on the preprocessing of the pattern/text. 

Recently several approaches emphasizing expected running time have appeared 
in contrast to ealier results [BG], [CL], [GL], [TU], [HS], [WMl], [WM2], 
[BPI. In particular, Grossi and Luccio [GL] demonstrated that although earlier 
algorithms yield the best performance in the worst cases, they are far from being 
the best in practice. In particular, a simple Jiltration algorithm from [GL] runs 
approximately ten times faster than the algorithm from [GGl] for a wide range 
of k and m. For the case k = 0 Hume and Sunday [HS] recently described a family 
of algorithms running on average four times faster than the classical Boyer-Moore 
algorithm. 

The idea of filtration algorithims for approximate matching involves a two-stage 
process. The first stage preselects a set of positions in the text that are potentially 
similar to the pattern. The second stage verifies each potential position using an 
accurate method rejecting potential matches with more than k mismatches. Denote 
by p the number of potential matches found at the first stage of the algorithm. 
Preselection is usually done in O(n + p) time where the coefficient of n is much 
smaller than for the algorithms based on the preprocessing of the pattern/text. If 
the number of potential matches is small and the accurate method for potential 
match verification is not too slow, this idea brings a significant speed up in 
comparison with the algorithms based on the preprocessing of the pattern/text. 

The idea of filtration for information retrieval/pattern matching goes back to 
early 1970s [HI. The idea of filtration for the string matching problem first has 
been described by Karp and Rabin [KR] for the case k = 0. Notice that the idea 
of filtration in computational molecular biology for related alignment problems 
was stated even earlier (see [DNI, [WL], and [LP] for I-tuplefiltration, and [B] 
forfiltration by composition). The filtration techniques for k = 0 suggested in [KR] 
(fingerprintfunctions) and in [VI (deterministic sampling) do not appear to be easily 
generalized for the case k > 0. 

For k > 0 Owolabi and McGregor [OM] used an idea of I-tuplefiltration based 
on a simple observation that if a pattern approximately matches a substring of 
the text, then they share at least one I-tuple for sufficiently large 1. Finding all 
I-tuples shared by pattern and text can be easily done by hashing. If the number 
of shared I-tuples is relatively small, they can be verified and all real matches with 
k mismatches can be rapidly located. The theoretical analysis of the expected 
running time of this approach has been recently done by Kim and Shawe-Taylor 
[KS]. The idea of I-tuple filtration has been significantly developed by Baeza-Yates 
and Perleberg [BPI and by Wu and Manber [WMl], [WM2]. Recently Wu and 
Manber [WMl] described a program agrep which is several times faster than 
advanced versions of the Unix file searching utility grep. 

Grossi and Luccio [GL] observed that if a pattern approximately matches a 
substring of the text, then they have similar letter compositions. This observation 
leads to a simple algorithm running in O(n log1 AI + pm) time, where A is the 
alphabet of pattern P and p < n is the number of m-substrings of text T with the 
letter composition having at most k differences with the letter composition of the 
pattern. Computational experiments with such Jiltration by composition show that 

$ 
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pm < nk for a wide range of parameters thus making the Grossi-Luccio algorithm 
important in practice. Recently Ukkonen [U2] generalized the Grossi-Luccio 
algorithm taking advantage of 1-tuple composition (Jiltration by 1-tuple composi- 
tion) instead of letter (1-tuple) composition. Ukkonen [U2] also suggested a new 
method of filtration based on easily calculated Ehrenfeucht-Haussler [EH] dis- 
tance between strings. 

The complexity of filtration methods depends critically on the ratio r/p (Jiltration 
eficiency) between r, the number of real matches with k mismatches, and p ,  
the number of potential matches found on the first stage of the algorithm. 
The larger this ratio, the smaller the running time of the second stage of 
the filtration algorithm. In the case r/p = 1 we would have and ideal Jiltration 
but none of the mentioned algorithms provides an ideal filtration or even 
lower bounds for filtration efficiency. Moreover, the filtration algorithms de- 
scribed above do not provide a method for increasing filtration efficiency 
even at the expense of spending more time on the first (filtration) stage of the 
algorithm. Also, filtration by composition does not allow efficient implementation 
for the substring matching problem. We give an algorithm that allows exponential 
reduction of the number of potential matches at the expense of a linear increase 
of the filtration time. Therefore we drastically reduce the time of the second stage 
of the algorithm (potential match verification) for the cost of linearly increased 
time of the first stage (filtration). Taking into account that the second stage is 
frequently more time-consuming than the first, the technique provides a tradeoff 
for an optimal choice of filtration parameters. Finally, we give the results of 
computational experiments demonstrating the advantages and disadvantages of 
our approach. 

Methods described in this paper can be applied to optimal oligonucleotide probe 
selection [DMDC] and efficient algorithms for dot-matrices [ML] in molecular 
biology applications. (See [LVN88] for a dynamic programming algorithm 
for substring matching problem and dot-matrix applications.) Some of the de- 
scribed techniques have been implemented in the OligoProbeDesignStation soft- 
ware package. (Mitsuhashi, M., Cooper, A., Waterman, M., and Pevzner P., 
OligoProbeDesignStation: a computerized method for designing optimal DNA probes. 
Pending application for United States Letters Patent (1992).) 

2. Filtration Methods for Approximate Pattern Matching. The following simple 
observation (compare with Theorem 5.1 from [U2]) provides a basis for 1-tuple 

h Jiltration and Jiltration by 1-tuple composition. 

LEMMA 1. A boolean word u[1, . . . , m] with at most k zeros contains at least 
m - (k  + 1)1+ 1 1-runs of ones. 

PROOF. The word u contains m - 1 + 1 subwords of length 1. Each zero in u 
belongs to at most 1 of them. Therefore zeros (at most k of them exist) in u belong 
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to at most k 1 subwords of length 1. Therefore u contains at least 
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(m- 1 + 1 - kl) = m - ( k  + 1)1+ 1 

1-runs of ones. 

Substituting 1 = Lm/(k + 1)J in Lemma 1 we derive 

LEMMA 2. A boolean word u[1, . . . , m] with at most k zeros contains at least one 
1-run ofones with 1 = Lm/(k + l)J. 

Notice that every match with at most k mismatches between strings P[1,. . . , m] 
and S[1, ..., m] corresponds to a boolean word 011, ..., m] by the rule 

1 if P[i] = S[q, 
{O otherwise. 

u[q = 

This remark and Lemma 2 imply the following observation of Baeza-Yates and 
Perleberg [BPI and Wu and Manber [WM2] 

LEMMA 3. Let the strings P[1, ..., m] and S[ l ,  ..., m] match with at most k 
mismatches and 1 = Lm/(k + 1)J. Then the strings P and S share an 1-tuple, i.e., 
3i: P[i,i + 1 ,..., i + 1 - 11 = S[i,i + 1 ,..., i + 1 - 11. 

Similarly Lemma 1 implies 

LEMMA 4. Let the strings P[1,. . . , m] and S[1,. . . , m] match with at most k 
mismatches. For 1 I Lm/(k + l)J the strings P and S share at least m - (k + 1)1+ 1 
1-tuples, i.e., 3il < < im-(t+l)l+l: 

P[i,, i, + 1, .  . . , i, + 1 - 13 = S[i,, i, + 1, .  . . , i, + 1 - 11 

for every 1 5 t s m - (k + 1)l + 1. 

Lemma 3 motivates a simple two-stage 1-tuple Jiltration algorithm for 
approximate substring matching with k mismatches between a query Q[1, . . . , q] 
andatext T[ l ,  ..., n]: 

ALGORITHM 1. Detection of all m-matches between Q and T with up to k 
mismatches. 

e Potential match detection. Find all occurrences of 1-tuples in both the pattern 
and the text. 

e Potential match uerJication. Verify each potential match by extending it to the 
left and to the right until either the first k + 1 mismatches are found, or the 
beginnindend of Q or T is found. 

$ 
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Lemma 3 guarantees that Algorithm 1 finds all matches of length m with k or 
fewer mismatches between Q and T if 1 S Lm/(k + 1)J. Stage 1 (potential match 
detection) of Algorithm 1 can be implemented by hashing or by building the trie 
[K]. The running time of Algorithm 1 is O(n + plm) where pi is the number of 
potential matches detected at the first stage of the algorithm (see [BPI and w M 2 ]  
for details of the implementation). For a Bernoulli text with A equiprobable letters 
the expected number of potential matches equals 

(n - 1 + 1)(q - 1 + 1) 
A' E ( p A  = 9 

yielding a fast algorithm for large A and 1. 
The first efficient 1-tuple filtration algorithms were described by Baeza-Yates 

and Perleberg [BPI and Wu and Manber [WM2]. Wu and Manber [WM2] 
implemented a very fast and flexible program agrep which runs two to eight times 
faster than the algorithms from [GP] and [Ul]. 

Lemma 4 prompts a simple two-stage filtration by 1-tuple composition algorithm 
for approximate string matching with k mismatches between a pattern P[1, . . . , m] 
and a text T[l,. . . , n] (compare with [GL] and [Ua]). 

ALGORITHM 2. Detection of all occurrences of P in T with up to k mismatches. 

0 Potential match detection. Find all m-tuples in T having at least m - (k + 1)1+ 1 
1-tuples in common with the pattern. 

0 Potential match verijication. Verify each potential match by checking m positions 
until either the first k + 1 mismatches or a match with at most k mismatches 
are found. 

Lemma 4 guarantees that Algorithm 2 finds all matches of length m with k 
mismatches between P and T if 1 I Lm/(k + 1)J Stage 1 (potential match verfica- 
tion) of Algorithm 2 can be implemented by simple text scanning [GL], [U2] in 
O(n log1 AI) time where A is the alphabet of the pattern. The running time of 
Algorithm 2 is O(n log1 AI + p2m) where p 2  is the number of potential matches 
detected at the first stage of the algorithm (see [GL] for details of the implementa- 
tion). Grossi and Luccio [GL] demonstrated that even for the simplest case 1 = 1 
(filtration by composition) p2m < nk for a wide range of parameters, thus making 
Algorithm 2 attractive in practice. For a Bernoulli text with equiprobable A letters 
the expected number of potential matches in filtration by composition equals * 

, = - A" ((Lp - 1)' + ( k - 1  )(A - 1 r - l  + ... + (:(A - l)">, 

yielding a fast algorithm for large A and small k. 
For Bernoulli texts with equiprobable A letters define the filtration eficiency of 

a filtration algorithm to be the ratio of the expected number of matches with k 
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mismatches E(r) to the expected number of potential matches E(p). The efficiency 
of 1-tuple filtration equals el = E(r)/E(p,) while the efficiency of the filtration by 
1-tuple composition equals e2 = E(r)/E(pJ. For example, for k = 1 the efficiency 
of the 1-tuple filtration (see [WM2]) e, x (A - 1)/Arm’21 is rapidly decreasing with 
m and A increasing. This observation raises a question of devising a filtration 
method with a larger filtration efficiency. 

3. Idea of Multiple Filtration. A set of positions i, i + t, i + 2t,. . ., i +jt,  . . ., 
i + (1 - 1)t is called a gapped I-tuple with gapsize t and size 1 + t(1- 1) (Figure 
1). Continuous 1-tuples are simply gapped 1-tuples with gapsize 1 and size 1. 

Similarly to Lemma 1 we derive 

LEMMA 5. A boolean word u[1, . . . , m] with at most k zeros contains at least 
m - s + 1 - kl gapped 1- tuples with gapsize t of size s containing only ones. 

In the case 21 - 2 > L(m - l)/tJ each position in u belongs to less than 1 gapped 
1-tuples and Lemma 5 can be strengthened: 

LEMMA 6. A boolean word $1, . . . , m] with at most k zeros contains at least 

m - s +  l-k(1;]-1+2) 

gapped 1-tuples with gapsize t of size s containing only ones. 

PROOF. The word u contains m - s + 1 gapped 1-tuples with gapsize t of size s. 
Each position in u belongs to at most 

of them. Therefore zeros (at most k of them exist) in u belong to at most 
k(L(m - l)/t J - 1 + 2) gapped 1-tuples with gapsize t of size s. Therefore u contains 
at least m - s + 1 - k(L(m - l)/tJ + 1 - 2) gapped 1-tuples with gapsize t of size 
s containing only ones. 0 

size 
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LEMMA 7. 
gapped Lm/(k + l)]-tuple with gapsize k + 1 containing only ones. 

A boolean word u[l,. . . , m] with at most k zeros contains at least one 

PROOF. Consider k + 1 Lm/(k + 1)J-tuples with gapsize k + 1 starting at posi- 
tions 1, . . . , k + 1 of u. These gapped Lm/(k + 1) ]-tuples are nonoverlapping and 
all fit into u[1, . . . , m].  At most k of them contain zeros; therefore, by the pigeonhole 

0 principle, at least one of them does not contain zero. 

If an 1-tuple shared by the pattern and the text starts at position i of the pattern 
and at position j of the query, we call (i,J the coordinate of  1-tuple. Define the 
distance d(ol,  u,) between 1-tuples with coordinates ( i , , j , )  and (i,, j,) as 

i ,  - i, if i ,  - i, = j ,  - j , ,  
otherwise. 4% 0 2 )  = 

Combining Lemmas 2 and 7, we derive 

LEMMA 8. Let the strings P[l, ..., m] and SC1,. . ., m] match with at most k 
mismatches and 1 = Lm/(k + 1)J. Then the strings P and S share both a continuous 
1-tuple and a gapped 1-tuple with gapsize k + 1 with distance d between them 
satisfying the condition 

-k I d 5 m - 1. 

Lemma 8 is the basis of a two-stage double Jiltration algorithm for approximate 
string matching with k mismatches between a query Q[1, . . . , q ]  and a text 
TC1,. . . , n]: 

ALGORITHM 3. Detection of all m-matches between Q and T with up to k 
mismatches. 

0 Potential match detection. Find all such occurrences of continuous l-tuples from 
the pattern in the text where a gapped 1-tuple exists with gapsize k + 1 of the 
distance - k I d 5 m - 1 from the continuous I-tuple. 

0 Potential match oerijication. Verify each potential match by extending it to the 
left and to the right until either the first k + 1 mismatches are found or the 
beginnindend of Q or T is found. 

Lemma 8 guarantees that Algorithm 3 finds all matches between P and T with 
k mismatches. Stage 1 (potential match detection) of Algorithm 1 can be imple- 
mented by hashing. The running time of Algorithm 3 is O(n + psm) where p 3  is 
the number of potential matches detected at the first stage of the algorithm (the 
details of an implementation are given in Section 5). Define 6 = rl/(k + 1)l. For 
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a Bernoulli text with equiprobable A letters the expected number of potential 
matches can be roughly estimated by 

thus yielding better filtration than I-tuple filtration when m < A'-*. The efficiency 
of double filtration is at least A'-'/m better than the efficiency of I-tuple filtration. 
For typical parameters of oligonucleotide probe selection (A = 4, m = 25, k = 2) 
double filtration is at least 40 times more efficient than 1-tuple filtration. 

In our double filtration two types of I-tuples are considered; I-tuples with gapsize 
1 and gapped I-tuples with gapsize k + 1 for I = Lm/(k + l)]. This idea can be 
generalized to multiple filtration by considering Lm/(k + i )  J-tuples with gapsize 
k + i for various i or by considering irregular gapped I-tuples. Another generaliza- 
tion of multiple filtration is considered in Section 8. 

In the next section we estimate the efficiency of double filtration. 

4. Efficiency of Double Filtration. According to Lemma 8 every match with k 
mismatches corresponds to both a continuous I-tuple and a gapped I-tuple located 
close to each other that contain only ones. In this section we estimate the expected 
number of such occurrences in a random Bernoulli boolean word. 

Fix m and k and let I = Lm/(k + 1) J. We say that position j is in the oicinity of 
position i if - k 5 i - j I m - 1 (see Lemma 8). 

A position i in a boolean word o[1, . . . , n] is a potential match if 

(i) o[i ,  ..., i + I - 11 is a run of ones. 
(ii) A gapped I-tuple exists with gapsize k + 1 starting in the vicinity of i that 

We denote a continuous I-tuple starting at position i as c(i), and a gapped I-tuple 
of gapsize k + 1 starting at positionj as g(j).  Notice that a continuous I-tuple c(i) 
and a gapped I-tuple g(j) of gapsize k + 1 can share at most 6 = rI/(k + 1)1 
positions. If g( j )  contains a position i + s (0 I s I k), then c(i) and g(j1 can share 
at most 6(s) = r(I - s)/(k + 1)l positions (Figure 2). 

contains only ones. 

4 il \ io 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  

i-(m-I) i i+k 
0 0 1 0 0 1 0 0 1 0 0 1 0  

vicinity of i 

Fw 2 Vicinity of the position i = 10 (m = 12, k = 2,1= Lm/(k + 1)J = 4, gapsize = k + 1 = 3. Shaded 
boxes indicate the starting positions of gapped 1-tuples from G,(i) = {g(3), g(6), g(9), g(12)). A gapped 
Ctuple and a continuous Ctuple can share at most 6 = rl / (k + 1)1= r4/(2 + 1)1= 2 positions. 
Gapped 4-tuples from GZ(i) and continuous 4-tuple c(i) can share at most as) = r(I - s)/(k + 1)1= 
r(4 - 2)/(2 + 1)l = 1 positions (I' = 1 - as) = 3). 
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LEMMA 9. Let u[1, . . . , m] be a Bernoulli boolean word with the probabilities of 
letters p(1) = p and p(0) = 1 - p = q. Then the probability of a potential match at 
position i > m - 1 equals 

p '*  {( 1 - (1 - 6(s))p'-wq - p I - w ) } .  
s=o 

PROOF. For an 1-tuple c(i) starting at i define GJi) = {g(t)} to be the set of gapped 
1-tuples with gapsize k + 1 starting in the vicinity of c(i) and fulfilling the condition 
i - t = s mod k + 1 (Figure 2). Let Ps(i) be the probability that at least one 1-tuple 
in G,(i) contains only ones given that c(i) contains only ones. Let P(i) be the 
probability to have a potential match at position i given that c(i) contains only 
ones. As the sets GXi) are nonoverlapping for 0 I s I k, 

1 - P(i) = P{there is no gapped l-tuple g(t)  in the vicinity of i containing only ones} 

= n P{there is no gapped 1-tuple g(t) E G,(i) in the vicinity of i containing 
s = k  

s=o only ones} 
s = k  

= n (1 - Pdi)). 
s = O  

Each 1-tuple from G,(i) shares at most 6(s) positions with c(i). Denote I' = 1 - 6(s). 
Fix i and consider the following positions of u to the left of i (Figure 2): 

i o = i + s - ( k + 1 ) , i 1 = i + s - 2 ( k + 1 ) ,  ..., i , , - ,=i+s- I ' (k+ 1) 

and let left be the minimum index such that u[ileft] = 0 (we assume left = I' if 
u[io] = u[il] = = u[i,.- J = 1). Similarly consider the positions of u to the right 
of i + 1 - 1, 

j ,  = i + s + (G(s))(k + l), j ,  = i + s + (6(s) + 1Xk + l), . . . , 
j r . - ,  = i + s + (6(s) + I' - 1Xk + 1) 

and let right be the minimum index such that ~[j,,,,,~] = 0 (we assume right = I' if 

The positions il.- ,, . , . , io, j , ,  . . . , j , , -  , represent possible positions of gapped 
1-tuples from G,(i). We denote by P*(,],j,) the probability that left = il and right = j ,  
in a random word u. Obviously G,(i) contains a I-tuple with only ones if and only 
if left + 6(s) + right 2 0. Therefore 

u[jo] = U[jJ = * = 0 0 , .  - ,] = 1). 



144 P. A. Pevzner and M. S. Watcnnan 

where the product is taken over all values i, and j, fulfilling the conditions 
i, - j ,  < l'. As P(1eft = t )  = P(right = t )  = qp', the probabilities P{le$t + right = t}  
constitute the negatiue binomial distribution [ F ]  and 

Denote dmi, = min, 6(s) = r(1- k)/(k + 1)l .  Lemma 9 implies 

LEMMA 10. Let Q[1,. .., m] and n1, .. ., m] be a random query and text and let 
p be the probability that arbitrary letters fiom the query and fiom the text coincide. 
Then the probability of potential match between the query and the text at position 
(i, j )  is less than or equal to pZ'-'m"'((m - 1 + k)(1 - p )  + k + 1). 

PROOF. Let P(i,j) be the probability of a potential match at (i,j) given the 
condition that the continuous 1-tuples of Q and T starting at positions i and j 
coincide. Without loss of generality assume that i - j  = A > 0 and consider a 
boolean word u[1, . . . , m] corresponding to a diagonal A: 

1 if Q[t + A] = T[ t ] ,  
0 otherwise. 

u[t] = 

Applying Lemma 9 to a word u with p(1) = p  and taking into account that 
amin I 6(s) I 6  we derive 

k 
1 - P(i, j )  = n ( 1  - (1 - 6(s))p1-""'q - p'"'"') 

s = o  

k 
2 fl ( 1  - ( I  - 6mi,)p1-aq - PI-') 

s = o  

2 1 - (k + 1 X l -  Bmin)P1-'q - (k  + l ) ~ ' - ~ .  

Therefore 

I p'-'((rn - 1 + k)(1 - p )  + k + 1). 
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Fig. 3. Comparison of the efficiency of double filtration and Ctuple filtration. The plot shows the ratio 
of the efficiency of the double filtration and btuple filtration in a 4-letter alphabet for different 
parameters rn and k. 

Lemma 10 demonstrates that the efficiency of double filtration is approximately 
A'-d/(rn(l - 1/A)) times larger than the efficiency of I-tuple filtration for a wide 
range of parameters m and k. Figure 3 presents the results of comparison of the 
efficiency of double filtration with the efficiency of I-tuple filtration for a 4-letter 
DNA alphabet. 

COMMENT. The definition of filtration efficiency when applied to comparison of 
I-tuple and double filtration should be taken with caution. The definition does not 
take into account the number of potential matches relative to the size of the text. 
When I-tuple filtration is already very efficient there is no reason to apply further 
filtration. In other words, if the total number of expected potential matches is, 
say, 1.3 for the whole text, versus 0.013 for true matches, the ratio is large but is 
meaningless in practice. 

5. Double Filtration for Approximate Substring Matching. In this section we 
present the sketch of implementation of double filtration for an approximate 
substring matching problem. For simplicity we concentrate on double filtration 
described by Algorithm 3 and consider the alphabet d = (0,. . . , A - l}. 
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Let p be the number of potential matches between the query and the text found 
at the filtration stage of Algorithm 3, and let pc (pJ be the number of continuous 
(gapped) I-tuples shared by the query and the text. It is not difficult to see that 
the filtration stage of Algorithm 3 can be implemented in O(q + n + pc + pJ time 
by hashing (compare with [UZ]). 

Query Hashing. We need an encoding of every I-tuple u as an integer. A natural 
encoding is to interpret each I-tuple as an A-ary integer. For a I-tuple u[1, . . . , g  
a hash ualue of u is 

For query Q[1, . . . , q] define ui = Q[i, . . . , i + I - 11, 1 s i s m - I + 1 ,  to be the 
I-tuple of Q starting at position i. Obviously 

By setting u1 and then applying (2) for 1 I i I m - I, we get the hash values for 
all I-tuples of Q. Assuming that each application of (2) takes constant time (we 
consider relatively small A and r) we can build hash table H, for continuous 
I-tuples in Q(q) time. Continuous I-tuples from the query with the same hash value 
h are put in a linked list pointed by H,[h] [ K ] .  

Similarly we can build a hash table H, for gapped I-tuples with gapsize gap in 
Q(q)time.Denote wi = Q[i, i + gap,i + 2-gap,  ..., i + j - g a p ,  ..., i + (I- l ) . gap] .  
Using the same hash function (1) for wi we get 

(3) 

By setting G,, . . . , GgaP and then applying (3) we get hash values for all gapped 
I-tuples with gapsize gap. Gapped I-tuples from the query with the same hash value 
h are put in a linked list pointed by H,[h]. Note that with such an implementation 
memory requirements of double filtration are doubled in comparison with I-tuple 
filtration. 

Text Scanning with Double Filtration. Figure 4 presents a sketch of the filtration 
stage for approximate substring matching with k mismatches by double filtration. 
We assume I = Lm/(k + l )J  and size = (k + 1x1 - 1 )  + 1. Given a q x n matrix we 
number its q + n - 1 diagonals assigning number j - i + q to a diagonal contain- 
ing position (i,j). To implement double filtration we have to test efficiently if a 
gapped I-tuple exists in the vicinity of a continuous I-tuple. To provide this test 
we use an array diagcl, . . . , n + q]  and assign 

diag[j - i + q] = j 

every time we find a gapped I-tuple starting at (i,j). Therefore for each of n + q 
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Algorithm Text scanning with double filtration 
for ( j= 1 ; j  < n - I +  1 ; j  + +) /*n is the length of the text */ 

if (j < n - size + 1 - k) /* size is the size of gapped I-tuple with gapsize k + 1 */ 
{ 

compute the hash value GI+, of the gapped I-tuple starting at position j + k of the text 
if (linked list H2[Gj+,.] is not empty) 

{ 

for all gapped I-tuples from H2[Gj+,] find their starting positions i[1], . . . , i[tl] 

f o r ( t = l ; t < = t l ; t + + )  

{ 

in the query 

diag[(j  + k )  - i[t] + q] = j + k ;  
} 

compute the hash value ijj of the continuous I-tuple starting at positionj of the text 
if (linked list Hl[ijj] is not empty) 

1 

for all continuous I-tuples from H1[ij,] find their starting positions i[l], . . . , i[t2] 

for ( t =  1;  t <= t2; t ++) 

{ 

in the query 

if ( j  - diag[j  - i[t] + q] < =rn - 1) /* see Lemma 8 */ 
report potential match (i[t],j) 

} 
1 
Fig. 4. Sketch of the filtration stage of the double filtration approximate substring matching algorithm. 

diagonals of the q x n matrix representing all possible coordinates, diag[t] equals 
the starting position in T of the last gapped I-tuple found at this diagonal. On the 
preprocessing stage of the algorithm we put a dummy value diagct] = -1 for 
1 I t I n + q. Although memory requirements of substring matching problem are 
not crucial in many applications, notice that to reduce memory requirements diag 
can be actually implemented as an array of size q that is scanned in a circular 
manner (not shown in Figure 4). 

Potential Matches Verijication. Brute-force implementation of the verification 
stage of the algorithm adds O(m) time for verifing each potential match. For the 
approximate pattern matching problem it leads to an algorithm with linear 
expected running time for k = O(m/log m) (see [BPI for details). 

6. Overlapping Potential Matches and Fast Dot-Matrix Drawing. Several optimi- 
zations are included that deviate from the simple description of the algorithm 
given in Figure 4. We observe that m-matches with k-mismatches frequently 
overlap. To exclude redundant output we use an extended potential match data 
structure. 



148 P. A. Pevzner and M. S. Waterman 

Let ( i , j )  be a potential match on the diagonalj - i + q where i (j) is the starting 
position of the 1-tuple representing a potential match in the query (text). Consider 
the positions on the diagonal j - i + q behind (i, j) and define an array b[1, . . . 1: 

1 if Q[i - t] = T [ j  - t], 
0 otherwise. 

b[t] = 

Similarly, consider the positions on the diagonal j - i + q ahead (i, j) and define 
an array a[l,. . .]: 

1 
0 otherwise 

if Q[i + 1 - 1 + t] = T [ j  + 1 - 1 + t], 
art] = 

(for the sake of simplicity we neglect border effects when, for example, i - t .e 0). 
Let behindC0, . . . , k] be an array with the positions of the first (k + 1) zeros in b. 
Similarly, let aheadC0,. . ., k] be an array with the positions of the first (k + 1) 
zeros in a. We call the structure 

(iJ), behindC0, .. ., k] aheadC0, ..., k] 

an extended potential match starting at (i,j). 
Let (i,j) be a potential match and Q[i + 4 = T [ j  + 4 (it means that (i + 1 , j  + 1) 

is also a potential match). Notice that in this case an extended potential match 
(i + 1, j  + 1) does not provide any additional information in comparison with (i,j), 
and we can exclude such overlapping extended potential matches from further 
consideration. 

Arrays behindC0,. . . , k] and aheadC0,. . . , k] can be easily derived by simply 
scanning diagonalj - i + q behind (i,j) and ahead (i + I - 1, j  + 1 - 1) or by faster 
methods (see, for example, [WM2]). We say that an approximate match with 
k-mismatches starting at (i’, j’) is generated by a potential match (i, j) if it belongs 
to the same diagonal j’ - i‘ = j - i and 

i - behindck] < i’ and i + I - 1 + ahead[k] > i’ + rn - 1. 

Lemma 8 guarantees that each approximate match is generated by at least 
one potential match. On the other hand, a potential match (i,j) generates 
an approximate match with k mismatches if and only if, 0 I t I k, ahead[t] + 
behind[k - t] + 12 m exists. This conditions gives an efficient algorithm for po- 
tential match verification. Notice that for biological applications extended po- 
tential match data structure provides a useful tool for dot-matrices drawing 
without looking at all approximate matches generated by a given potential match 
(see [ML]). 
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0.87 
4933 

2 

7. Computational Experiments. We have implemented the double filtration 
(Algorithm 3) and compared its performance with I-tuple filtration (Algorithm 1). 
Recent studies [WM2] demonstrate that I-tuple filtration runs much faster than 
other approximate pattern-matching algorithms. Our study indicates that double 
filtration outperforms I-tuple filtration for approximate substring matching in a 
wide range of parameters (Figure 5). We present the results of the computational 
experiments with the parameters I = Lm/(k + l)J and k as they are more con- 
venient for comparison of running times than the usual parameters rn and k. 

Algorithm 1 (I-tuple filtration) and Algorithm 3 (double filtration) were imple- 
mented in “C” and all tests have been run on a SUN SparcStation 2 running 

1.27 1.55 1.58 1.23 0.75 0.62 0.62 0.72 
8 4 ~  17.6 4 a  2.1 1.6 1.6 19 2.5 

1 1  
89.6 17.0 5.1 2.1 1.6 1.6 1 3  2.5 

0.89 
574.5 

3 
1.30 1.90 1.87 1.38 0.81 0.62 0.62 0.69 
100.1 17.1 4.7 2.1 1.6 1.6 1 3  2.6 

0.91 
7 

921.4 

1.31 2.12 2.78 2.00 1.06 0.68 0.62 0.65 
159.8 24.8 5.0 2.1 1.6 1.6 1 3  2.7 

I I I 

Fig. 5. Comparison of the running time of the double filtration (Algorithm 3) and I-tuple filtration 
(Algorithm 1) for random Bernoulli words in a 4-letter alphabet with q = l0,ooO and n = l00,ooO for 
different parameters k (number of mismatches) and 1 = Lm/(k + 1)J (size of I-tuple). The lower cell on 
the intersection of the kth row and l-column represents the running time of the double liltration 
algorithm (in seconds). The upper cell on the intersection of the kth row and I-column represents the 
ratio of the running time of the I-tuple filtration algorithm to the running time of the double filtration 
algorithm. The area shown by the solid line represents the set of parameter (k,  I) for which the double 
filtration outperforms I-tuple filtration. 
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UNIX. Stage 2 (potential match verification) was implemented in the same 
straightforward way in both Algorithms 1 and 3. Our primary interest was to 
reveal the advantages and disadvantages of the filtration stage; that is why we 
ignored fast implementations of the verification stage. The numbers given in 
Figure 5 should be taken with caution. They depend on our program implementa- 
tion, the architecture, the operating system, and the compilers used. However, we 
tried to avoid optimizations and fancy programming implementations which might 
give an advantage to the double filtration over I-tuple filtration. The only difference 
between two programs was the implementation of the filtration stage. 

Let tfil(tve,) be a running time of the filtration (verification) stage of the I-tuple 
filtration algorithm. Denote the ratio of the filtration efficiency of double filtration 
to the filtration efficiency of I-tuple filtration by e = E(p l ) /E(p3) .  Roughly speaking 
a running time of a double filtration algorithm will be 2 .  tfil + t,,,/e. In the case 

tver 
tfil + t,,, > 2 * tfi, + - e 

double filtration is faster than I-tuple filtration. It means that in the case 
e > tver/(tver - tfiJ double filtration might be better than I-tuple filtration. Figure 
3 indicates that this is the case for various m and k as e is very large for a wide 
range of parameters. Figure 5 presents the results of comparisons for q = 10,OOO 
and n = 100,OOO indicating that double filtration might be better for a range of 
parameters frequently used for dot-matrices constructions and optimal oligonu- 
cleotide probes slection (m = 14, ..., 30, k = 1, ..., 5). Note that the ratio of the 
running time of the I-tuple filtration algorithm to the running time of the double 
filtration algorithm depends on n/q (data are shown only for n/q = 10). 

8. Other Filtration Techniques. The basic idea of all I-tuple filtration algorithms 
suggested to date is to reduce a (m, k) approximate pattern matching problem to 
a (m', 0) exact pattern problem and to use a fast exact pattern matching algorithm 
on the filtration stage. The drawback of such approaches is relatively low filtration 
efficiencies. In this section we suggest reducing (m, k) approximate pattern match- 
ing to (m', k') approximate matching with m' < m and 0 < k' < k, and application 
of the fast approximate pattern matching technique with small k' on the filtration 
stage. We demonstrate that this allows an increase of filtration efficiency without 
significant slowing down of the filtration stage. For the sake of simplicity we 
illustrate this idea on a simple example reducing a (m, k) problem to a (m', 1) 
problem. 

Knuth [K] has suggested a method for approximate pattern matching with one 
mismatch based on the observation that strings differing by a single error must 
match exactly in either the first or the second half. For example, a (9,l) 
approximate pattern matching problem can be reduced to a (4,O) exact pattern 
matching problem. This provides an opportunity for 4-tuple filtration algorithm. 
In this section we demonstrate how to reduce a (9 , l )  approximate pattern 
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1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  
1 1 1 1 0 1 1 0 0 0 1 1 1  

Fig. 6. Example of a (4, 1, 2, 3, 3)-tuple. 

matching to a 6-tuple filtration algorithm, thus increasing the filtration efficiency 
by a factor of A2/2. 

Let (Il, g , ,  I,, g , ,  . . . , I,, g, ,  1,+ ,)-tuple be a tuple having I, positions followed by 
a gap of length g ,  + 1, then I ,  positions followed by a gap of length g ,  + 1, . . , , 
then I, positions followed by a gap of length g ,  + 1, and finally 1,+1 positions 
(Figure 6). Figure 7 demonstrates that every boolean word of length 9 with at 
most one zero contains either a continuous 6-tuple or a (3,3,3)-tuple containing 
only ones. Two 6-tuples and one (3,3,3)-tuple shown in Figure 7 are packed into 
a 9-letter word u so that every position in u belongs to exactly two of these tuples. 
Therefore, the only zero in u belongs to two of these tuples leaving the third. In 
Figure 7 the (3,3,3)-tuple contains only ones. 

The following lemma generalizes the example above and allows us to perform 
L$m J-tuple filtration instead of Lim J-tuple filtration in Algorithm 1, thus increasing 
filtration efficiency approximately Arnl6/2 times. 

LEMMA 11. A boolean word uC1, . . . , m] with at most one zero contains either a 
continuous L$m J-tuple or a (Lim J, Lim J, Lim &tuple containing only ones. 

PROOF. Consider packing two continuous L$m J-tuples and one (Lim J, Lim _I, 
0 LimJ)-tuple into an m-letter word (see Figure 7). 

The following lemma generalizes Lemma 2 and reduces the (m, k )  approximate 
pattern matching problem to the (m', k') problem with m' < m, k' < k. (Notice that 
substitution k' = 0 in Lemma 12 yields Lemma 2.) 

LEMMA 12. A boolean word uC1,. . . , m] with at most k zeros contains a subword 
of length m' with at most k' < k zeros for m' = L((k' + 1). m + k')/(k + k' + 1) J. 

1 2 3 4 5 6 7 8 9  
m m G l m G l m m m m  
1 1 D 1 1 1  ~0nttUUnrr CtYplr 

111 1 1 1 (3,3,3)tuph 

Fig. 7. A boolean word of length 9 with only zeros contains either a continuous 6-tuple or a (3, 3, 
3)-tuple containing only ones. 
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PROOF. Fix 0 < t m and consider all m - t + 1 subwords of u of length t. Every 
position in u belongs to at most t of these t-words. Therefore, the total number 
of zeros in these t-words is z I k t .  

If all t-subwords of u contain at least k' + 1 zeros, then the total number of 
zeros in these &words is z 2 (k' + 1) (m - t + 1) and therefore 

k * t r z > ( k ' +  l ) . ( m - t +  1). 

If this inequality fails, then a t-subword of u containing less than k' + 1 zeros 
exists. Therefore the maximum t fulfilling the inequality 

k . t  < (k'+ l ) * ( m  - t + 1) 

provides the upper bound for the length of a subword containing at most k' zeros: 

(k' + l ) . (m + 1) 
k + k ' + l  

t <  0 

Substituting k' = 1 in the last lemma provides a reduction of a (m, k) 
approximate pattern matching problem to a (L(2 m + l)/(k + 2) J, 1) approximate 
pattern matching problem. Lemma 11 allows further implementation of filtration 
with L(fL(2 m + l)/(k + 2)JJtuples. (See [MWJ for another reduction of a (m, 1) 
to a few (m', 0) problems.) For large m, Lemmas 11 and 12 allow us to implement 
1-tuple filtration with 1 x $(m/k) which improves the filtration of Algorithms 1 and 
3 with 1 x mfk. 

Finally, there is no approximate pattern/substring matching algorithm that is 
the best for all possible cases. It is an open problem to find optimal filtration 
techniques depending on parameters and applications. Note that the proposed 
methods do not support insertions and deletions. This motivates the problem of 
finding an efficient filtration technique for approximate pattern matching with k 
differences. To solve this problem Myers [MI proposed a related method based 
on a reduction of a (m, Em) approximate pattern matching problem with a database 
of length n to a (log n, E log n) pattern matching problem. The method requires a 
prebuilt inverted index and so is an off-line algorithm while all the others 
mentioned are one-line. This technique provides approximate pattern matching 
with k differences in sublinear time and gives 50- to 500-fold improvement 
over dynamic programming algorithms for approximate pattern matching [U 13, 
CMMI. 
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