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Abstract 

The total number of RNA secondary structures of a given length with a fixed number of base 
pairs is computed, under the assumption that all base pairs can occur. This is done by establishing 
a one-to-one correspondence between secondary structures and trees. A duality operator on trees 
is presented, which explains a symmetry in the numbers counting secondary structures. 

1. Introduction 

The now classical helical structure of D N A  was proposed in 1953 by Watson and 
Crick. In their model, D N A  is double-stranded, where each strand is specified by the 
sequence of bases attached to a sugar-phosphate backbone. One strand determines 
the other by the so-called Watson-Crick rules: A (adenine) forms base pairs with 
T (thymine), and G (guanine) forms base pairs with C (cytosine). These base pairs are 
formed by hydrogen bonds, two hydrogen bonds forming an A-T pair and three 
forming a G-C pair. In this paper we study helical structures of another nucleic acid, 
single-stranded RNA. 

RNA is described by its sequence of bases, which are the same as for D N A  except 
that T is replaced by U (uracil), and in RNA, A pairs with U. These single-stranded 
molecules fold onto themselves, forming helical structures. The sequence of bases of 
the RNA molecule is known as primary structure, and it is determined experimentally. 
A subset of helical structure consistent with a planar graph is known as secondary 
structure and is carefully defined in Section 2. The complete three-dimensional 
structure of the RNA molecule is known as tertiary structure. Secondary and tertiary 
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Fig. 1. Two representations of secondary structure. 

structures determine the shape and hence the function of these important biological 
molecules. The structure of RNA is utilized in regulating the expression of genes, in 
the assembly of protein molecules, and in many other fundamental biological pro- 
cesses. For an excellent general reference to molecular biology, see Lewin [3]. 
As an example of secondary structure, we consider the sequence 

CAGCAUCACAUCCGCGGGGUAAACGCU 

and give one secondary structure for this sequence in Fig. l(a), where the base pairs 
are indicated by dashes. This structure is referred to in the biological literature as 
a cloverleaf and is the secondary structure assumed by transfer RNA molecules. In 
Fig. l(b), the same structure is presented, where the primary structure is given along 
the horizontal axis and the base pairs are shown as arcs. This representation is used by 
Stein [4]. 

The prediction of the shapes of biological molecules is an important topic in 
computational biology; see [9] for a review. In [8] the problem of prediction is shown 
to be polynomial. The prediction algorithms are combinatorial, and the enumeration 
of secondary structure is a natural problem; see [S-71. In these enumeration studies, 
the specific identity of the bases is ignored, which in effect allows all possible base 
pairs. In this way, the entire set of possible RNA secondary structures is studied. 



W.R. Schmitt. M.S.  Waterman 1 Discrete Applied Mathematics 51 (1994) 317-323 319 

In this paper, we compute the total number of secondary structures of a given 
length, under the assumption that all base pairs can occur. This is done by establishing 
a one-to-one correspondence between the set of all secondary structures of a specific 
length with a fixed number of base pairs, and a particular set of plane trees which is 
easily counted. We also present a duality operator on these sets of trees which explains 
a symmetry that we observed in the numbers which count secondary structures. This 
work was initiated with Paul Stein, whose untimely death prevented him from seeing 
its conclusion. 

2. Enumeration 

Our model for an RNA sequence is the ordered set [ n ]  = { 1,2, . . . , n}. A secondary 
structure on [ n ]  is a simple graph on [ n ] ,  i.e. a set B of (unordered) pairs of elements of 
[ n ] ,  satisfying 

(a) deg i < 3 for 1 < i < n, 
(b) if ( i , j ) E B ,  then li - j l  2 2, 
(c) if ( i , j ) , ( k ,  1) E B ,  where i < j and k c 1, and [ i , j ]  n [ k ,  11 # 0 then either 

Let s(n) be the total number of secondary structures on [ n ] .  Howell et al. [ 2 ]  show 
[ i , j ]  c [ k , l ]  or [ k , l ]  c [ i , j ]  (where [ i , j ]  denotes the interval { r :  i < r < j } ) .  

that these numbers satisfy the Catalan-like recurrence relation 
n -  1 

s(n + 1) = s(n) + 1 so ’ -  l)s(n - j ) ,  
j =  1 

for n 2 2, and s(0) = s(1) = s(2) = 1 .  Asymptotic formulae for s(n) and related 
sequences determined by a recurrence relation generalizing the above are given by 
Stein and Waterman [ S I .  

Let 9 n . k  be the set of secondary structures on [ n ]  which have exactly k pairs, and let 
s(n,k)  = I y n , k l .  For example, the se t96 ,Z  is shown in Fig. 2.  

The numbers s(n, k)  are also studied in [ 2 ] ,  where it is shown that they satisfy the 
recurrence 

s(n + 1 ,k  + 1 )  = s(n,k + 1 )  + l , i )s(n - j , k  - i) , ( 2 )  1 
I 2 3 4 5 6  I 2 3 4 5 6  I 2 3 4 5 6  

m* 
I 2 3 4 5 6  1 2 3 4 5 6  

Fig. 2. The set Y6,2. 

nf-3 
1 2 3 4 5 6  
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Fig. 3. The set .F5s,s. 

for n 2 2, where s(n,O) = 1, for all n, and s(n, k )  = 0 for k 2 3n. Using vector notation, 
this recurrence can be written in a form identical to that of Eq. (1). Hence, the 
sequences {s(n,  k):  k 2 0} can be viewed as vector generalizations of Catalan numbers. 

It turns out that the numbers s(n, k )  are much easier to compute than the s(n). Our 
main result is a remarkably simple formula for s(n, k) ,  which is obtained by construct- 
ing a bijection from y n , k  onto a certain set of trees. 

A linear tree is a rooted tree together with a linear ordering on the set of children of 
each vertex in the tree. An isomorphism of linear trees is a root-preserving tree 
isomorphism which also preserves linear orders. An unlabelled linear tree is an 
isomorphism class of linear trees. Let r n , k  be the set of unlabelled linear trees having 
n vertices, k of which are nonterminal, and let t(n, k )  = l y n , k l .  The set 95,3 is shown in 
Fig. 3, with the roots at the tops of the trees. 

Linear trees differ from rooted planar trees in that the children of the root in a linear 
tree are linearly ordered (from left to right), while the children of the root in a rooted 
planar tree are merely cyclically ordered. For example, the fourth and fifth trees 
shown in Fig. 3 are equal as rooted planar trees, but differ as linear trees. 

Proposition 2.1. For all n, k 2 1, there exists a bijection 4 : y n + k - 2 . k -  1 -, Yn, k .  

Proof. Suppose n, k 2 1, and B is a secondary structure on [ n  + k - 23 having k - 1 
pairs. Let F c [n + k - 21 be the set of unpaired elements of [ n  + k - 21 (note that 
IF1 = n - k) .  Let V be the set {[ i , j ] :  ( i , j )  E B}  u F u { *}. Partially order V by letting 
* be maximal, and otherwise ordering by set inclusion, where we identify k E F with the 
set { k } .  The Hasse diagram of this poset is a rooted tree, with root *, having a total of 
n vertices, n - k of which are terminal. The linear order of the set F of terminal vertices 
gives this tree a linear structure. Letting 4(B)  be the isomorphism class of this linear 
tree, we have 4(B)€Tn ,k .  For example, 4 maps the secondary structure shown in 
Fig. 4(a) to the unlabelled linear tree given in Fig. 4(b). 

Suppose T ,  is a linear tree having isomorphism class TET&. Search TI by (left- 
most) depth-first search, labelling vertices as they are encountered by consecutive 
integers (starting with 0 at the root), but label internal vertices only when they are first 
encountered and last encountered. The resulting pairs of labels on the (nonroot) 
internal vertices are the pairs of a secondary structure on [ n  + k - 21. This secondary 
structure is clearly independent of the particular choice of T,  representing T; hence, 
we denote it by E( T). For example, the linear tree shown in Fig. 5 gives rise to the set of 
pairs {(1,12),(2,7),(4,6),(9,1 l)}, which is the secondary structure of Fig. 4. 
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--. (a) /----- {m 0 m\ 
1 2  3 4 5 6 7  8 9 1 0 1 1  1 2 1 3  

I 3 

5 

Fig. 4. A secondary structure and its corresponding tree. 

5 

Fig. 5. Labelling of a linear tree, determining corresponding secondary structure. 

It is straightforward to verify that the maps 4 and a are inverses of one 
another. 0 

Theorem 2.2. The number of secondary structures over a sequence of length n having 
exactly k pairs is given by 

k - 1  

for n, k 2 0. 
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Proof. It is a standard exercise in generating functions to show that the numbers t(n, k )  
are given by 

k - 1  k - 2  

Also, a bijective proof of this result was recently given by Chen [l]. Thus, the 
theorem follows from the identity s(n, k )  = t(n - k + 1, k + l), implied by 
Proposition 2.1. 0 

It is well known that the total number of linear trees on n vertices t (n)  = 1 , t (n,  k )  is 
equal to the Catalan number 

Hence, the sequences of numbers s(n + k - 2, k - 1 )  = t(n, k), for all fixed n, are, in 
a sense, vector generalizations of Catalan numbers. 

3. Symmetry 

The symmetry s (n  + k, k)  = s(2n - k - 1, n - k - l), which was originally ob- 
served in data computed from the recurrence relation (2), is easily verified using 
Theorem 2.2. By the correspondence of Proposition 2.1, this symmetry can be written 
as t (n ,  k) = t ( n ,  n - k), suggesting the existence of a kind of duality operator on the set 
Yn of all unlabelled linear trees on n vertices. 

Proposition 3.1. For all n, there is an involution T+ T* of the set Yn, which maps y n , k  

bijectively onto the set r n , , , - k ,  for 1 < k < n - 1. 

Proof. Define a linear partition of a set S to be a partition n of S, together with a linear 
ordering of each block of n. Let T1 be a linear tree representing TE Fn, where T1 has 
vertex set V, terminal vertex set F, and edge set E, and suppose all edges of Tl are 
directed away from the root. For each v E V - F, let B, be the set of all edges directed 
out of v. B, is linearly ordered, from left to right, and the set fl( T,) = {B;  v E V - F }  is 
a linear partition of E (into bushes). For all eEE,*let I(e)E F be the leftmost terminal 
vertex which can be reached by a directed path through e. For each w E F, let 
P ,  = { e e l ?  l (e )  = w } .  P ,  is linearly ordered (e c f means that f is farther from the 
root than e), and the set n(T,) = {P,: w E F }  is a linear partition of E (into leftmost 
paths). 

The dual TF of the unlabelled tree T is defined to be the isomorphism class of 
a linear tree T2 having edge-set E which satisfies fl(T2) = n( T,) and n(T2) = fl( Tl), as 
linear partitions. It is easy to check that such T2 exists, and is determined uniquely, up 
to vertex labelling, by these conditions. It follows immediately from the definition that 
(T*)* = T, and that T€Yn.k if and only if T * ~ . % , n - k .  0 
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T T' 

Fig. 6. A linear tree and its dual. 

An example of a linear tree T and its dual T* is shown in Fig. 6 with edge-labellings. 
In this example, E = [SI, n(T) = {{1,2,3}, {4,5), {6,7}, (8)) = B(P) and B(T) = 
{{1,6), {2,4), {7,8), {3), ( 5 ) )  = .(PI. 
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