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Recently algorithms for parametric alignment (Watennan et al., 1992, Natl Acad. Sci. USA 89, 
6090-6093; Gusfield et al., 1992, Proceedings of the Third Annual ACM-SIAM Discrete 
Algorithms) find optimal scores for all penalty parameters, both for global and local sequence 
alignment. This paper reviews those techniques. Then in the main part of this paper dynamic 
programming methods are used to compute ensemble alignment, finding all alignment scores for 
all parameters. Both global and local ensemble alignments are studied, and parametric 
alignment is used to compute near optimal ensemble alignments. 

1. Introduction. DNA sequencing has precipitated a revolution in biology. 
Rapid sequencing techniques were introduced a little more than a decade ago 
and the rate of sequencing continues to accelerate. As of Winter 1993 the 
international databanks (EMBL, GenBank and DDBJ) contain approxi- 
mately 50 x lo6 base pairs of DNA sequences with an average sequence length 
of about lo00 base pairs. Improvements in sequencing technology continue to 
be made and the associated discoveries in biology are staggering. Recently 
there has been an exciting new initiative in molecular biology, the human 
genome project. This project has as its objective the characterization of an 
entire human genome of 3 x lo9 base pairs as well as genomes of other model 
organisms. Even though the basic goal of the genome project is very important 
and will take years to accomplish, the project has much broader implications 
and could be the basis of biology for the next century. 

In this paper we will consider sequence alignment, one of the most utilized 
computational tools for the study of biomolecular sequences. Sequence 
alignments are used to detect relationships between sequences within and 
between species and have been the basis of fundamental insights into molecular 
biology. DNA and protein sequence alignments arrange two or more 
sequences, one written over another to indicate possible evolutionary 
relationships between the sequences. For purposes of exposition we will focus 
on DNA sequences of bases or nucleotides in this paper. Two aligned letters 
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might be identical or not. Aligned letters that are not identical indicate the 
substitution of one nucleotide for another. A letter aligned with a dash indicates 
the insertion or deletion (indel) of that letter. Most work on alignment 
algorithms is directed toward increasing the efficiency of existing methods or 
the derivation of new algorithms. Our study is aimed in a quite different 
direction, more in the spirit of statistical mechanics. We wish to study the set of 
all alignments. 

Let us next look at a simple example where x = AAGTT.C and y = AGCCC. 
An alignment A that might be suggested by the sequences is: 

A A G T T C  
A - G C C C ,  

where there are three identities, two substitutions or mismatches, and one 
indel. This alignment represents a specific hypothesis about the evolution of the 
sequences; three of the nucleotides have not changed since the common 
ancestor, there have been (at least) two substitutions, and one nucleotide has 
been either inserted or deleted. Sequences are aligned by computer in order to 
find good alignments. A computer is necessary because of the exponential 
number of possible alignments. More precisely, two sequences of length n and 
m can be aligned in("';") ways. For example, two sequences of length lo00 have 
over lo6'' distinct alignments (see Waterman, 1989). 

There remains the important question of how to score an alignment. We 
present a simple heuristic derivation of a class of "alignment scores". If p is the 
probability of an identity, 4 the probability of a substitution, and r the 
probability of an indel, the above alignment has probability: 

P r = p  q r . 3 2 1  

Define score S' by the log likelihood: 

S' =log Pr = 3(l0g p) + 2(bg 4) + 1 (log r ) ,  

and recall that for global alignment: 

2#identities + 2##mismatches + ##indels = n + m. 
Define S = S ' - y  log s=S'-11/2 log s, where s is a constant satisfying 
log(p/s) = 1. We have simply subtracted from S' a constant depending on the 
sequence lengths and the base of the logarithm. S becomes: 

S=3-2~-116, 

where p = log(s/q) and b = log(&). Fortunately optimal score defined by: 

G = max{ #identities - &nismatches - b##indels} 
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can be efficiently compu:ed as we will see in the next section. It also has the 
simple maximum likelihood interpretation we have presented. We caution the 
reader that this simple likelihood reasoning is only a heuristic. See Tavare 
(1986) for a related and mathematically rigorous discussion. 

It is also of interest to convert the problem of alignment to a problem of 
molecular structures. Above x = AAGTTC and y = AGCCC are aligned by: 

A A G T T C  
A - G C C C .  

To consider an analogous structure problem, complement the bases in b so that 
b* =TCGGG. What was an identity is now a base pair: 

A A G T T C  
T - C G G G .  

We have 3 base pairs, 2 mispairs and 1 bulged base. Given alignment A, the 
function: 

S(A) = #basepairs - p#mispairs - 6#(bulged bases) 

is one of the simplest ways to assign energy (negative free energy) to a structure. 
Here p and 6 represent chemical potentials. In this elementary way, we can 
consider either alignments or structure, and to be definite the remainder of the 
paper will treat alignments. 

It is natural to consider the ensemble a? of alignments. Each alignment has 
score S=a-bp-c6 ,  which is a real-valued function of (p, 6) and the 
alignment : 

and where a = ##identities, b = #mismatches and c = #indels. 
At each fixed (p, 6), we can view the set of all possible alignments d 

competing with one another. The dynamic programming algorithm efficiently 
computes the most energetically favorable or individually most likely 
alignments. In this paper we are going to study the set Y = S ( d ) ,  especially 
how this set of alignment scores and the optimal scores G = max{ S(A): A E&) 
of S change as a function of (p, 6). In statistical mechanics the temperature Tis 
often a variable. In our study Tis fixed and the chemical potentials (p, 6) will 
vary. In statistical mechanics, it is of interest to compute the partition function: 

Below we will describe how to compute 2 by finding all possible energies 
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S= u - b p  - c6 and the frequencies n(S) of each S. With knowledge of S, n(S) we 
will have the ingredients for: 

Z = C n(S)eSIT. 
S 

While for global alignments it is possible to numerically compute 2 at any 
fixed (p, S), we will symbolically compute Z for all (p, 6) by finding all S and 
n(S). For local alignments the corresponding numerical approach is much 
harder. The likelihood of S in the ensemble Y(d) is: 

n(S)eSIT 
z -  

. 

Clearly a non-optimal value of S can have n(S) large enough so that it is the 
most probable value of S. 

While we have made this analogy or correspondence with statistical 
mechanics we will pursue it further in this paper. In an independent approach, 
Zhang and Marr (1993) have pursued the connections with statistical 
mechanics. See also Finkelstein and Roytberg (1993). Instead we want to look 
closely at the issues involved with computing (n(S), S). The idea of using 
dynamic programming to compute partition functions has been around for a 
number of years. Temple Smith and I explored these ideas in connection with 
RNA secondary structure in the mid 197Os, eventually resulting in Howell et 
aZ. (1980). Instead of formal partition functions, we used generating functions 
that counted the structures with given numbers of base pairs, nearest 
neighbors, etc. . . . Recently a superb paper by McCaskill(l990) has appeared 
that carries those ideas much further. Two related papers by Thorne et al. 
(1991,1992) study maximum likelihood alignment of DNA sequences. 
Parameter estimation is performed that accounts for all possible alignments. 
These ideas are of course related to the purely computational concerns of this 
paper- 

Another set of related ideas arises in the area of near-optimal alignments. In 
Waterman (1983) and Byers and Waterman (1984) the traceback procedure for 
optimal alignments is modified to give all alignments within a fixed distance d 
of the optimal. Of course this set increases rapidly in size and is practical for 
only a small d. Later Vingron and Argos (1990) look at matching residues that 
belong to some near-optimal alignments, thereby giving a dot matrix view of 
the analysis. More recently, Naor and Brutlag (1993) has made a combinator- 
ial analysis of near-optimal alignments. 

In the next section on parametric alignment, we will review dynamic 
programming algorithms for global and local alignment and we will present a 
recent technique, parametric alignment, for finding the optimal scores for all 
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penalty parameters (p, 6) along with some extensions. Then in Section 3 on 
ensemble alignment, we will present dynamic programming algorithms for 
computing all alignment hyperplanes and their frequencies for both global and 
local alignment. The number of alignment hyperplanes restricts the sequence 
length currently computationally feasible. The parametric optimal alignment 
algorithm is used in an algorithm that finds the alignment hyperplanes within d 
of the optimal, increasing the feasible sequence lengths somewhat. Our goal in 
this paper is to study the computation of (n(S), S) for local and global 
alignment of DNA. 

2. Parametric Sequence Alignment. As we have mentioned earlier, we restrict 
ourselves to the case where alignments are scored with 1 for an aligned pair of 
equal letters (identitiesfid), - p  for an aligned pair of unequal letters 
(mismatches E mm) and - 6 for unaligned letters (insertions and deletions in- 
dels). If we wished to apply these methods to protein sequences, we could shift 
the weight matrix, such as the Dayhoff matrix D= (df j ) ,  by p : D - p =  ( d i j - p ) .  

If d is the finite set of alignments for the sequences x= x1 . . . x, and y=y,  
. . . y,, define optimal score G by: 

G = G(x, y) max(#d - p##mm - b#indels). 

Efficient dynamic programming algorithms to compute G for biological 
sequences in time O(nm) can be traced to Needleman and Wunsch (1970). 
Surveys of more recent developments can be found in Waterman (1984,1989). 
In this section we first review standard dynamic programming algorithms for 
optimal global (G)  and local (H) alignment hyperplanes for fixed parameters 
(p, 6). Then we give a parametric dynamic programming algorithm to obtain 
optimal alignment scores for all (p, 6). Parametric dynamic programming has 
been studied in Fernandez-Baca and Srinivasan (1991), Gusfield et al. (1992) 
and Waterman et al. (1992). 

2.1. Dynamic programming alignment algorithms 
2.1.1. Optimal Global Alignment. The standard dynamic programming 

algorithm for computing global alignment scores G(x,  y)=max(S(A): A E&) 
goes as follows. Set: 

Gi,j=G(xl . . . x i ,  y, . . . yj), 

where Gi,j = - (i +j)6 if i - j = 0. The remaining Gi,j can be computed recursively 
by: 

Gi,j=max(Gi-l,j-r +s(xi,  yj) ,  Gi-l . j-8,  Gi,j-1-8)> (1) 

where 
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Table 1. Global alignment matrix, (10 x Gij) 

C A C T A G 

A 
C 
C 
C 
T 

0 
-2 1 
-42 
-63 
-84 

-105 

-32 -20 
-53 -41 -10 -17 
-74 -62 -31 0 -21 1 -28 1 

1 i fx=y 
-p if x#y 

Since G,,,= G(x, y), the alignment score can be computed in order O(nrn) 
steps. The function s(x ,y)  can be made more general, but the algorithm 
corresponds to the definition of G above. 

One way to obtain optimal alignments is to begin with the computed value of 
Gn,,, and traceback through the matrix. At each stage (i, j ) ,  the three cells (i- 1 , 
j ) ,  ( i -  1, j -  1 )  and (i, j -  1)  are checked to see whether the score Gi,j can be 
obtained by using each of the corresponding matrix entries. If more than one 
possibility obtains, one is pursued and the remaining are placed on a stack for 
subsequent analysis. In this manner all optimal alignments can be obtained. 

Table 1 shows the (Gij) matrix for aligning x= ACCCT and y=CACTAG 
for (p, 6) = (0.9,2.1). The optimal alignment is: 

C A C T A G  
- A C C C T .  

2.1.2. Optimal local alignment. The problem of local alignment is closely 
related to G(x,y), except that the score is optimized over all intervals or 
segments of x and y. The following algorithm first appeared in Smith and 
Waterman (1981). We define: 

H(x,y)=max{G(xixi+, . . . xk,.yjyj+l . . . y,):l,<i<k<n, l<jgZ,<m). 

To find the score define: 

Hi,j= H(x, . . x i ,  y, . . . yj), 
when H;.,j=O whenever i . j = O .  The recursive calculation is now: 

H;:j=max(H;,_l,j-l+s(xi,yj), q-l,j-& & , j - l - & O ) .  

As above H ( x ,  y)=maxi,jH,,j and the algorithm takes time 1 
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Table 2. Local alignment matrix, (10 x e.j) 
C A C T A G 

A 0 10 0 0 10 0 .. 

C 
C 
C 
T 

-3 ;; I 1; , 
10 

21 

Alignments can be obtained from (&,j) in the same manner as from (Gi,j), 
except of course we traceback from maxi,ii,j. Table 2 shows the (&,J matrix 
for aligning x = ACCCT with y = CACTAG for (p, 6) = (0.9,2.1). The optimal 
alignment is : 

C A C T  
C C C T .  

2.2. Parametric alignment. Recently Waterman et al. (1992) and Gusfield et 
al. (1992) studied parametric alignment for global and local alignments. The 
goal of parametric alignment is to compute the score S for all values of the 
penalty parameters. The algorithms are valid for penalty functions that are 
linear in the parameters, such as the local and global alignment scores 
introduced in Section 2.1. We begin with a one-dimensional penalty function, 
and generalize to two- and three-dimensional problems. Our discussion for one 
and two-dimensions follows Waterman et al. (1992), with a new improvement 
(the “&*-method”). Gusfield (personal communication) has been able to 
perform parametric alignment in time proportional to O ( m )  times the number 
of cells in the tesselational for combinatorial objective functions such as we use 
here for illustration. In biology more complex objective functions often are 
required. There remains the question as to whether the “infinitesimals” we 
introduce give any advantage at all. In exploring that interesting question, the 
&*-method suggests there might be but proving its expected complexity 
requires a deeper statistical analysis than this author has been able to give. 

~~ L ,  

2.2.1. One dimension. To define a one-dimensional problem, let p= 
po + p l l  and 6 = 6, + 6,l be linear functions of another parameterl. Then: 

S= a - bp-  c6 

= a  - bpo 

=a* - b*?L 
- (bpi + ~61)3, 
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To illustrate this idea and the algorithm, two sequences are compared below 
in Table 3, where HiVi=u + UE with u, u displayed in the matrix and 1 = 1 --E. 
There are four local alignments, all with score 3, for L = 1, p = 1 and S = 21. That 
is, for a identities, b mismatches and c indels, S(A) = a  - (b + 2c)A. Each of these 
alignments corresponds to one of the lines shown in Fig. 1. The optimal line at 
1 = 1 - E  has score 3 + 3.5 and corresponds to the dominating line left of 1 = 1. 

The algorithm for one-dimensional problems is easily derived. We wish to 
compute H(A) for 1~[0, co]. It is easy to find H(O+&), the optimal line 
intersecting (0, H(0)). Also (a, H( )) is also easily determined by running the 

Table 3. Comparison matrix for 1- 1 --E 

0,o 0,2 

0,l 1,l 0,o 0,37. 
1,0 0,O 2,l 0,3 1,3 -2,2 1 2 3  1 0.5 1,2 0,O 0,O 1,4 
0,O 2,O 0,3 1,2 1,3 0,4 1,3 I 3,3 1 1,5 0,3 0,O 1,0 

- ~~~~ ~~ 

c t g t c g c t g c a c g  

and we can apply dynamic programming to find H(1) for any 1. In this way, 
every alignment A has a corresponding alignment line a* - b*l and H(1) is the 
maximum of all such lines at 1. The following lemma is elementary. 
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I-€ )i 

Figure 1. Competing alignments. 

with the left and right linear segments of H(A), AE [0, co]. If the intersection of 
these linear functions (x, y) satisfies H ( x )  = y, then the function H(1) is known 
for all AE[O,  a]. If not, H ( x ) > y  and H(x-E) gives the optimal line that 
extends (x, H(x) )  to the left. This line belongs to the final solution H(A), 
AE[O, a]. We recursively apply this method until H ( x ) = y ,  and we have 
determined the left-most interval [0, x]. In this way, the curve H(A), A E  [0, co] 
can be determined. 

In the existing approaches to two-dimensional problems, the one-dimen- 
sional algorithm is recursively applied. Given the line through (A + E ,  H(A+ E ) )  

it is necessary to find the next intersection point on the piecewise linear curve 
(x, H(x)) .  Clearly this can be accomplished by the method described above. 
However, infinitesimals can speed up this computation. At each (i,j), 
@,j(A + E )  = uij+ ui,s is the score for the best line of any alignment ending with xi  
and y j  with penalty A+&. Each of these lines can be seen as competition for 
H(A + E )  = u + DE. Assume H(A + E )  = u + DE with u c 0. Then if also vij > u: 

u,+ uij>,u + ux 

or 

and the intersection point is at x=(u-uij)/(uij-u). We are interested in 
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Figure 2. Histogram of the number of intervals. 

intersections l < x  < 00, and there is the possibility that no such intersections 
exist. In that case we solve: 

0 2 U + V X  

or x> -u/v. Our best estimate of the intersection point is then 

e*=min(-u/u; (u-uij)/(uij-v):all ( i , j )  where v,>v}. 

The idea is that we begin the method of the previous paragraph at (E*,  If(€*)) 
instead of (co, H(o0)). A test of how good this method is is described next. 

To illustrate the significant advantages of starting our intersection method at 
E* and not at a, we present a simulation as no rigorous bounds have been 
derived. The simulation is of uniform DNA sequences of length 500. We have 
set p = 6 = I and we use a sample size of 500. Figure 2 shows a histogram of the 
total number of intervals in [O, a]. The mean is 14.08 and the standard 
deviation is 2.1 1. The E* method works least efficiently when we begin at 1 = 0. 
In Fig. 3 we give the histogram of the number of intervals between I = 0 and E*. 

Here the mean is 2.46 and the standard deviation is 2.11. Instead of an average 
of 14 intervals, now we have only 2.46. Finally, we give a similar histogram for 
I= 1.25 in Fig. 4 where the mean is 1.1 and the standard deviation is 0.32. 

. 

- 

2.2.2. Two dimensions. For two-dimensional parameter systems, the first 
job to extend our method to Sb, G)=u-bp-cb is to extend our number 
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I 

0 1 2 3 4 5 6 7 8 
number of intervals 

Figure 3. Histogram of the number of intervals between I + &  and E*, for I=O. 

I 

0 1 2 3 4 5 6 7 8 
number of intefvats 

Figure 4. Histogram of the number of intervals between I + E and E*, for I = 1.25. 
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system to two orders of infinitesimals (E,, E,), where each of E, and E, are 
two-dimensional vectors. Set x = u1 + U,E, + wlez and y = u, + u,c1 + W ~ E , .  We 
have x > y  when ul >u,; or ul =u2 and u1 > u,; or ul = u z ,  u1 = u, and w, > w,. 
As before, any finite multiple of is less than any u > 0, and any finite multiple 
of E, is less than E,. 

The two-dimensional algorithm is based on an extension of (p, 6) to find the 
optimal H(p, S) = a - bp - c6 surface (alignment hyperplane) in the direction 
@ , e )  from (p ,S ) .  Of course, an infinitesimal distance eldm in the 
direction (d, e) might coincide with a line resulting from the intersection of 
optimal hyperplanes. Therefore we move in the orthogonal direction (-e, d) or 
(e, - d )  a distance E,,/=. Thus the parameters become (p, 6) + E, (d, e )  + 

The two-dimensional algorithm proceeds by finding convex polygons of 
constant optimal alignment hyperplanes in [0, ~ 0 3 ~ .  Consider [0, ~ 0 3 ’  as a 
polygon of 4 edges E and 4 vertices V. Begin at vertex V, = (0,O). Apply the 
onedimensional algorithm to edge E, = [(0, 0), (m, O)], to find the first 
optimal interval ( V, , V,) on E,. The object is to determine the polygon V, , E,; 
V, , E,; . . . V,, E,; &+ , = Vl . We agree to proceed counter-clockwise around 
the polygon as illustrated in Fig. 5. To find E,, we use the two-dimensional 
algorithm to determine the alignment hyperplane f adjacent to V, in the 
direction E,. V, is found using the one-dimensional algorithm. Then determine 
the alignment hyperplanef, adjacent to the line E, beyond V . .  The intersection Z=n, is a line that has optimal alignment hyperplane f, adjacent and 
counterclockwise. When f=f,, then 1 determines E,. Otherwise recursively 
intersect f and f, , until the intersection determines E,. When V,, , = VI, the 
polygon has been determined. The polygon can then be removed from [0, ~ 0 3 ’  
forming a new region. The procedure of determining a polygon is repeated at a 
vertex on the boundary of the new region until all convex polygons have been 
determined. 

There is a two-dimensional version of the E* method for local alignment to 
find the nearest intersection point. Referring to Fig. 6, suppose we are at V, and 
wish to find the leftmost line leaving V, . Instead of operating in one-dimension 
to find V2 and then recursively locating the leftmost line leaving V, , construct a 
line parallel to (V, , V,) an infinitesimal distance E, away. Then beginning from 
VI + (.st, E ~ )  we can use Hi,j as a function of E,  to find the closest intersection 
point where the x-coordinate has a larger real part than V, . Hopefully this will 
save some of thef, , f,, . . . recursions as shown in Fig. 5. 

2.2.3. Three dimensions. Here we briefly sketch a modification of the 
two-dimensional method to produce three-dimensional tesselations. 
Obviously our approach will use three infinitesimals and without loss of 
generality we tesselate [O, 093’. For example, our parameters might be 1, = p  

. 

&,(-e,  dl or (P, 6)+&,(d ,  e)+e,(e, -4. 

. 
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Figure 5. Tesselation in two dimensions. 

Vl v2 

Figure 6. Two-dimensional E* method. 

and a function g(k)= A, + A3k for the cost of a gap of length k. In Fig. 7,s and 
2, are optimal hyperplanes associated with (p, 0, O)-cl(l, 0, O)+c,(O, 1, 
0)+c3(0,0, 1)and ~,0,0)+~~(1,0,0)+~,(0,1,0)+~~(0,0,  l), respectively.The 
intersection S n H ,  results in a plane that can be used to compute an optimal 
hyperplane X,. If 2‘ = X‘, , we are finished. Otherwise repeat the operation 
with 2r).#,. Eventually we reach the optimal plane leaving (p, 0, 0) and 
recursively trace out the planes and edges leaving the (L,, A,) plane (see Fig. 8). 
Each of the “unfinished” faces can be closed until the polyhedron is determined. 

Our approach to three-dimensional tesselations is to keep a record of the 
“face” of the remaining portion of [0, c0l3 beginning with a two-dimensional 
tesselation of the (A,, A,) plane. The removed face of the polyhedra is replaced 
by the interior faces of the polyhedra in the cube. Then any one of these 
polygons can be a starting point of a further three-dimensional tesselation. The 
algorithm converges whe the entire cube has been removed, i.e. tesselated. 

In Vingron and Waterman (1994) we give a three-dimensional polyhedron 
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hl 
Figure 7. Tesselation in three dimensions. 

AI 
Figure 8. Unfinished thrcedimensio&l tesselation. 

for a comparison of two immunoglobins. It was not produced by a 
three-dimensional algorithm and we hope that someone pursues these issues 
further. There are many possible approaches and it remains for someone to 
explore which is most efficient or practical. 

3. Ensemble Alignment Hyperplanes. Recall that d is the ensemble of all 
alignments. While above we considered S: d + R ,  here we will consider S to be 
mapping of a? to the set of alignment hyperplanes. Each alignment can be 
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mapped to an alignment hyperplane in the following mannei . If an alignment 
has a identities, b mismatches and c indels, the score S is of the form: 

S= S(p, 6)= a -bp -c6, 

which we will refer to as an alignment hyperplane. As above, for global 
alignment 2a + 2b + c = n + m and, for local alignment hyperplanes, 
2a + 2b + c < n  + m. We are going to study alignment scores as j i  and 6 vary. We 
recall that max,S(p, 6) is piecewise linear, uniformly continuous, and concave 
up. This surface can be computed by the parametric alignment algorithms in 
Section 2-2. 

In this section we will describe simple extensions of the dynamic 
programming algorithms for optimal alignments that will compute Y =  S ( d ) ,  
the set of optimal hyperplanes and their frequencies. Due to the huge number of 
hyperplanes, we will derive in Section 3.3 a more efficient algorithm to find all 
hyperplanes within d of the optimal scores max(S(p, a):&}. 

3.1. Global alignment hyperplanes. The setup is analogous to that for global 
optimal alignment. Define: 

Yi,j= {S(p, 6):S(p,  6) is an alignment hyperplane 
for xl, . . . , xi and y , ,  . . . , y j } .  

Set 9 0 , 0 = ~ , 9 ’ i , o = { - i 6 } , 9 0 ~ j = { - j ~ }  for 1 < i < n ,  l< j<mm.  
Define: 

9 + c =  u { S + c } .  
S € Y  

The proof of this recursion follows the usual reasoning for dynamic 
programming algorithms for sequence alignment. An alignment ending at (i, j) 
can terminate in one of three ways: 

- . . .  xi ... xi . . .  
. . . y j  ... - . . . y j .  

These correspond, respectively, to the terms: 

y i - l . j - 1 + 4 x i ,  Y j )  Yi-l ,j+(-6) y i , j - I + ( - 6 )  

of equation (3), the union of which comprises Y,,j.  
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There is a bit more work to describe an algorithm to compute 9’i,j. The three 
lists of equation (3) must be merged. Assume 9’i,j is ordered lexicographically 
on (a, b, c). Then merging of the three ordered lists in equation (3) to form Y i j  
can be done in time proportional to the size of the list Yi,j. How large is 19’i,jl? 
Set n(a, b, c) to be the number of alignments A with score a - bp  - c6. 

LEMMA 2. (I) l.Y’i,jl = O((min(i, j))’) = O(ij) 

Proof. For f(p, 6 ) = a - b p - c 6 E Y l j ,  we have Z(a+b)+c=i+j  where a, b, 
c ~ { O , l ,  2, . . .}. Therefore the result follows. Part (2) is simply a restatement of 
the fact that there are c : j )  alignments in total n(a, b, c) having form 

(2) ~..b,.p(a, b, c)= O(’t9. 

f ( p ,  6) = a - bp - cs. 

Proposition 1. The running time of the above global hyperplane algorithm is 
o(n4). 

To compute the frequencies off@, a), extend the elementsf@, 6) of 9 to (n, 
Yi,o={(l, -id)}, 9,,j=((1, f@, 6)). The boundary conditions are 

- jd ) ) .  With this new definition, we set: 

Y + c =  {(n, S+c)). 
( n . S W  

It is of interest to know the number of alignments with alignment hyperplane 
a-bp-cs. While there is sometimes a unique alignment with a given 
hyperplane, often there are many such alignments. The algorithm for 
computing the hyperplanes is equation (1) and the algorithm for computing the 
frequencies is as follows. 

Suppose u - bp - c6 is in Yi, and define: 

ni-1.j to be the frequency of a-bp-(c-1)6 in 9’i-l,j 

ni- 1. j -  1 to be the frequency of (a-l)-bp-c6 in Yi-I,j.-l if ai=bj 
and ofa-(b-l)p-c6m Si - l . j - l  ifai#bj. 

ni, j - l  to be the frequency of a-bp-(c-1)6 in Yi , j - l .  

Then the frequency n of u - bp - c6 in Yi,j is: 

n=n(u, b, C) ‘n i , j=n i - lJ+ni - l , j - l  +n i , j -1  

and we have 

We illustrate this algorithm in Fig. 9 with a simple example. These 
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T 

G 

C 

C 

C T G 

2 0 0 2  
1 0 1 0  

3 003 
2 0 1 1  

4 0 0 4  
2 0 1 2  
1 1 0 2  

5 0 0 5  
2 013 
2 103 

3 0 0 3  
1 0 1 1  
1 1 0 1  

6 0 0 4  
5 0 1 2  
1.020 
1 1 0 2  

10 0 0 5  
10 0 1 3  
3 0 2 1  
2 103 

15 0 0 6  
16 0 1 4  
5 0 2 2  
4 1 0 4  
4 1 1 2  

4 0 0 4  
2 0 1 2  
1 1 0 2  

10 005 
7 013 
1 0 2 1  
5 103 
1 1 1 1  
1 2 0 1  

20 0 0 6  
23 0 1 4  
9 0 2 2  
1 0 3 0  
7 104 
2 112 
1 2 0 2  

35 007 
49 015 
24 023 
4 0 3 1  

11 105 
5 113 
1 2 0 3  

T 

5 0 0 5  
2 0 1 3  
2 103 

15 0 0 6  
13 0 1 4  
3 0 2 2  
7 1 0 4  
2 1 1 2  
1 2 0 2  

35 0 0 7  
46 0 1 5  
19 023 
2 0 3 1  

14 105 
9 113 
1 1 2 1  
2 2 0 3  
1 2 1 1  

70 0 0 8  
115 0 1 6  
66 0 2 4  
15 0 3 2  
1 0 4 0  

25 1 0 6  
21 1 1 4  

3 1 2 2  
3 2 0 4  
2 2 1 2  

C 

6 0 0 6  
3 0 1 4  
2 1 0 4  

21 0 0 7  
21 015 
5 023 
9 105 
4 113 
1 2 0 3  

56 0 0 8  
67 0 1 6  
24 0 2 4  
2 0 3 2  

38 1 0 6  
26. 1 1 4  
4 122 

10 2 0 4  
3 212 
1 3 0 2  

126 0 0 9  
182 0 1 7  
90 0 2 5  
17 0 3 3  
1 0 4 1  

98 1 0 7  
93 115 
26 123 
2 1 3 1  

27 205 
14 213 
1 2 2 1  
3 303 
1 3 1 1  

Figure 9. Global alignment: (~I(Q, b, c), a, b, c) .  

combinatories count order of deletions. For example 9,., = (3, - 36) which 
appears as 3 0 0 3 in the table has the three alignments: 

C T -  C - T  - C T  
- - T  - T -  T - -  

3.2. Local alignment hyperplanes. Now we develop the corresponding ideas 
for local optimal alignments. Due to the nature of local alignmenta, we define a 
local alignment hyperplane for x,, . . . , x, and y, , . . . , y ,  to be an alignment 
hyperplane for x k x k + l  . . . xi andy,y,+, . . . y j ;  l < k < i < n ,  and l < I < j < m :  

Xi where x k  and 
Yl Y i  

are both identities. This definition is motivated by the fact that if local 
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alignments do not begb and end with identities, the score can be trivially 
improved for all (p, 6) > (0,O) by trimming back to the identities nearest the 
beginning and end of the alignments or to 8 if no identities exist. The definition 
of Yij is suitably modified: 

S t j =  {So(, 6):S(p,  6) is a local alignment hyperplane ending at (x i ,  y j ) } .  

Define: 

This recursion is of course based on the algorithm for optimal local 
alignment. The “0” of equation (4) above has disappeared however. Whenever 
xi = y j  we begin a new alignment, regardless of the sequences x1 . . . xi - and y ,  
. . . y j - l .  Otherwise the logic is straightforward. 9i,j collects all previous 
alignments ending them with the aligned pair (x i ,  y i )  or with a deletion. The 
convention $! excludes alignments beginning with deletions or mismatches. 9fj 
simply collects the subset of Yi,j ending with an identity (x i ,  y j )  where xi = y j .  

As with the global hyperplane algorithm ordered lists must be merged, in 
-time proportional to list length. 

Proposition 2. (1) lYijl =O(max{i,j} (min{i, j ) ) ’ ) .  
(2) The running time ofthe local hyperplane algorithm is O(nS). 
Proof. Forfo(, 6) = a - bp - CS E 9i,jy we have 2(u + b) + c = i‘ +j’ where a, by 

c~{O,1,2,. . .} andO<i’,<i,O,<j’<j. BothaandbarerestrictedbetweenOand 
min{ i ,  j }  while c can vary between 0 and max{ i, j ) .  Of course 19n,ml = O(n 3, 

rn 
A recursive procedure corresponding to the local hyperplane algorithm gives 

the frequencies of the hyperplanes. The algorithm is illustrated in Fig. 10 by the 
same simple example we used for global hyperplanes. 

which implies an O(n5) algorithm. 

I 

3.3. Near optimal hyperplanes. Computing all alignment hyperplanes is 
made difficult by the sheer number of hyperplanes (O(n2) for global, O(n3) for 
local) as well as the O(n2) factor for all ( i ,  j) pairs. The motivation of this work 
was to study the structure of the optimal hyperplanes and those hyperplanes 
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T 

G 

C 

C 

C 

1 1 0 0  

2 1 0 0  

T 

1 0 0 1  

G 

2 100 
1 2 0 0  

T 

1 1 0 0  

C 

5 1 0 0  
1 2 0 0  
2 2 0 1  
3 2 0 3  
1 2 1 1  
1 3 0 1  

7 1 0 0  
1 2 0 0  
2 2 0 1  
3 2 0 2  
4 2 0 3  
6 2 0 4  
1 2 1 0  
1 2 1 1  
4 2 1 2  
2 3 0 2  
1 3 1 0  

Figure 10. Local alignment: (n(a, b, c), a, b, c). 

close to optimal. Consequently we now consider the problem of computing all 
hyperplanes that come within d of the optimal, for d 2 0. Obviously for d = 0, we 
compute only the optimal hyperplane. 

Let .4pi,j be the set of alignment hyperplanes for x, , . . . x i  and y, , . . . y j .  Our 
discussion holds for both the local and global cases. Define: 

Mi,,(p, 6)=max{a-bp-c6=f(p, S ) : f ( p ,  ~ ) E Y ~ , ~ } .  

Now consider all hyperplanes that come within d of Mi,j at some p and 6 
defined by: 

Oi,j={a-bp-c6=f(p, 6)E9i,j:minlMi,j(p, 6 ) - f ( p ,  6)l < d  . 
(rc.8) 1 

We now observe that recursion with Oi,j instead of Yi,j will not change the 
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0 

. . . .. . . . . . .... .. 

Figure 11. Growth of the number of local hyperplanes as a function of d=co 
(unlabeled), d= 10, and d =  3. 

final set O,,,,, of near optimal hyperplanes. This is because allfb, 6)EYi,jr)Oi,j 
are of distance greater than d from Mi,j .  Iff@, 6) contributes to O,,,, then we 
write the full alignment score by: 

where g&, 6) is the contribution from x i+  . . . x,,, y j +  . . . y,,. Then: 

The last inequality holds since kin,,,- Mi,jis at least as large as the best score of 
aligning xi+1 . . . x,, with yj+l . . . y, and g(p, 6) cannot be larger than that 
score. 

It is expensive to produce OCj since Mij must be calculated. The above idea 
can be utilized as follows. Compute Yi,i row by row stopping when lYi,jl = N, 
some suitably large number. If we stop at (i,jl) and (i+ I,&+ 1) with j i > j i +  , 
add (i, ji+ + 1) ( i ,  j i +  +2) . . . ( i ,  j i -  1) to make a “boundary” across the 
matrix, from the top (row 1) to the bottom (row n). Then replace Si,j by Oi,j on 
the boundary so that the succeeding recursions use the smaller sets. This 
significantly reduces storage and running time. 

As our interest is principally local alignments we have implemented the 
truncation method for the local alignment algorithm. We performed simula- 
tions shown in Figs 11,12 to get an indication of the growth of the number of 
alignment hyperplanes and the number of alignments as a function of the 
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0 10 20 30 40 50 
sequence length 

. I .  Figure 12. Growth of the number of global hyperplanes as a function of d = a  
(unlabeled), d = 10, and d = 3. 

truncation parameter. The sequences of length up to 50 of uniformly 
distributed letters were generated by successively adding letters to sequences 
already analysed. (This gave us the advantage of using the computations from 
the previous data point and gave the disadvantage of serial dependencies 
among the data points.) Recall that the number of global Docall hyperplanes 
should grow quadratically O(n2) [O(n3)] with sequence length n while the 
number of alignments should grow exponentially. The lines for d = XI reflect 
this feature. While truncation does not affect the polynomial/exponential 
properties, it obviously greatly changes the coefficient of the polynomial or 
exponential. 

3.4. More exampZes. While in parametric optimal local alignment, the 
surface (JJ, 6, H(p,  6)) can be meaningfully displayed, this is not the case for 
parametric local alignment. Hyperplanes intersect and overlay one another in 
complex ways, and we can display sections &(A), a@), H(A)) where p and 6 are 
linear functions of A. For a simple example, take x=TGCCGTG and 
y = CTGTCGCTGCACG. Two optimal global alignments exist: 

- T G C C G - T G  
C T G T C G - T G A C G  

and 
- T G C - C G - T G  
C T G - T C G C T G A C G .  

The first alignment is optimal for 6 2 2p and the second for 6 < 2p. Figure 13 
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A 
Figure 13. Global hyperplanes for p = 22,6 = 1. 

- ~ m. \.\ 
0.8 1 .o 0.4 0.6 0.0 0 2  

h 
Figure 14. Global hyperplanes for p = A, d = 2i.. 
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51 

u) 

v) 

0 

0.0 0.2 0.4 0.6 0:s 1 .o 1:2 
A 

Figure 15. Global hyperplanes at p = I I  and 6 = 2i. 

0 1 2 3 4 5 6 
h 

Figure 16. Local hyperplanes at p = I. and 6 = 2i.. 

? 
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t 

2- 
v) 

0,  

0 1 2 3 4 5 6 
h 

Figure 17. Local hyperplanes at p= d and 6 = 21. 

shows the global hyperplanes for p = 21,6 = 1. Figure 14 shows the hyperplanes 
for p = 1, 6 = 21. The pencil of lines (i.e. hyperplanes) emanating from the 7 
points in Fig. 14 are coincident into 7 lines in Fig. 13. This occurs because in 
global alignments the number of letters not involved in identities is equal for all 
alignments with the same number of identities, i.e. for each pencil. 

Next we present an analysis of two random DNA sequences of length R = 30. 
A global alignment section is shown in Fig. 15 for p = 1 and 6 = 2p. Here there 
are 370 planes and a total of 9.6 x lo2' alignments. In Fig. 16, the local 
alignments for the same section, p = A  and 6 = 2L are presented. There are 5144 
local hyperplanes with 6.4 x 10" alignments. Recall that local alignments must 
begin and end with identities (matches). This accounts for the fact that there are 
fewer local alignments than global alignments reported. Finally, we truncate 
the local alignments at distance d=4 from the optimal. In Fig. 17 there are 720 
hyperplanes with 1.1 x 1OI2 alignments. 

' 
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