
Pergamon
Bwkiin o j Mmhemaricat Biolo#y Vol. 56. No. 4. pp. 143-161.1994

ELcviu sdcna Ud
0 1994 SocicIy lor MubenutW Biology

Print& in Great Britain. All rights rrrmed
00924%0/94 s7.w+0.00

PARAMETRIC AND ENSEMBLE SEQUENCE
ALIGNMENT ALGORITHMS

H MICHAEL S. WATERMAN
Departments of Mathematics and Biological Sciences,
University of Southern California,
Los Angeles, CA 90089-1 113,
U.S.A.

Recently algorithms for parametric alignment (Watennan et al., 1992, Natl Acad. Sci. USA 89,
6090-6093; Gusfield et al., 1992, Proceedings of the Third Annual ACM-SIAM Discrete
Algorithms) find optimal scores for all penalty parameters, both for global and local sequence
alignment. This paper reviews those techniques. Then in the main part of this paper dynamic
programming methods are used to compute ensemble alignment, finding all alignment scores for
all parameters. Both global and local ensemble alignments are studied, and parametric
alignment is used to compute near optimal ensemble alignments.

1. Introduction. DNA sequencing has precipitated a revolution in biology.
Rapid sequencing techniques were introduced a little more than a decade ago
and the rate of sequencing continues to accelerate. As of Winter 1993 the
international databanks (EMBL, GenBank and DDBJ) contain approxi-
mately 50 x lo6 base pairs of DNA sequences with an average sequence length
of about lo00 base pairs. Improvements in sequencing technology continue to
be made and the associated discoveries in biology are staggering. Recently
there has been an exciting new initiative in molecular biology, the human
genome project. This project has as its objective the characterization of an
entire human genome of 3 x lo9 base pairs as well as genomes of other model
organisms. Even though the basic goal of the genome project is very important
and will take years to accomplish, the project has much broader implications
and could be the basis of biology for the next century.

In this paper we will consider sequence alignment, one of the most utilized
computational tools for the study of biomolecular sequences. Sequence
alignments are used to detect relationships between sequences within and
between species and have been the basis of fundamental insights into molecular
biology. DNA and protein sequence alignments arrange two or more
sequences, one written over another to indicate possible evolutionary
relationships between the sequences. For purposes of exposition we will focus
on DNA sequences of bases or nucleotides in this paper. Two aligned letters

743

744 M. S. WATERMAN

might be identical or not. Aligned letters that are not identical indicate the
substitution of one nucleotide for another. A letter aligned with a dash indicates
the insertion or deletion (indel) of that letter. Most work on alignment
algorithms is directed toward increasing the efficiency of existing methods or
the derivation of new algorithms. Our study is aimed in a quite different
direction, more in the spirit of statistical mechanics. We wish to study the set of
all alignments.

Let us next look at a simple example where x = AAGTT.C and y = AGCCC.
An alignment A that might be suggested by the sequences is:

A A G T T C
A - G C C C ,

where there are three identities, two substitutions or mismatches, and one
indel. This alignment represents a specific hypothesis about the evolution of the
sequences; three of the nucleotides have not changed since the common
ancestor, there have been (at least) two substitutions, and one nucleotide has
been either inserted or deleted. Sequences are aligned by computer in order to
find good alignments. A computer is necessary because of the exponential
number of possible alignments. More precisely, two sequences of length n and
m can be aligned in("';") ways. For example, two sequences of length lo00 have
over lo6'' distinct alignments (see Waterman, 1989).

There remains the important question of how to score an alignment. We
present a simple heuristic derivation of a class of "alignment scores". If p is the
probability of an identity, 4 the probability of a substitution, and r the
probability of an indel, the above alignment has probability:

P r = p q r . 3 2 1

Define score S' by the log likelihood:

S' =log Pr = 3(l0g p) + 2(bg 4) + 1 (log r) ,

and recall that for global alignment:

2#identities + 2##mismatches + ##indels = n + m.
Define S = S ' - y log s=S'-11/2 log s, where s is a constant satisfying
log(p/s) = 1. We have simply subtracted from S' a constant depending on the
sequence lengths and the base of the logarithm. S becomes:

S=3-2~-116,

where p = log(s/q) and b = log(&). Fortunately optimal score defined by:

G = max{ #identities - &nismatches - b##indels}

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 745

can be efficiently compu:ed as we will see in the next section. It also has the
simple maximum likelihood interpretation we have presented. We caution the
reader that this simple likelihood reasoning is only a heuristic. See Tavare
(1986) for a related and mathematically rigorous discussion.

It is also of interest to convert the problem of alignment to a problem of
molecular structures. Above x = AAGTTC and y = AGCCC are aligned by:

A A G T T C
A - G C C C .

To consider an analogous structure problem, complement the bases in b so that
b* =TCGGG. What was an identity is now a base pair:

A A G T T C
T - C G G G .

We have 3 base pairs, 2 mispairs and 1 bulged base. Given alignment A, the
function:

S(A) = #basepairs - p#mispairs - 6#(bulged bases)

is one of the simplest ways to assign energy (negative free energy) to a structure.
Here p and 6 represent chemical potentials. In this elementary way, we can
consider either alignments or structure, and to be definite the remainder of the
paper will treat alignments.

It is natural to consider the ensemble a? of alignments. Each alignment has
score S=a-bp-c6 , which is a real-valued function of (p, 6) and the
alignment :

and where a = ##identities, b = #mismatches and c = #indels.
At each fixed (p, 6), we can view the set of all possible alignments d

competing with one another. The dynamic programming algorithm efficiently
computes the most energetically favorable or individually most likely
alignments. In this paper we are going to study the set Y = S (d) , especially
how this set of alignment scores and the optimal scores G = max{ S(A): A E&)
of S change as a function of (p, 6). In statistical mechanics the temperature Tis
often a variable. In our study Tis fixed and the chemical potentials (p, 6) will
vary. In statistical mechanics, it is of interest to compute the partition function:

Below we will describe how to compute 2 by finding all possible energies

746 M. S. WATERMAN

S= u - b p - c6 and the frequencies n(S) of each S. With knowledge of S, n(S) we
will have the ingredients for:

Z = C n(S)eSIT.
S

While for global alignments it is possible to numerically compute 2 at any
fixed (p, S), we will symbolically compute Z for all (p, 6) by finding all S and
n(S). For local alignments the corresponding numerical approach is much
harder. The likelihood of S in the ensemble Y(d) is:

n(S)eSIT
z -

.

Clearly a non-optimal value of S can have n(S) large enough so that it is the
most probable value of S.

While we have made this analogy or correspondence with statistical
mechanics we will pursue it further in this paper. In an independent approach,
Zhang and Marr (1993) have pursued the connections with statistical
mechanics. See also Finkelstein and Roytberg (1993). Instead we want to look
closely at the issues involved with computing (n(S), S). The idea of using
dynamic programming to compute partition functions has been around for a
number of years. Temple Smith and I explored these ideas in connection with
RNA secondary structure in the mid 197Os, eventually resulting in Howell et
aZ. (1980). Instead of formal partition functions, we used generating functions
that counted the structures with given numbers of base pairs, nearest
neighbors, etc. . . . Recently a superb paper by McCaskill(l990) has appeared
that carries those ideas much further. Two related papers by Thorne et al.
(1991,1992) study maximum likelihood alignment of DNA sequences.
Parameter estimation is performed that accounts for all possible alignments.
These ideas are of course related to the purely computational concerns of this
paper-

Another set of related ideas arises in the area of near-optimal alignments. In
Waterman (1983) and Byers and Waterman (1984) the traceback procedure for
optimal alignments is modified to give all alignments within a fixed distance d
of the optimal. Of course this set increases rapidly in size and is practical for
only a small d. Later Vingron and Argos (1990) look at matching residues that
belong to some near-optimal alignments, thereby giving a dot matrix view of
the analysis. More recently, Naor and Brutlag (1993) has made a combinator-
ial analysis of near-optimal alignments.

In the next section on parametric alignment, we will review dynamic
programming algorithms for global and local alignment and we will present a
recent technique, parametric alignment, for finding the optimal scores for all

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 747

penalty parameters (p, 6) along with some extensions. Then in Section 3 on
ensemble alignment, we will present dynamic programming algorithms for
computing all alignment hyperplanes and their frequencies for both global and
local alignment. The number of alignment hyperplanes restricts the sequence
length currently computationally feasible. The parametric optimal alignment
algorithm is used in an algorithm that finds the alignment hyperplanes within d
of the optimal, increasing the feasible sequence lengths somewhat. Our goal in
this paper is to study the computation of (n(S), S) for local and global
alignment of DNA.

2. Parametric Sequence Alignment. As we have mentioned earlier, we restrict
ourselves to the case where alignments are scored with 1 for an aligned pair of
equal letters (identitiesfid), - p for an aligned pair of unequal letters
(mismatches E mm) and - 6 for unaligned letters (insertions and deletions in-
dels). If we wished to apply these methods to protein sequences, we could shift
the weight matrix, such as the Dayhoff matrix D= (df j) , by p : D - p = (d i j - p) .

If d is the finite set of alignments for the sequences x= x1 . . . x, and y=y,
. . . y,, define optimal score G by:

G = G(x, y) max(#d - p##mm - b#indels).

Efficient dynamic programming algorithms to compute G for biological
sequences in time O(nm) can be traced to Needleman and Wunsch (1970).
Surveys of more recent developments can be found in Waterman (1984,1989).
In this section we first review standard dynamic programming algorithms for
optimal global (G) and local (H) alignment hyperplanes for fixed parameters
(p, 6). Then we give a parametric dynamic programming algorithm to obtain
optimal alignment scores for all (p, 6). Parametric dynamic programming has
been studied in Fernandez-Baca and Srinivasan (1991), Gusfield et al. (1992)
and Waterman et al. (1992).

2.1. Dynamic programming alignment algorithms
2.1.1. Optimal Global Alignment. The standard dynamic programming

algorithm for computing global alignment scores G(x, y)=max(S(A): A E&)
goes as follows. Set:

Gi,j=G(xl . . . x i , y, . . . yj),

where Gi,j = - (i +j)6 if i - j = 0. The remaining Gi,j can be computed recursively
by:

Gi,j=max(Gi-l,j-r +s(xi, yj) , Gi-l . j-8, Gi,j-1-8)> (1)

where

748 M. S. WATERMAN

Table 1. Global alignment matrix, (10 x Gij)

C A C T A G

A
C
C
C
T

0
-2 1
-42
-63
-84

-105

-32 -20
-53 -41 -10 -17
-74 -62 -31 0 -21 1 -28 1

1 i fx=y
-p if x#y

Since G,,,= G(x, y), the alignment score can be computed in order O(nrn)
steps. The function s(x ,y) can be made more general, but the algorithm
corresponds to the definition of G above.

One way to obtain optimal alignments is to begin with the computed value of
Gn,,, and traceback through the matrix. At each stage (i, j) , the three cells (i- 1 ,
j) , (i - 1, j - 1) and (i, j - 1) are checked to see whether the score Gi,j can be
obtained by using each of the corresponding matrix entries. If more than one
possibility obtains, one is pursued and the remaining are placed on a stack for
subsequent analysis. In this manner all optimal alignments can be obtained.

Table 1 shows the (Gij) matrix for aligning x= ACCCT and y=CACTAG
for (p, 6) = (0.9,2.1). The optimal alignment is:

C A C T A G
- A C C C T .

2.1.2. Optimal local alignment. The problem of local alignment is closely
related to G(x,y), except that the score is optimized over all intervals or
segments of x and y. The following algorithm first appeared in Smith and
Waterman (1981). We define:

H(x,y)=max{G(xixi+, . . . xk,.yjyj+l . . . y,):l,<i<k<n, l<jgZ,<m).

To find the score define:

Hi,j= H(x, . . x i , y, . . . yj),
when H;.,j=O whenever i . j = O . The recursive calculation is now:

H;:j=max(H;,_l,j-l+s(xi,yj), q-l,j-& & , j - l - & O) .

As above H (x , y)=maxi,jH,,j and the algorithm takes time 1

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 749

Table 2. Local alignment matrix, (10 x e.j)
C A C T A G

A 0 10 0 0 10 0 ..

C
C
C
T

-3 ;; I 1; ,
10

21

Alignments can be obtained from (&,j) in the same manner as from (Gi,j),
except of course we traceback from maxi,ii,j. Table 2 shows the (&,J matrix
for aligning x = ACCCT with y = CACTAG for (p, 6) = (0.9,2.1). The optimal
alignment is :

C A C T
C C C T .

2.2. Parametric alignment. Recently Waterman et al. (1992) and Gusfield et
al. (1992) studied parametric alignment for global and local alignments. The
goal of parametric alignment is to compute the score S for all values of the
penalty parameters. The algorithms are valid for penalty functions that are
linear in the parameters, such as the local and global alignment scores
introduced in Section 2.1. We begin with a one-dimensional penalty function,
and generalize to two- and three-dimensional problems. Our discussion for one
and two-dimensions follows Waterman et al. (1992), with a new improvement
(the “&*-method”). Gusfield (personal communication) has been able to
perform parametric alignment in time proportional to O (m) times the number
of cells in the tesselational for combinatorial objective functions such as we use
here for illustration. In biology more complex objective functions often are
required. There remains the question as to whether the “infinitesimals” we
introduce give any advantage at all. In exploring that interesting question, the
&*-method suggests there might be but proving its expected complexity
requires a deeper statistical analysis than this author has been able to give.

~~ L ,

2.2.1. One dimension. To define a one-dimensional problem, let p=
po + p l l and 6 = 6, + 6,l be linear functions of another parameterl. Then:

S= a - bp- c6

= a - bpo

=a* - b*?L
- (bpi + ~61)3,

150 M. S. WATERMAN

To illustrate this idea and the algorithm, two sequences are compared below
in Table 3, where HiVi=u + UE with u, u displayed in the matrix and 1 = 1 --E.
There are four local alignments, all with score 3, for L = 1, p = 1 and S = 21. That
is, for a identities, b mismatches and c indels, S(A) = a - (b + 2c)A. Each of these
alignments corresponds to one of the lines shown in Fig. 1. The optimal line at
1 = 1 - E has score 3 + 3.5 and corresponds to the dominating line left of 1 = 1.

The algorithm for one-dimensional problems is easily derived. We wish to
compute H(A) for 1~[0, co]. It is easy to find H(O+&), the optimal line
intersecting (0, H(0)). Also (a, H()) is also easily determined by running the

Table 3. Comparison matrix for 1- 1 --E

0,o 0,2

0,l 1,l 0,o 0,37.
1,0 0,O 2,l 0,3 1,3 -2,2 1 2 3 1 0.5 1,2 0,O 0,O 1,4
0,O 2,O 0,3 1,2 1,3 0,4 1,3 I 3,3 1 1,5 0,3 0,O 1,0

- ~~~~ ~~

c t g t c g c t g c a c g

and we can apply dynamic programming to find H(1) for any 1. In this way,
every alignment A has a corresponding alignment line a* - b*l and H(1) is the
maximum of all such lines at 1. The following lemma is elementary.

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 751

I-€)i

Figure 1. Competing alignments.

with the left and right linear segments of H(A), AE [0, co]. If the intersection of
these linear functions (x, y) satisfies H (x) = y, then the function H(1) is known
for all AE[O, a]. If not, H (x) > y and H(x-E) gives the optimal line that
extends (x, H(x)) to the left. This line belongs to the final solution H(A),
AE[O, a]. We recursively apply this method until H (x) = y , and we have
determined the left-most interval [0, x]. In this way, the curve H(A), A E [0, co]
can be determined.

In the existing approaches to two-dimensional problems, the one-dimen-
sional algorithm is recursively applied. Given the line through (A + E , H(A+ E))

it is necessary to find the next intersection point on the piecewise linear curve
(x, H(x)) . Clearly this can be accomplished by the method described above.
However, infinitesimals can speed up this computation. At each (i,j),
@,j(A + E) = uij+ ui,s is the score for the best line of any alignment ending with xi
and y j with penalty A+&. Each of these lines can be seen as competition for
H(A + E) = u + DE. Assume H(A + E) = u + DE with u c 0. Then if also vij > u:

u,+ uij>,u + ux

or

and the intersection point is at x=(u-uij)/(uij-u). We are interested in

752 M. S. WATERMAN

0
(0

8

E
J
e-

0 cu

0
r 1

5 10 15 20 25
number of intewak

Figure 2. Histogram of the number of intervals.

intersections l < x < 00, and there is the possibility that no such intersections
exist. In that case we solve:

0 2 U + V X

or x> -u/v. Our best estimate of the intersection point is then

e*=min(-u/u; (u-uij)/(uij-v):all (i , j) where v,>v}.

The idea is that we begin the method of the previous paragraph at (E*, If(€*))
instead of (co, H(o0)). A test of how good this method is is described next.

To illustrate the significant advantages of starting our intersection method at
E* and not at a, we present a simulation as no rigorous bounds have been
derived. The simulation is of uniform DNA sequences of length 500. We have
set p = 6 = I and we use a sample size of 500. Figure 2 shows a histogram of the
total number of intervals in [O, a]. The mean is 14.08 and the standard
deviation is 2.1 1. The E* method works least efficiently when we begin at 1 = 0.
In Fig. 3 we give the histogram of the number of intervals between I = 0 and E*.

Here the mean is 2.46 and the standard deviation is 2.11. Instead of an average
of 14 intervals, now we have only 2.46. Finally, we give a similar histogram for
I= 1.25 in Fig. 4 where the mean is 1.1 and the standard deviation is 0.32.

.

-

2.2.2. Two dimensions. For two-dimensional parameter systems, the first
job to extend our method to Sb, G)=u-bp-cb is to extend our number

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 753

I

0 1 2 3 4 5 6 7 8
number of intervals

Figure 3. Histogram of the number of intervals between I + & and E*, for I=O.

I

0 1 2 3 4 5 6 7 8
number of intefvats

Figure 4. Histogram of the number of intervals between I + E and E*, for I = 1.25.

754 M. S. WATERMAN

system to two orders of infinitesimals (E,, E,), where each of E, and E, are
two-dimensional vectors. Set x = u1 + U,E, + wlez and y = u, + u,c1 + W ~ E , . We
have x > y when ul >u,; or ul =u2 and u1 > u,; or ul = u z , u1 = u, and w, > w,.
As before, any finite multiple of is less than any u > 0, and any finite multiple
of E, is less than E,.

The two-dimensional algorithm is based on an extension of (p, 6) to find the
optimal H(p, S) = a - bp - c6 surface (alignment hyperplane) in the direction
@ , e) from (p ,S) . Of course, an infinitesimal distance eldm in the
direction (d, e) might coincide with a line resulting from the intersection of
optimal hyperplanes. Therefore we move in the orthogonal direction (-e, d) or
(e, - d) a distance E,,/=. Thus the parameters become (p, 6) + E, (d, e) +

The two-dimensional algorithm proceeds by finding convex polygons of
constant optimal alignment hyperplanes in [0, ~ 0 3 ~ . Consider [0, ~ 0 3 ’ as a
polygon of 4 edges E and 4 vertices V. Begin at vertex V, = (0,O). Apply the
onedimensional algorithm to edge E, = [(0, 0), (m, O)], to find the first
optimal interval (V, , V,) on E,. The object is to determine the polygon V, , E,;
V, , E,; . . . V,, E,; &+ , = Vl . We agree to proceed counter-clockwise around
the polygon as illustrated in Fig. 5. To find E,, we use the two-dimensional
algorithm to determine the alignment hyperplane f adjacent to V, in the
direction E,. V, is found using the one-dimensional algorithm. Then determine
the alignment hyperplanef, adjacent to the line E, beyond V . . The intersection Z=n, is a line that has optimal alignment hyperplane f, adjacent and
counterclockwise. When f=f,, then 1 determines E,. Otherwise recursively
intersect f and f, , until the intersection determines E,. When V,, , = VI, the
polygon has been determined. The polygon can then be removed from [0, ~ 0 3 ’
forming a new region. The procedure of determining a polygon is repeated at a
vertex on the boundary of the new region until all convex polygons have been
determined.

There is a two-dimensional version of the E* method for local alignment to
find the nearest intersection point. Referring to Fig. 6, suppose we are at V, and
wish to find the leftmost line leaving V, . Instead of operating in one-dimension
to find V2 and then recursively locating the leftmost line leaving V, , construct a
line parallel to (V, , V,) an infinitesimal distance E, away. Then beginning from
VI + (.st, E ~) we can use Hi,j as a function of E, to find the closest intersection
point where the x-coordinate has a larger real part than V, . Hopefully this will
save some of thef, , f,, . . . recursions as shown in Fig. 5.

2.2.3. Three dimensions. Here we briefly sketch a modification of the
two-dimensional method to produce three-dimensional tesselations.
Obviously our approach will use three infinitesimals and without loss of
generality we tesselate [O, 093’. For example, our parameters might be 1, = p

.

&,(-e, dl or (P, 6)+&,(d , e)+e,(e, -4.

.

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 755

Figure 5. Tesselation in two dimensions.

Vl v2

Figure 6. Two-dimensional E* method.

and a function g(k)= A, + A3k for the cost of a gap of length k. In Fig. 7,s and
2, are optimal hyperplanes associated with (p, 0, O)-cl(l, 0, O)+c,(O, 1,
0)+c3(0,0, 1)and ~,0,0)+~~(1,0,0)+~,(0,1,0)+~~(0,0, l), respectively.The
intersection S n H , results in a plane that can be used to compute an optimal
hyperplane X,. If 2‘ = X‘, , we are finished. Otherwise repeat the operation
with 2r).#,. Eventually we reach the optimal plane leaving (p, 0, 0) and
recursively trace out the planes and edges leaving the (L,, A,) plane (see Fig. 8).
Each of the “unfinished” faces can be closed until the polyhedron is determined.

Our approach to three-dimensional tesselations is to keep a record of the
“face” of the remaining portion of [0, c0l3 beginning with a two-dimensional
tesselation of the (A,, A,) plane. The removed face of the polyhedra is replaced
by the interior faces of the polyhedra in the cube. Then any one of these
polygons can be a starting point of a further three-dimensional tesselation. The
algorithm converges whe the entire cube has been removed, i.e. tesselated.

In Vingron and Waterman (1994) we give a three-dimensional polyhedron

756 M. S. WATERMAN

hl
Figure 7. Tesselation in three dimensions.

AI
Figure 8. Unfinished thrcedimensio&l tesselation.

for a comparison of two immunoglobins. It was not produced by a
three-dimensional algorithm and we hope that someone pursues these issues
further. There are many possible approaches and it remains for someone to
explore which is most efficient or practical.

3. Ensemble Alignment Hyperplanes. Recall that d is the ensemble of all
alignments. While above we considered S: d + R , here we will consider S to be
mapping of a? to the set of alignment hyperplanes. Each alignment can be

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS’ 757

mapped to an alignment hyperplane in the following mannei . If an alignment
has a identities, b mismatches and c indels, the score S is of the form:

S= S(p, 6)= a -bp -c6,

which we will refer to as an alignment hyperplane. As above, for global
alignment 2a + 2b + c = n + m and, for local alignment hyperplanes,
2a + 2b + c < n + m. We are going to study alignment scores as j i and 6 vary. We
recall that max,S(p, 6) is piecewise linear, uniformly continuous, and concave
up. This surface can be computed by the parametric alignment algorithms in
Section 2-2.

In this section we will describe simple extensions of the dynamic
programming algorithms for optimal alignments that will compute Y = S (d) ,
the set of optimal hyperplanes and their frequencies. Due to the huge number of
hyperplanes, we will derive in Section 3.3 a more efficient algorithm to find all
hyperplanes within d of the optimal scores max(S(p, a):&}.

3.1. Global alignment hyperplanes. The setup is analogous to that for global
optimal alignment. Define:

Yi,j= {S(p, 6):S(p, 6) is an alignment hyperplane
for xl, . . . , xi and y , , . . . , y j } .

Set 9 0 , 0 = ~ , 9 ’ i , o = { - i 6 } , 9 0 ~ j = { - j ~ } for 1 < i < n , l< j<mm.
Define:

9 + c = u { S + c } .
S € Y

The proof of this recursion follows the usual reasoning for dynamic
programming algorithms for sequence alignment. An alignment ending at (i, j)
can terminate in one of three ways:

- . . . xi ... xi . . .
. . . y j ... - . . . y j .

These correspond, respectively, to the terms:

y i - l . j - 1 + 4 x i , Y j) Yi-l ,j+(-6) y i , j - I + (- 6)

of equation (3), the union of which comprises Y,,j.

758 M. S. WATERMAN

There is a bit more work to describe an algorithm to compute 9’i,j. The three
lists of equation (3) must be merged. Assume 9’i,j is ordered lexicographically
on (a, b, c). Then merging of the three ordered lists in equation (3) to form Y i j
can be done in time proportional to the size of the list Yi,j. How large is 19’i,jl?
Set n(a, b, c) to be the number of alignments A with score a - bp - c6.

LEMMA 2. (I) l.Y’i,jl = O((min(i, j))’) = O(ij)

Proof. For f(p, 6) = a - b p - c 6 E Y l j , we have Z(a+b)+c=i+j where a, b,
c ~ { O , l , 2, . . .}. Therefore the result follows. Part (2) is simply a restatement of
the fact that there are c : j) alignments in total n(a, b, c) having form

(2) ~..b,.p(a, b, c)= O(’t9.

f (p , 6) = a - bp - cs.

Proposition 1. The running time of the above global hyperplane algorithm is
o(n4).

To compute the frequencies off@, a), extend the elementsf@, 6) of 9 to (n,
Yi,o={(l, -id)}, 9,,j=((1, f@, 6)). The boundary conditions are

- jd)) . With this new definition, we set:

Y + c = {(n, S+c)).
(n . S W

It is of interest to know the number of alignments with alignment hyperplane
a-bp-cs. While there is sometimes a unique alignment with a given
hyperplane, often there are many such alignments. The algorithm for
computing the hyperplanes is equation (1) and the algorithm for computing the
frequencies is as follows.

Suppose u - bp - c6 is in Yi, and define:

ni-1.j to be the frequency of a-bp-(c-1)6 in 9’i-l,j

ni- 1. j - 1 to be the frequency of (a-l)-bp-c6 in Yi-I,j.-l if ai=bj
and ofa-(b-l)p-c6m Si - l . j - l ifai#bj.

ni, j - l to be the frequency of a-bp-(c-1)6 in Yi , j - l .

Then the frequency n of u - bp - c6 in Yi,j is:

n=n(u, b, C) ‘n i , j=n i - lJ+ni - l , j - l +n i , j -1

and we have

We illustrate this algorithm in Fig. 9 with a simple example. These

. .

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 759

T

G

C

C

C T G

2 0 0 2
1 0 1 0

3 003
2 0 1 1

4 0 0 4
2 0 1 2
1 1 0 2

5 0 0 5
2 013
2 103

3 0 0 3
1 0 1 1
1 1 0 1

6 0 0 4
5 0 1 2
1.020
1 1 0 2

10 0 0 5
10 0 1 3
3 0 2 1
2 103

15 0 0 6
16 0 1 4
5 0 2 2
4 1 0 4
4 1 1 2

4 0 0 4
2 0 1 2
1 1 0 2

10 005
7 013
1 0 2 1
5 103
1 1 1 1
1 2 0 1

20 0 0 6
23 0 1 4
9 0 2 2
1 0 3 0
7 104
2 112
1 2 0 2

35 007
49 015
24 023
4 0 3 1

11 105
5 113
1 2 0 3

T

5 0 0 5
2 0 1 3
2 103

15 0 0 6
13 0 1 4
3 0 2 2
7 1 0 4
2 1 1 2
1 2 0 2

35 0 0 7
46 0 1 5
19 023
2 0 3 1

14 105
9 113
1 1 2 1
2 2 0 3
1 2 1 1

70 0 0 8
115 0 1 6
66 0 2 4
15 0 3 2
1 0 4 0

25 1 0 6
21 1 1 4

3 1 2 2
3 2 0 4
2 2 1 2

C

6 0 0 6
3 0 1 4
2 1 0 4

21 0 0 7
21 015
5 023
9 105
4 113
1 2 0 3

56 0 0 8
67 0 1 6
24 0 2 4
2 0 3 2

38 1 0 6
26. 1 1 4
4 122

10 2 0 4
3 212
1 3 0 2

126 0 0 9
182 0 1 7
90 0 2 5
17 0 3 3
1 0 4 1

98 1 0 7
93 115
26 123
2 1 3 1

27 205
14 213
1 2 2 1
3 303
1 3 1 1

Figure 9. Global alignment: (~I(Q, b, c), a, b, c) .

combinatories count order of deletions. For example 9,., = (3, - 36) which
appears as 3 0 0 3 in the table has the three alignments:

C T - C - T - C T
- - T - T - T - -

3.2. Local alignment hyperplanes. Now we develop the corresponding ideas
for local optimal alignments. Due to the nature of local alignmenta, we define a
local alignment hyperplane for x,, . . . , x, and y, , . . . , y , to be an alignment
hyperplane for x k x k + l . . . xi andy,y,+, . . . y j ; l < k < i < n , and l < I < j < m :

Xi where x k and
Yl Y i

are both identities. This definition is motivated by the fact that if local

760 M. S. WATERMAN

alignments do not begb and end with identities, the score can be trivially
improved for all (p, 6) > (0,O) by trimming back to the identities nearest the
beginning and end of the alignments or to 8 if no identities exist. The definition
of Yij is suitably modified:

S t j = {So(, 6):S(p, 6) is a local alignment hyperplane ending at (x i , y j) } .

Define:

This recursion is of course based on the algorithm for optimal local
alignment. The “0” of equation (4) above has disappeared however. Whenever
xi = y j we begin a new alignment, regardless of the sequences x1 . . . xi - and y ,
. . . y j - l . Otherwise the logic is straightforward. 9i,j collects all previous
alignments ending them with the aligned pair (x i , y i) or with a deletion. The
convention $! excludes alignments beginning with deletions or mismatches. 9fj
simply collects the subset of Yi,j ending with an identity (x i , y j) where xi = y j .

As with the global hyperplane algorithm ordered lists must be merged, in
-time proportional to list length.

Proposition 2. (1) lYijl =O(max{i,j} (min{i, j)) ’) .
(2) The running time ofthe local hyperplane algorithm is O(nS).
Proof. Forfo(, 6) = a - bp - CS E 9i,jy we have 2(u + b) + c = i‘ +j’ where a, by

c~{O,1,2,. . .} andO<i’,<i,O,<j’<j. BothaandbarerestrictedbetweenOand
min{ i , j } while c can vary between 0 and max{ i, j) . Of course 19n,ml = O(n 3,

rn
A recursive procedure corresponding to the local hyperplane algorithm gives

the frequencies of the hyperplanes. The algorithm is illustrated in Fig. 10 by the
same simple example we used for global hyperplanes.

which implies an O(n5) algorithm.

I

3.3. Near optimal hyperplanes. Computing all alignment hyperplanes is
made difficult by the sheer number of hyperplanes (O(n2) for global, O(n3) for
local) as well as the O(n2) factor for all (i , j) pairs. The motivation of this work
was to study the structure of the optimal hyperplanes and those hyperplanes

I .

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 761

T

G

C

C

C

1 1 0 0

2 1 0 0

T

1 0 0 1

G

2 100
1 2 0 0

T

1 1 0 0

C

5 1 0 0
1 2 0 0
2 2 0 1
3 2 0 3
1 2 1 1
1 3 0 1

7 1 0 0
1 2 0 0
2 2 0 1
3 2 0 2
4 2 0 3
6 2 0 4
1 2 1 0
1 2 1 1
4 2 1 2
2 3 0 2
1 3 1 0

Figure 10. Local alignment: (n(a, b, c), a, b, c).

close to optimal. Consequently we now consider the problem of computing all
hyperplanes that come within d of the optimal, for d 2 0. Obviously for d = 0, we
compute only the optimal hyperplane.

Let .4pi,j be the set of alignment hyperplanes for x, , . . . x i and y, , . . . y j . Our
discussion holds for both the local and global cases. Define:

Mi,,(p, 6)=max{a-bp-c6=f(p, S) : f (p , ~) E Y ~ , ~ } .

Now consider all hyperplanes that come within d of Mi,j at some p and 6
defined by:

Oi,j={a-bp-c6=f(p, 6)E9i,j:minlMi,j(p, 6) - f (p , 6)l < d .
(rc.8) 1

We now observe that recursion with Oi,j instead of Yi,j will not change the

762 M. S. WATERMAN

0

.

Figure 11. Growth of the number of local hyperplanes as a function of d=co
(unlabeled), d= 10, and d = 3.

final set O,,,,, of near optimal hyperplanes. This is because allfb, 6)EYi,jr)Oi,j
are of distance greater than d from Mi,j . Iff@, 6) contributes to O,,,, then we
write the full alignment score by:

where g&, 6) is the contribution from x i+ . . . x,,, y j + . . . y,,. Then:

The last inequality holds since kin,,,- Mi,jis at least as large as the best score of
aligning xi+1 . . . x,, with yj+l . . . y, and g(p, 6) cannot be larger than that
score.

It is expensive to produce OCj since Mij must be calculated. The above idea
can be utilized as follows. Compute Yi,i row by row stopping when lYi,jl = N,
some suitably large number. If we stop at (i,jl) and (i+ I,&+ 1) with j i > j i + ,
add (i, ji+ + 1) (i , j i + +2) . . . (i , j i - 1) to make a “boundary” across the
matrix, from the top (row 1) to the bottom (row n). Then replace Si,j by Oi,j on
the boundary so that the succeeding recursions use the smaller sets. This
significantly reduces storage and running time.

As our interest is principally local alignments we have implemented the
truncation method for the local alignment algorithm. We performed simula-
tions shown in Figs 11,12 to get an indication of the growth of the number of
alignment hyperplanes and the number of alignments as a function of the

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 763

0 10 20 30 40 50
sequence length

. I . Figure 12. Growth of the number of global hyperplanes as a function of d = a
(unlabeled), d = 10, and d = 3.

truncation parameter. The sequences of length up to 50 of uniformly
distributed letters were generated by successively adding letters to sequences
already analysed. (This gave us the advantage of using the computations from
the previous data point and gave the disadvantage of serial dependencies
among the data points.) Recall that the number of global Docall hyperplanes
should grow quadratically O(n2) [O(n3)] with sequence length n while the
number of alignments should grow exponentially. The lines for d = XI reflect
this feature. While truncation does not affect the polynomial/exponential
properties, it obviously greatly changes the coefficient of the polynomial or
exponential.

3.4. More exampZes. While in parametric optimal local alignment, the
surface (JJ, 6, H(p, 6)) can be meaningfully displayed, this is not the case for
parametric local alignment. Hyperplanes intersect and overlay one another in
complex ways, and we can display sections &(A), a@), H(A)) where p and 6 are
linear functions of A. For a simple example, take x=TGCCGTG and
y = CTGTCGCTGCACG. Two optimal global alignments exist:

- T G C C G - T G
C T G T C G - T G A C G

and
- T G C - C G - T G
C T G - T C G C T G A C G .

The first alignment is optimal for 6 2 2p and the second for 6 < 2p. Figure 13

764 M. S. WATERMAN

A
Figure 13. Global hyperplanes for p = 22,6 = 1.

- ~ m. \.\
0.8 1 .o 0.4 0.6 0.0 0 2

h
Figure 14. Global hyperplanes for p = A, d = 2i..

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 765

51

u)

v)

0

0.0 0.2 0.4 0.6 0:s 1 .o 1:2
A

Figure 15. Global hyperplanes at p = I I and 6 = 2i.

0 1 2 3 4 5 6
h

Figure 16. Local hyperplanes at p = I. and 6 = 2i..

?

766 M. S. WATERMAN

t

2-
v)

0,

0 1 2 3 4 5 6
h

Figure 17. Local hyperplanes at p= d and 6 = 21.

shows the global hyperplanes for p = 21,6 = 1. Figure 14 shows the hyperplanes
for p = 1, 6 = 21. The pencil of lines (i.e. hyperplanes) emanating from the 7
points in Fig. 14 are coincident into 7 lines in Fig. 13. This occurs because in
global alignments the number of letters not involved in identities is equal for all
alignments with the same number of identities, i.e. for each pencil.

Next we present an analysis of two random DNA sequences of length R = 30.
A global alignment section is shown in Fig. 15 for p = 1 and 6 = 2p. Here there
are 370 planes and a total of 9.6 x lo2' alignments. In Fig. 16, the local
alignments for the same section, p = A and 6 = 2L are presented. There are 5144
local hyperplanes with 6.4 x 10" alignments. Recall that local alignments must
begin and end with identities (matches). This accounts for the fact that there are
fewer local alignments than global alignments reported. Finally, we truncate
the local alignments at distance d=4 from the optimal. In Fig. 17 there are 720
hyperplanes with 1.1 x 1OI2 alignments.

'

The author thanks M. Eggert and S. Xu for the programming assistance and
the referee for many useful comments. This research was supported by grants
from the National Institutes of Health and the National Science Foundation.

LITERATURE

Byers, T. H. and M. S. Waterman. 1984. Determining all optimal and near-optimal solutions
when solving shortest path problems by dynamic programming. Oper. Res. 32, 1381.

I .

PARAMETRIC AND ENSEMBLE SEQUENCE ALIGNMENT ALGORITHMS 767

Fernandez-Baca, D. and S. Srinivasan. 1991. Constructing the minimization diagram of a
two-parameter problem. Oper. Res. Lett. 10,87-93.

Finkelstein, A. V. and M. A. Roytberg. 1993. Computation of biopolymers: a general approach
to different problems. BioSystems 30, 1-19.

Gusfield, D., K. Balasubramian and D. Naor. 1992. In Proceedings ofthe 7'hird Annual ACM-
SIAM Discrete Algorithms, 432439.

Howell, J. A., T. F. Smith and M. S. Waterman. 1980. Computation of generating functions for
biological molecules. SIAM J. Appl Math. 39, 119-133.

McCaskill, J. S. 1990. The equilibrium partition function and base pair binding probabilities for
RNA secondary structure. Biopolymers 29, 1105-1 119.

Naor, D. and D. Brutlag. 1993. On Suboptimal alignments of biological sequences. Proc. ofthe
Fourth International Symposium on Combinatorial Pattern Matching, Padova, Italy, June
1993. Lecture Notes in Computer Science.

Needleman, S. B. and C. D. Wunsch. 1970. A general method applicable to the search for
similarities in the amino acid sequences of two proteins. J. mol. Biol. 48,443-453.

Tavare, S . 1986. Some mathematical questions in biology-DNA sequence analysis. In Lectures
on Mathematics in the Life Sciences, 17, 29-56. The American Mathematical Society,
Providence, Rhode Island.

Thorne, J. L., H. Kishino and J. Felsenstein. 1991. An evolutionary model for maximum
likelihood alignment of DNA sequences. J. mol. Euol. 33, 114-124.

Thorne, J. L., H. Kishino and J. Felsenstein. 1992. Inching toward reality: an improved
likelihood model of sequence evolution. J. mol. Euol. 34,3-16.

Vingron, M. and P. Argos. 1990. Determination of reliable regions in protein sequence
alignments. Prot. Engng 3, 565-569.

Vingron, M. and M. S. Waterman. 1993. Rapid and accurate estimates of statistical significance
for sequence database searches. J. mol. Biol. (in press).

Waterman, M. S. 1983. Sequence alignment in the neighbourhood of the optimum with general
applications to dynamic programming. Natl. Acad. Sci. USA 80, 3123.

Waterman, M. S. 1984. General methods ofsequence comparison. Bull. Math. Biol. 46,473-500.
Waterman, M. S. 1989. Sequence alignments. In: Mathematical Methods for DNA Sequences,

Waterman, M. S., M. Eggert and E. Lander. 1992. Parametric sequence comparisons. In Natl.

Zhang, M. Q. and T. G. Marr. 1993. Alignment of molecular sequences by random path analysis.

M. S. Waterman (Ed.). CRC Press.

Acad. Sci. USA, 89,60906093.

Manuscript.

