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We consider a sequence matching problem involving the optimal 

alignment score for contiguous subsequences, rewarding matches and 
penalizing for deletions and mismatches. This score is used by biologists 
comparing pairs of DNA or protein sequences. We prove that for two 
sequences of length n, as n + 01, there is a phase transition between 
linear growth in n, when the penalty parameters are small, and logarith- 
mic growth in n, when the penalties are large. The results are valid for 
independent sequences with iid or Markov letters. The crucial step in 
proving this is to derive a large deviation result for matching with 
deletions. The longest common subsequence problem of Chvktal and 
Sankoff is a special case of our setup. The proof of the large deviation 
result exploits the Azuma-Hoeffding lemma. The phase transition is also 
established for more general scoring schemes allowing general letter-to- 
letter alignment penalties and block deletion penalties. We give a general 
method for applying the bounded increments martingale method to 
Lipschitz functionals of Markov processes. The phase transition holds for 
matching Markov chains and for nonoverlapping repeats in a single 
sequence. 

1. Introduction. DNA and protein molecules can be represented as 
strings of letters from a finite alphabet, such as a 4-letter alphabet for DNA 
sequences and a 20-letter alphabet for protein sequences. A major undertak- 
ing in biology is to determine genetic sequences from various organisms. 
Important portions of the sequences are preserved over evolutionary time, so 
that relationships among sequences are indicative of evolutionary-and hence 
hnctional-relationships. Computer algorithms have been devised to detect 
these relationships; see Waterman (1984, 1989) for reviews of the application 
of sequence comparison algorithms to biology. Sequence comparison has 
appeared in a number of fields, such as speech recognition, bird song studies 
and geological strata comparisons. The book of Sankoff and Kruskal (1983) 
presents many of these applications as well as more formal, computer science 
aspects of sequence comparison. In the computer science literature these 
problems are known as string comparisons or string matching. See, for 
example, the books by Capocelli (1990) and Apostolico, Crochemore, Galil and 
Manbar (1992). 
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More recently the probability distributions of random variables relating to 
these comparisons have been under study. See Karlin, Ghandour, Ost, Tavar6 
and Kon (19831, Arratia and Waterman (1985a), Karlin and Ost (1987), 
Arratia, Gordon and Waterman (19901, and Neuhauser (1994) for some of this 
literature. In this paper we study the random variable that is the score of the 
sequence comparison algorithm thought to be the most rigorous and useful 
for biology. 

The phenomenon of phase transitions was first described in Waterman, 
Gordon and Arratia (1987). The overall setup for phase transitions is the 
following. We have a random variable M = M, = M( p, 6)  which is the 
optimal score S(1, J), over all possible choices of two contiguous regions, I 
taken &om A,A2 B,, where all the letters 
Ai and B, are independent, identically distributed random variables from a 
finite or countable alphabet. The score S is the maximum, over all possible 
“alignments” of I and J, of the number of matches, minus the penalty 
parameter p times the number of mismatches, minus the penalty parameter 
6 times the number of deleted letters. Algorithms for computing M and 
finding the optimal matching segments and their alignments are discussed in 
Smith and Waterman (1981) and Waterman and Eggert (1987). 

J,) for the score, with penalty parameters p 
and 6, for two regions of length t. Subadditivity implies that S , / t  has a 
constant limit, almost surely and in expectation; call this limit a( p, 6). When 
the penalty parameters are small, this limit is positive and the overall score 
M, grows linearly with n,  with the optimal contiguous regions having length 
close to n. When the penalty parameters are large, so that the average score 
a per unit length is negative, the optimal regions for M represent large 
deviation behavior. They are regions with a positive score, while the average 
score is negative. If the probability of regions of positive score and length t 
decays exponentially fast in t ,  then since there are at most n2 locations for 
the pair (I, J )  where such a large deviation might occur (and there are at 
least n / t  - 1 independent events involved here), the overall score M,, will 
grow like log n,  whenever the penalty parameters are such that the average 
score is negative. In greater detail, consider the large deviation rate r (q )  = 
r(q;  p, S )  = lim -t-’  log P(S,  2 qt), which obviously satisfies r (q )  2 0. If 
a(p, 6) < 0, then we can prove the crucial property that r (q )  > 0 for all 
q 2 0. In this case, defining b = b ( p ,  6) = maxgrO q/r (q) ,  we prove in 
Lemma 2, using an easy block argument like that in Arratia and Waterman 
(1985a) (corresponding to the case p = 6 = m) that 

P ( b (  p,  6 )  - E < M,/log n < 2b( p ,  6 )  + 8) -, 1. 

It is easy to show that the average score per letter, a( p, 61, has the 
property that the set of values ( p, 6) for which a = 0 is a line in the 
parameter space, separating the negative region for a from the positive. To 
show that this line is the location of a phase transition between logarithmic 
and linear growth for M, the crucial and difficult step is to show that large 
deviations for S,  have probability which is exponentially small as t + w. 

- 

= 

A, and J taken from B,B, 

Write S,  = S(1, e . .  I, ,  5, 

: 

’ 
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Our first proof of the large deviation property for S was based on the 
corresponding proof of a large deviation property in first-passage percolation, 
given by Grimmett and Kesten (1984) and given in a slightly modified version 
in Kesten (1986). This proof involves a “big-block, small-block” argument, 
which is considered routine by workers in percolation. The modifications 
required to adopt the percolation proof to sequence matching were not easy 
and consumed several pages in the original version of this paper. The first 
proof has now been replaced by a much easier argument using the 
Azuma-Hoeffding inequality. A copy of the first proof is available from the 
authors. 

To see the percolation correspondence, view -St  as a minimum cost over 
paths in the plane, from (0,O) to ( t ,  t ) .  In these paths, three kinds of steps are 
possible: 

1. one unit to the right, from ( i ,  j )  to ( i  + 1, j ) ,  which costs 6 and corresponds 

2. one unit up, from ( i , j )  to ( i ,  j + l), which corresponds to deleting Bj+ , ,  

3. diagonally from ( i ,  j )  to ( i  + 1, j + 11, which corresponds to matching Ai+ 

to deleting Ai+ 1; 

and costs 6 ;  

against Bj+ ,, and is paid 1 (i.e., costs - 1) if the letters are equal and costs 
p otherwise. 

Essentially, the difference between this setup and first passage percolation 
is that here, the t 2  diagonal costs for a t-by-t square are not inde- 
pendent-they are determined by only 2t  random letters, while in first 
passage percolation all the t edge costs are independent. That results from 
first passage percolation do not automatically extend to sequence matching is 
shown by the qualitative behavior of large deviations on the opposite side of 
average behavior. The probability that the best path of length t is Et worse 
than average decays like exp( - c (c ) t )  for matching d 2 2 sequences, but like 
exp( - k ( g ) t d )  for first passage percolation in d dimensions. 

Our second proof of the large derivation property, presented in Section 3, is 
based on the Azuma-Hoeffding inequality for martingales with bounded 
increments. We became aware of the applicability of this from lectures by M. 
Steele and B. BollabPs at a conference, the proceedings of which are summa- 
rized in Tavar6 (1992). The proof using the Azuma-Hoeffding inequality is 
not only much simpler than the percolation-style proof, but it is also more 
powerful. In particular, using the Azuma-Hoeffding inequality, there are no 
extra restrictions needed in Section 4 on generalized scoring schemes, which 
allow longer blocks of deletions to receive a single penalty. 

We summarize our main result as Theorem 1. 

THEOREM 1. For iid letters A, ,  A,, . . . and B,,  B,, . . . , the optimal align- 
ment score M ,  = M(A,A,  ... A,, B, .-. B,,), with penalty parameters @ per 
mismatch and 6 per deletion, has a phase transition between linear growth 
with n for small p and 6 ,  and logarithmic growth with n for large p and 6. 



PHASE TRANSITIONS IN MATCHINGS 203 

The coefficient of log(n) is given by (7149). The coefficient of n is given by (6) 
and (14). 

PROOF. The result follows immediately by combining Lemmas 1, 2 and 3. 
0 

REMARK. In practice, two sequence of different lengths, say m and n, are 
compared. Provided that m, n + CQ, the result of Theorem 1 holds. More 
precisely, there is a phase transition between linear and logarithmic growth, 
in the sense that if a(p, S) > 0, then M(A,A, B,) grows at 
least as fast as a(p, S)min(m, n), and if a(p, 6)  < 0, then M(A1A2 e-. 
A,, B I B ,  B,) grows at most as fast as b( p, 6)log(mn) and at least as fast 
as b( p, 6)log(min(m,n)). The proof we give for Lemma 2, corresponding to 
the special case m = n, easily extends to this more general case. For the case 
of the longest perfect matching, that is, p = S = CQ, it is possible to give the 
explicit coefficient of log(mn) when rn, n --$ CQ with limlog(m)/log(n) = 8 E 
(0, CQ). This coefficient is a continuous, nonanalytic function of 8. See Arratia 
and Waterman (1985b). 

This paper is organized as follows. In Section 2 we show how the phase 
transition result follows rigorously from the large deviation result. Section 3 
gives the proof of the large deviation result. Section 4 extends the phase 
transition result to generalized alignment scoring schemes, Section 5 gives 
the extension to Markov chains, Section 6 gives the extension to nonoverlap- 
ping repeats in a single sequence and Section 7 presents some numerical 
results and illustrative examples. 

In Waterman, Gordon and Arratia (1987) we pointed out a correspondence 
between sequence alignment, where similar letters are aligned, and helical 
structures where complementary bases (AT or GC) form base pairs. A gener- 
alized scoring scheme, for example, s(A, T) = s(T, A) = 1.7, and s(G, C) = 
s(C, G) = 2.1, s(a, b )  = - p  otherwise, handles both the notion of comple- 
mentary matching and the fact that the free energy of an AT base pair is 
weaker than that of a GC base pair. In addition, unpaired regions have more 
complex destabilization energy functions, often taken to be the logarithm of 
the length of the regions. For simple helical regions between distinct se- 
quences, the theorems we prove in this paper apply. Related problems arise 
from the formation of DNA or RNA secondary structure where a single 
stranded molecule folds back on itself to form helical regions. The behavior of 
the free energy of the optimal structure does not follow from our theorems 
because of more complex dependence; we d.o conjecture that analogous results 
hold. 

A,, B,B, 

2. Subadditive theory and large deviation theory imply phase 
transition. We recall some definitions from the introduction. "he variable 
M, is defined to be the optimal score S ( I ,  J )  over all possible choices of two 
contiguous regions, I taken from A,A2 --. A, and J taken from B,B2 B,. 
Formally 

A,, B ,  M,  = M (  A, B,) = maxS( I, J), 
I ,  J 

(1) 
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where I = A g + l  
and 15  h + 1 I h + j  I n. The alignment score S ( A g + l  
Bh+j)  is defined by 

and J = Bh+l e . .  Bh+j with 1 I g  + 1 I g  + i I n 
A g+c,  . Bh+l e-. 

S ( A g + l  Ag+i, B h + l  ' * *  B h + j )  

1 

k = l  
-6(i - Z + j  - I )  + s (Aa tk ) ,  ' W k ) ) )  9 

where the maximum is over all alignments, given by increasing subsequences 

g = a(0) < a(1) < 4 2 )  < - * .  < a(Z) < a(Z + 1) = g  + i + 1, 
(3) h = b(0)  < b(1) < b(2)  < < b(Z) < b(Z + 1) = h + j  + 1. 

The scoring function for aligned pairs is 

(4) 

and the term - 6( i  - I + j - I) is - 6 times the number of letters deleted. 
Essentially, the difference between the scores M and S is that M allows an 
initial and terminal segment to be deleted, at no cost, from each sequence. 

Let 
Sk = S( A ,  A , ,  Bl * * *  B k )  

and observe that 

( 5 )  sk+I  sk + S ( A k + l  * * '  A k + l ,  B k + l  * ' *  B k + l ) ,  

where S(Ak+l --. A k + l ,  Bk+l *.. & + , )  equals sl in distribution. Thus Esk+l 
2 ES, + ES,, so that subadditive theory implies the following limit exists, 
and equals the supremum 

Esk Esk a( p ,  6 )  = lim - = sup - 
k - r m  k k a l  k ' 

Observe that for p = CQ, 6 = 0, S, is the length of a longest common 
subsequence of A I A ,  A ,  and BIB,  --. B,, so that a(w,O) = c, the 
Chv6tal-Sankoff [Chvgtal and Sankoff (197511 constant. In the language of 
ergodic theory, 1 - c = f is the f distance between A I A ,  and B,!, . 
Steele (1986) proves an Efron-Stein inequality for hc t iona ls  of iid vanables 
and illustrates ita use to obtain the bound var(S,) I nP(Al # B,) for the 
variance of the length of a longest common subsequence. Steele's inequality 
applies for all p, 6 E [O,a], to yield var(S,) I nP(Al # BIX1 + min(p, 6)). 

In the remainder of the section, we assume Theorem 2 of Section 3 and 
prove our result on phase transitions. Lemma 1 states that {a( p, 6) = 0) 
defines a line in [o,~] ' .  Lemma 2, using Theorem 2, shows that M, grows 
like log(n) when u ( p ,  6)  < 0, while Lemma 3 shows that M, grows like n 
when a( p, 6)  > 0. Theorem 1 of the introduction is proved by the combina- 
tion of these three lemmas. 
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LEMMA 1. The set {( p, 6): a( p, 6) = 0) defines a line in the parameter 
space [0,  wI2, separating the negative and positive regions {a < 0) and {a > 0). 

PROOF. First, a is obviously nonincreasing in each of its parameters, and 
we have the global inequality a( p + E ,  6 + 8/21 2 a( p, 6 )  - E ,  because the 
corresponding inequality is satisfied by each possible alignment, and taking 
maxima, expectation and limit preserves this inequality. This shows that a is 
continuous. In detail, with Q = ( p ,  6)  and Q' = ( p ' ,  6') we have la(&) - 
a(&')l I E Ip - p'l + 216 - 6'1, since with R = (p , ,  6,) = ( p  A p', 6 A 6') 
and S = ( p, + E ,  6, + ~ / 2 ) ,  monotonicity and the global inequality give 
a(R) 2 a(&) 2 a(S)  2 a(R)  - E ,  and similarly for a(&'). Second, although a 
is not strictly monotone in each parameter everywhere in the parameter 
space, it is strictly monotone in the ( 1 , l )  direction, in a neighborhood of the 
line a = 0. To see this, let y = max( p, 2 6) and observe that in alignments 
which score g or less per pair of letters, the proportion x of nonmatching 
pairs satisfies - y x  + (1 - x )  I g ,  so that x 2 (1 - g ) / ( y  + 1). For such 
alignments, increasing each of the penalty parameters by E > 0 must de- 
crease the score by at least E X .  It follows that a( p + E ,  S + E )  < a( p, 6) - 
~ ( 1  - a( p, S ) ) / ( l  + p + 2 6 )  for all E ,  p, 6 > 0. The cases where p = or 
6 = m require a separate but similar argument. 0 

- 

REMARK. The preceding lemma does not state that, for all E > 0, a( p + 
E ,  6)  < a( p, 6) and a( p, 6 + E )  < a( p, 6). In fact, the first is clearly false 
when 26 < p. 

The following conjecture embodies rigorously the intuition that, except for 
cases with 2 6  I p, any optimal alignment of typical A, - - -  A,, and B ,  B,, 
for large n, uses both deletions and mismatches a significant proportion of n 
times. The analogous result for first passage percolation has been proved in 
van den Berg and Kesten (1993). 

CONJECTURE 1. For all E ,  p, 6>0, a( p, 6+  ~ ) < a ( p ,  6).  For all E ,  p, 6 >  
0 with 26  > p, a ( p  + E ,  6)  < a(p, 6). 

e 

Define 

I This limit exists and equals the infimum using the subadditive property 

P ( S j + ,  2 q ( j  + k)) 2 P ( S j  2 q j ) P ( S ,  2 q k ) .  

The next section, using the Azuma-Hoeffding inequality, shows that if 
a( p, 6)  < 0 and q 2 0, then r ( q )  > 0. This is a corollary of Theorem 2 of 
Section 3. Observe that subadditivity allows the possibility that r ( q )  = 0. 
Indeed this is the case when a( p, 6)  > q. 
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If a( p, 6 )  < 0, then we can define 

Note that b > 0 since r(1) = -log P ( A ,  = B, )  < m. 

In the following lemma the upper and lower bounds differ by a factor of 2, 
which arises from the need for independent blocks in the proof of the lower 
bound. One would need control over the correlation of the events in (13) 
below, to be able to improve the lower bound by a factor of 2. 

~ 

CONJECTURE 2. For all ( p, S) E [0, w]', the upper bound in Lemma 2 is 
sharp, in the sense that M,/log n converges in probability to 2b, whenever 
a( p, 6 )  < 0. [This was proved for the special case S = w, allowing mismatches 
but no deletions, in Arratia and Waterman (1989).] 

The next two conjectures give a refinement of Conjecture 2. They express 
the belief that in the proof of the lower bound for Lemma 2, there is a unique 
optimal q, which governs the length of the optimal subregions. If Conjectures 
2 and 3 were proved, the result in Conjecture 4 would follow immediately, via 
considerations like those in the proof of Lemma 2. 

CONJECTURE 3. For each ( p ,  6) E [O,w]', there is a unique value q = 
f (  p, 6) > 0 which achieves the value of b ,  that is, 

q / r ( q )  = b ,  i f q  = f (  P ,  81, 
q / r ( q )  < b ,  i f a  > 0, Q + f (  P ,  6 ) .  

CONJECTURE 4. If a( p, 6)  < 0, then the lengths of the optimal regions 
grow like 2 log(n)/r(q), where q = f (  p, 6) .  More precisely, with the notation 
from (21, so that i and j represent lengths of optimal regions I and J ,  as 
n --+ to, 

\ L 

LEMMA 2. For all ( p ,  6 )  E [0,c412, 
coefficient of log n. More precisely, as n 

( 9 )  
Mll ( 1  - E)b < - 

log n 

i f  a ( p ,  S) < 0, then b ( p ,  8) is the 
+ w, 

< (2 + E)b}  3 1. 

PROOF. 
Given E > 0, pick 6 > 0 small and q > 0 so that q / r ( q )  approximates b 

Lower bound. P(M,  2 ( 1  - E)b log n) --+ 1 as n + CQ. 

closely, so that 
( l - ~ ) b (  + 6 ) < l - - ? .  E 
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Let t = (1 - E)b log n and let k = [t/q1, so k - c log n. For sflciently large 
n, k is sufficiently large that 

1 
k 

--log P ( s &  2 qk) I r ( q )  + 6, 

so 

p(sk  2 qk) 2 exp( -k(  .( q )  + 
kexp(- t (  r ( q )  + 8 ) )  (usingk I 5) 

To conclude the proof of the lower bound, we will consider nonoverlapping 
blocks of length k + 1, so that we have about n/k - n/(c log n) independent 
chances to get a large score. Each chance has size at least n-1+E/2, so the 
expected number of successes goes to infinity like nsl2/(c log n). Formally, 
with j = k + 1 so that t < qj, 

P ( M ,  < ( 1  - c)blogn)=P(M, < t )  

s P ( M , < q j )  

2 P (  n 
Os isln/jI-  1 

= p (  si < q j ) ‘ n / j l  

{ s ( A ~ ~ + ~  ... A..  V + J ’  . B ~ ~ + ~  ..- Bij+j> < qj}) 

< (1 - n-~+s/2)L”/J1 

+ 0. 
Upper bound. 

(for sufficiently large n) 

P ( M ,  2 (2  + E)b log n) + 0 as n + 00. Recall 

r ’ ( q )  = lim 

so that it is obvious that r’ I r .  

Subadditivity implies 
The next step is to show r ’ = r .  We need to show r ‘ 2 r - E for all E > 0. 

and 
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Pick i , j ,  k = (i + j ) / 2  such that 
1 
k 

--log .( % 2 q )  < rl + e .  

Note that 

This relies on the symmetry between A and B, so that Si j  and Sji have the 
same distribution. Hence 

1 
2k 

r ( q )  5 --1ogP 

This establishes the claim that r f  = r .  
Since 

r ( q )  = r ' ( q )  = inf 

we have, for all i , j ,  k = (i + j ) / 2  and for all q ,  

(12)  .(Si, 2 q k )  4 e-kr(q) .  

Let t = (2 + ~ ) b  log n. The event {M 2 t }  is naturally expressed as a union 
of about n4 events, by choosing the starting and ending points for the 
high-scoring regions. We break this up into a union containing on the order of 
(nlogn)' events that contribute substantially to the probability, and a 
second union for the remaining events. Let C = 5/r(0),  noting that r(O) > 0: 

In the first union, each event has probability at most 

P ( S i j  2 t )  = P ( S i j  2 q k )  = - < n-('+'), 

since with k = (i + j ) / 2 ,  t = qk we have 

2 ( 2  + .E)logn. 
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Since this first union involves at most n2(2C log nI2 events, the probability of 
the union satisfies 

I n 2 ( 2 ~  log n)2n-(2+E). 

The second union in (13) is composed of at most n4 events of the form 
{S i j  > 0). Each of these events has probability satisfying 

P ( S i j 2 0 )  sexp[-kr(O)] ~exp[- (Clogn)r (O)]  sexp(-5logn) ,  

since k = (i + j)/2 > C log n and C = 5/r(0). Therefore, 

1 U ( s ( ~ i , + l  A i o + i ,  B j o + l  B j o + l  2 0) 
i o , j , E [ l , n l  

i , j s n ; 2 C l o g n < i + j  

s n4 exp[ - C log nr (0)] 
1 

s n4exp(-510gn) = -. 
n 

This concludes the proof of Lemma 2, that M,, grows like logh). 0 

LEMMA 3. If a( p, S) > 0, then a( p, S) is the coefficient of n. More pre- 
cisely, we have the following convergence in probability as n + 00: 

PROOF. Since M,, 2 S,,, we need 

P ( M ,  > (1 + 8)na) -, 0 

P ( S ,  < ( 1  - 8)na) -, 0. 

The second half, (161, is just a corollary of (5) and subadditive ergodic 

To prove (151, set t = (1 + 8)na. 
Let 

theory, which implies that S,/n -, a almost surely. 

r = r ( ( l + & ) a )  =l im 
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where the last equality uses (11) from the proof of Lemma 2. Theorem 2 of 
Section 3 says r > 0. From the infimum above, 

P(s, ,  2 a(1 + e)k) I e-rk ,  

P(s, ,  2 t )  = P(s, ,  2 ( I  + e ) n a )  I P(s, ,  2 ka(1 + e)) I e-rk.  
Now {Si ,  2 t }  requires k = ( i  + j ) / 2  2 t since each match scores +1, and 
hence 
(17) P(s, ,  2 t )  I e-rk s e-rt. 
Finally, 

for all i ,  j ,  k = ( i  + j ) / 2 .  For i ,  j I n, k = ( i  + j ) / 2  I n so that 

I n4e-rt + 0. 
"his completes the proof that M, grows like n when a > 0. 0 

D. Haas observed that M, is also a Lipschitz functional of n pairs of 
letters, so that the Azuma-Hoeffding inequality as used in Section 3 could be 
applied directly to M, in place of S,. This shows at HIM,  - EM,I 2 E n )  I 
2e-e2n/2c,  which is summable in n. If we know that EM,/n + a, it would 
then follow that M,/n + a both in probability and almost surely. However, 
it is not even obvious that lim E M J n  exists; subadditivity is not directly 
applicable. The n4 proof above shows that M n / n  + a in probability; and 
since M,/n is bounded it follows that EM,/n + a. Thus, using Azuma- 
Hoeffding on M, and S, proves an extension of Lemma 3: there is almost 
sure convergence in (14). 

3. Large deviations have exponentially small probability. For the 
sake of proving a logarithmic versus linear phase transition, we are inter- 
ested in applying the following theorem in situations where a( p, 6)  < 0 I q. 
Note, however, that Theorem 2 holds without restriction on the sign of 
a( p, 8). 

THEOREM 2. With A,, A2,.  . . and B,, B2,.  . . iid, for q > a ( p ,  S) = 
lim(l/k)ES,, 

lim - -log P ( S ,  2 q k ) )  > 0. i: 
PROOF. We show a stronger result: that, without taking limits, we have 

We apply the Azuma-Hoeffding inequality, which is the following lemma. 
P ( S ,  2 q k )  I exp(-k(q - a)'/(2c2)) with c = min(2 + 46,2 + 2p). 

LEMMA 4 (Azuma-Hoeffding). Let Xi  be a martingale with X, = 0 such 
that, for some sequence c i ,  i 2 1, ofpositive constants, 

-X,l I ci. 
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Then, for x > 0, 

An outline of the proof of this lemma is given in Williams (1991). 
We will apply this in a situation for which ci = c = min(2 + 46,2 + 2p) 

: and xk = s k  - Esk, SO that 

P (  s k  2 ESk + E k )  = P (  x k  2 E k )  

I exp - - Ek), c2 (Lemma4) ( 3 liIl 
E2k 

= eXP( - 3). 
We use this with E = q - a( p, 6) = q - a > 0. From subadditivity, ESk I 

kU, SO P(sk 2 qk) I P((sk - Esk) 2 (q  - a)k). Combining this with 
Azuma-Hoeffding, taking logarithms and dividing by - k, we get 

In detail, our martingale is Xi = E(YIT), where Y = s k  - ESk and & = 
c+(C,, C,, . . . , Ci), where Ci = ( A i ,  Bi) is the ith pair of letters. Since s k  is 
Fk-measurable, our martingale has xk = s k  - ES,, and since So is trivial, 

To bound the martingale incrementa, we first give a deterministic bound 

( 18) S - S' I c = min(2 + 46,2 + 2p}, 

where s = S(a,, a,,. . . , a k ,  b,, b,, . . . , bk) = S ( C , ,  C , , .  . . , ck) is the Score for k 
pairs of letters, and S' = S(cl, . . . , c i -  1, ci, ci+ l,. . . , ck) is the score when the 
ith pair of letters is changed. The argument for (18) starts by fixing a 
particular optimal alignment for S. Now there are three cases, depending 
how the ith pair of letters was aligned. In the first and dominant case, both 
ai and b, were matched successfully, ai matching bj for i # j  and bi 
matching al for I # i. No matter what letters a: and bi are, good alignments 
for S' are given by (1) deleting the four letters a:, bj, b:, a,, which scores 
S - 2 - 46, and by (2) scoring ai aligned to bj and bi aligned to az as two 
mismatches, which scores S - 2 - 2p. Thus S' 2 S - mid2 + 46,2 + 2p). 

It is elementary to go from a bound on changes in the deterministic scoring 
function, namely, IS(c,, . . . , ck) - S(c;, . . . , cl,)l 5 c whenever ci = ci for all 
but one i, to a bound on the martingale increments, namely, IX, - Xi- ,I I c. 
[See, e.g., Alon and Spencer (1992).] We give the proof below for completeness, 

x, = 0. 
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and to highlight where the assumption that C,, C,,  . . . are independent gets 
used. In Section 5, we show how to extend this to the case where C,, C,, . . . 
are Markov. The martingale increment Xi - Xi - , is given by a deterministic 
function g applied to i pairs of letters: Xi  - Xi-, = g(C,C, Ci),  where g 
satisfies 

g(cl,..*,ci) = P ( c i + l  ”’ Ck = ci+l ’ * *  Ck)S(c, * * *  ci ”’ ck) 
c i +  1,. . . . C& 

- P(cic i+1  ” *  ck = c:ci+l * * .  ck)s(c1 * ”  c: ” *  ck) 
c:, cic1,. . ., c k  

= P(cic i+1  ”’ ck = c:ci+l *.* c k ) ( s  - S ’ ) .  
c:, C i C l r . .  . P c k  

Thus 
[g(c, ,  ..., ci) l  I max(S - S ’ ) .  

4. Generalized scoring and gapping. Our results on phase transitions 
have been established for a simple alignment scoring function, where aligned 
letters x and y score 

and deleted letters score -6 per letter. Biological sequence alignment often 
requires much more complex scoring schemes. Protein sequences are se- 
quences over the 20-letter alphabet of amino acids. There are, then, 210 
distinct unordered pairs of letters that each could receive values depending 
on an array of chemical and physical properties of the amino acids. The gap 
functions also can be more complex. A gap of length k receives weight 
w ( k )  = 6k in Section 3, while in practice w ( k )  = (Y + pk is popular for 
biological and algorithmic reasons. Also algorithms for alignment with con- 
cave w ( k )  have been studied [Waterman (19841, Miller and Myers (1988) and 
Eppstein, Galil, Giancarlo and Italian0 (198911. In this section we sketch the 
extension of our theorems for these more general scoring schemes. 

In general, a gap weight function g ( k )  2 0 might not be concave or even 
monotone. The goal is to delete i adjacent letters at minimum cost: w ( i )  = 
min{g(i,) + g ( i , )  + +g(i , ) :  i, + i, + - - -  +i, = i). Using the function w in 
the alignment algorithm will give correct alignment scores and, at the cost of 
recalling the exact composition of each long “gap,” correct alignments. Note 
that w is necessarily subadditive: w(k + I )  I w ( k )  + w ( 0 .  Note, for exam- 
ple, with g(0) = 0, g(1) = 1, g(2) = 0, g ( k )  = k for k 2 3, we get w ( k )  = 0 if 
k is even and w ( k )  = 1 if k is odd, which is not concave or monotone, but is 
subadditive! 

The alignment in (31, using I pairs of letters, involves I + 1 gaps in each of 
the two sequences. The lengths of the kth gap are a(k) - a(k - 1) - 1 in the 
A sequence, b(k) - b(k - 1) - 1 in the B sequence, for k = 1 to I + 1. The 
score with penalty w( i )  for a gap of length i [we define w(0) = 01 for the 
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alignment in (3) is 
1 +  1 

- w ( a ( k )  - a ( k  - 1) - 1) 
k -  1 

1 +  1 

2 13 

In the special case w ( i )  = a i ,  this reduces to the alignment score whose 
maximum is taken in (2). The subadditive property in (5) used in Section 2 
holds for our generalized scoring since w(i  + j )  I w ( i )  + w ( j ) ,  for all i ,  j 2 0. 

THEOREM 1’. Consider iid letters A, ,  A , ,  . . . and B,, B,,  . . . and the opti- 
mal alignment score M ,  = M(A,A,  B,) with symmetric scor- 
ing s ( x ,  y )  = s ( y ,  x )  and subadditive gap weights w ( k )  used in (1) and (20). 
Let a = lim E s k / k  be the limiting score per letter. I f  a > 0, then M, grows 
linearly with coefficient a, and i f  a < 0, then M ,  grows logarithmically with 
coefficient in [ b, 2 b ]  in the sense of (9). 

A,,  B1B2 

PROOF. Lemmas 2 and 3 proceed as above. Note that in the argument just 
before (111, for Sij and Sji to have the same distribution requires that the 
scoring matrix be symmetric. In the argument leading up to (171, the event 
{ S i j  2 t )  requires k = ( i  + j)/2 2 t / s * ,  where s* = max s(a ,  b )  > 0. (If s* s 
0, we do not have a > 0.1 Now (17) becomes 

P ( S i j  2 t )  I e- r t / s ’  . 

Observe that Theorem 1’ is not exactly parallel to Theorem 1; we 
are no longer discussing a “phase transition line” separating the regions 
a < 0 from a > 0. In part, this is because we do not have a single notion of 
the space of parameters {s(*; 1, w(-,e 1). Next we discuss two examples. 

EXAMPLE 1. For an alphabet of size d ,  we consider d(d  + 1)/2 parame- 
ters ( s i j )  with si j  = sji ,  and two additional parameters for the gap penalty 
g ( k )  = a + pk .  In this parameter space of dimension d(d  + 1)/2 + 2, there 
is a surface of codimension 1 separating the regions {a > 0) and {a < 0). This 
can be seen by an argument like the proof of Lemma 1. 

I 

EXAMPLE 2. Let w ( k )  = S log(1 + k) ,  which has lim w ( k ) / k  = 0, and 
hence a 2 0, independent of the choice of 6 and s(-; 1. Consider examples 
with s(a,  b )  = l ( a  = b )  - p l ( a  # b). We conjecture that, for suBcientlylarge 
S and p, P ( S t / t  2 0)  4 0 as t + m. If this conjecture were proven, then for 
this class of examples, the region {a = 0) in the parameter space [O,wl2 
would have nonempty interior and positive area. 

In order to prove Theorem l’, we need an analogue of Theorem 2 for these 
general scoring schemes. 
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THEOREM 2'. For the generalized scoring scheme given by (20), with 
A,, A,, . . . and B,, B,, . . . iid and with a = lim ESk/k,  for q > a 

PROOF. The proof of Theorem 2 requires only one modification. With 

s, = +ns( i , j ) ,  
I ,  J 

the upper bound c on the martingale increments is 
c = max{min(2s* + 4w(1),2s* - 2s,),O}. 

I This comes from the deterministic bound on scores where the ith pair of 

s - S' I c. 
If ai is matched to bj and bi is matched to al ,  scoring at most 2S* for 

these matches, then after changes to ai, bi, feasible alignments include 
matching a: to bj and bi to a l ,  for a score of 2s,, or else deleting all four 
letters, for an additional gap penalty (using subadditivity of w) of at most 
4w(l). Otherwise ai is matched to bi, and S - S' I max{O,min(ls* + 
2w(l), s* - s,)), corresponding to replacing one good match by a pair of 
deletions or a bad match. The maximum with 0 in the value of c is needed in 
case s* + 2w(l) I 0, in which case S k  = -2w(k) is constant, regardless of 
the sequences; here c = 0 and the upper bound P(sk 2 qk) I exp(-k(q - 
a)2/O) is correct in the sense that 0 I exp( -a). 0 

letters is changed, which we show below: 

5. Matching Markov chains. In this section, we extend the results of 
Theorems 1 and 2 from the case of iid sequences to the case of Markov chains. 
This requires a small extension of the usual method of applying the 
Azuma-Hoeffding inequality. 

Azuma-Hoeffding for Lipschitz functions of Markov chains. In the usual 
setup, C,, . . . , C ,  are independent (not necessarily identically distributed), f :  
R" + R is a deterministic function, 5 = a ( C , ,  . . . , Ci), S = f(C,, . . . , Cn), and 
the martingale is Xi = E(S - ESE) ,  with X, = 0, X,, = S - ES. We assume 
that f is Lipschitz in the sense that changing a single coordinate of the input 
to f changes the value of f by at most c. It follows, using the independence of 
the coordinates Ci, that the martingale increments satisfy IXi - Xi- , I  I c. 
We presented this, in the special case of scoring, at the end of Section 3. For 
the case of Markov chains, we present a bounded martingale increments 
argument in a general setting, since it should be broadly applicable. Note 
that irreducible, aperiodic Markov chains with a finite state space always 
satisfy the uniformly bounded expected coupling time hypothesis of the 
following lemma. 
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LEMMA 5. Assume f :  N n  + R is Lipschitdc), in the sense that if  y, y' E N" 
differ in  at most one coordinate, then I f (y)  - f(y ')I  I c. Assume Yl, Y2,. . . is 
a Markov chain with state space N which can be coupled, in expected time less 
than or equal to t ,  uniformly over initial states. Consider S = f (Y l , .  . . , Y,) 
and s: = u(Yl,Y2, ... ,Y,), and suppose that ElSl < so that Xi = E(S  - 
E S I q )  defines a martingale. Then, for i = 1 to n, the martingale increments 
satisfy 

IXi -XiJ 5 ct. 

PROOF. In detail, our coupling assumption is the following. For all a, b E 
N, it is possible to construct Yo = a,  Yl, Y2,. . . and Yi = b,  Y;, Yi, . . . , each a 
realization of the Markov chain, so that with the coupling time T defined by 

T = min{j 2 0: YJ = y,'}, 

we have YJ = y,' for all j 2 T and 

Eab(7)  I t < 03. 
Y. = yi = a), has - - yi-l ,  The martingale Xi, on the event {Y, = yl,. . . , Y,- I 

value 

Xi = h( ~ 1 ,  ~2 yi- 1, a )  
= C f(Y1,. . . ,Yn)P(Y,+l Yn = Y i + l  * * *  YnIY, = a )  

Yi+ I *  ... , Yn 

= C f(Y1,*.*,yn)Pa(Y1 Yn-i =yi+l .**yn)* 
Y,+1 . .  .. I Yn 

Observe that the previous martingale value is an average of these Xi: 

Xi-l = C h ( y l  ,..., yi-l, b)P(Y ,  = blY,-, = Y ~ - ~ ) .  
b 

Thus the martingale increment on the event {Yl Y, = y1 yi-la) is 

Xi -Xi-1 = C P ( Y ,  = blY,-1 =yi-1) 
b 
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The function f is applied above at two points of fV which differ in midn  + 1 
- i ,  T) coordinates, so that the Lipschitz property of f implies 

I f( y19 * - 7 yi- 1 7  a7 yl, * 9 yn- i) - f( y17 * 7 yi-  1 7  b ,  9 2 Yi- 1) I I "' 
Taking expectations completes the proof. 0 

In our version of Theorem 1", we assume for convenience that each 
sequence AIA, and BIB,  is governed by an irreducible aperiodic 
Markov chain on a finite alphabet d (so that there exists n such that for all 
i , j E d, [ Pn I > 0) and that the two sequences are independent. This makes 
the process CIC, of pairs of letters, with Ci = (Ai, Bi), an irreducible 
aperiodic Markov chain with state space S =&. 

Subadditivity for the average score. Subadditivity for the sequence of 
scores s k  = S(Cl c k )  needs to be handled more carefully for Markov 
chains than for iid sequences. It is only by starting the chain C,C, in 
equilibrium that the random variables X,, = S(C,+ C,), for 0 I m I n,  
have the required stationary distribution. We thus require the assumption 
that both sequences AIA, and BIB,  start in equilibrium in (61, 

Esk a( p,  8) = lim - = sup - 
k + m  k k r l  k ' 

the definition of a( p, 8). 
Now, for the sake of Theorem l", there is no need to restrict the initial 

distributions of our sequences. To show that lirn(ES,/k) does not depend on 
the initial distribution, and for proving the extension of Lemma 3 to the 
Markov case with arbitrary initial distribution, we can use a coupling of 
C,C, . . .  to another copy of the chain, C;C, ..., starting in equilibrium. 
Observe that,if Ci = Ci for all i 2 ?.,then Ck)1 I 467, 
by considering alignments which delete all letters before the coupling time T. 
Using ET < CQ, we see, for example, that lim(ESk/k) does not depend on the 
initial distribution. We note also that Lemma 3 can be proved, even for the 
Markov case, entirely by the Azuma-Hoeffding inequality applied to Xi = 
-E(Sk - ESkE) ,  and we do not need to rely on Kingman's subadditive 
ergodic theorem. 

e . .  ck) - S(c; 

- 

Subadditivity for the exponential decay rate. For Markov chains in place 
of iid sequences, the subadditivity needed to establish (71, that 

is slightly more delicate. It is necessary to keep track of the initial state 
c1 = (a l ,  b , )  when analyzing probabilities involving the score s k  = 

s(c17 - 7 ck). 
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We sketch two arguments: a simple one given in this and the next 
paragraph, in the case Pij > 0 for all i , j  E&, and a more complicated 
argument for the case P irreducible and aperiodic, but with some value 
Pij = 0. We define 

p ( k , q )  = max Pcl(S, 2 q k ) .  
Cl €.!if2 

\ 

Defining this p with minimum in place of maximum would make it easy to 
prove subadditivity, but then we would not get the required upper bound on 
probabilities. Consider 

A = min{Pij: i , j  E d }  > 0. 
Then A2 is the corresponding minimum for our Markov chain on S =d2. 
Now, using the deterministic subadditive property of scoring only in the first 
line below, 

: 

PC1(Sj+, 2 q ( j  + k)) 2 Pcl(Sj 2 qj and S(Cj+l e . .  C j + , )  2 q k )  
= Pcl(Sj 2 qj and C j + l  = cj+l)Pcj+l(Sk 2 q k )  

Cj+ 1 

2 

2 Pcl(Sj 2 q j ) A 2 p ( k , q ) .  

Pcl(Sj 2 qj)h2Pcj+l(Sk 2 q k )  
Cj+ 1 

In the last step, we bound a sum from below by one of its terms. Taking the 
maximum over c1 yields the following: for all q, for all j ,  k 2 1, 

P ( j  + k , q )  2 P ( j , Q ) A 2 P ( k , d .  
Thus, -log(A2p(k, q)) is subadditive in k, so that 

r ( q )  = inf - jpg(A2p(k, 4 ) ) )  i '  
1 

r ( q )  = am( - -log p ( ~ ,  4)). k 
. For the proof of the upper bound in Lemma 2, we also consider the large 
deviation rate r' for scoring sequences of possibly different lengths. In the 
context of Markov chains, (lo), the definition of r ' ,  should be modified to 
include a maximum over initial states cl, so that now 

satisfies 

- 

A2 max maxPcl(Sij 2 q k )  
i + j = 2 k  C ~ E S  

As before, one must prove that r = r'. It then follows that, for any initial 
distribution, for any i, j with i + j = 2k, 

P(Sij 2 q k )  I A-2e-kr(q).  
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With the extra factor of K 2 ,  our proof of the upper bound in Lemma 2 ,  based 
on the probability of a union being less than the sum of the probabilities, goes 
through as in the iid case. 

To handle the case of P irreducible and aperiodic on d, but not strictly 
positive, we need a more complicated subadditivity argument. This is because 
lim( -(l/k)log P Y S ,  2 qk))  can vary with the initial state c, as we see from 
the example with q = 1 where { S ,  2 q k }  requires perfect matching, which 
has probability zero starting from a mismatch and has nonzero but exponen- 
tially decaying probability starting from a match. With various scoring 
schemes, there can be less trivial examples in which the event { S ,  2 qk) ,  of 
exponentially small positive probability, confines the chain to some part of 
the state space, so that the irreducible aperiodic property is not seen. In any 
case, we cannot bound liminf P"l(Cj = blSj 2 qj) away from zero, which was 
the essence of the argument in (21). 

0 

: 

For the irreducible aperiodic case in general, we define 
1 

which exists by subadditivity. Noting that r (*)  is a nondecreasing function, 
we defme 

r ( q  -1 = supr(q ' ) ,  
9-9 

so that r(q - ) I r(q) .  Next we argue that, for each E > 0 and q, there exists 
k, finite so that for all k 2 k,, for all initial c E&, 

Observing that b = maXq ., , r (q ) /q  = maXq > r(q - )/q, it is then straightr 
forward to extend the proof of the upper bound in Lemma 2 to the case of 
irreducible, aperiodic Markov chains. 

To prove (231, fix m so that h = min[PmIij > 0, and fm E > 0 and q. Pick 
q' < q so that r(q')  > r(q - ) - ~ / 2 .  Pick k, sufficiently large that k o q  - 
26m 2 (k, + m)q' and exp(-k,~/2) < h2. Now let k 2 K O  and consider 
blocks of length I = k + m. For a block of length I, if the k pairs of letters 
score qk,  then by considering an alignment in which the other m pairs are 
deleted we see that the net score is at least kq - 26m 2 Zq'. We have 

P"( S ,  2 qk and C,, = C) 2 h2P"( S ,  2 qk). 

For n = Id a multiple of I, for any cl, Pcl(S, 2 q'n) 2 (h2Pc(S,  2 & ) I d ,  by 
insisting on Cm+l = Cm+z+l = = Cm+(d-l)z+l = c, deleting the first m 
pairs of letters and scoring at least qk from the remaining k pairs in each 
successive block of I pairs of letters. Thus, taking I + co and picking c1 to 
achieve the minimum in the definition of r ,  (221, we have 

e-nr(q')  = Pel( S ,  2 q'n)  2 ( A2Pc( S ,  2 q k ) )  d 
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so that 
e-r(q’) > e-’/’(PC(Sk 2 q k ) )  1/k . - 

Hence 

P‘(S ,  2 q k )  I (exp[-r(q’) + 8/21), I exp[-(r(q -) - &)k], 

which proves (23). The remaining details needed to extend the upper bound 
in Lemma 2 to this irreducible, aperiodic Markov case may be considered 
routine. 

Doeblin’s method. For the lower bound in Lemma 2, our argument re- 
quired independent blocks. In the Markov case, Doeblin’s method provides 
these. Here are some of the details. As before, we take t = (1 - &)b log n, 
k = [ t / q ]  and j = k + 1. Pick a pair of letters c so that, for sufficiently large 
k ,  

pC(Sj 2 qj) 2 exp[ - j ( r ( q )  + s ) ]  2 n - l + E / 2  

Consider the successive returns to c: T(0)  = 0, T ( i  + 1) = min{t > T( i ) :  C, = 
c). The ith excursion is CT(i)CT(i)+ 1, and for i = 1,2,. . . , these 
excursions are iid (with an infinite state space for the excursions, even for 
finite S) .  Also, successive blocks of j consecutive excursions are iid. Consider 
pc, the equilibrium probability of c. The weak law of large numbers, T ( i ) / i  
-+p l / p c ,  implies that the “good” event G, defined by 

G = {Tzj I n}, where 1 = n p c / ( 2 j ) ,  

has P(G) + 1 as n -+ m. Let E, be the event that the first j pairs of letters in 
the ith block score less than qj: 

~i = {S(CT(ij)+l * * e  C T ( i j ) + j )  < a). 

= P ( E ~ ) ’  = pc(s j  2 qj) I (1 - n - ’ + E / ’ )  -+ o 

’ From the iid property of excursions, 

I 

since In-’+ E / 2  -+ a. Finally, {M,, < t}  n G c f 7 0 s i < l E i  so 

P ( M ,  < t )  I P (  nE,) + (1 - P ( G ) )  + 0. 

These arguments have proven the following two theorems. 

THEOREM 1”. The results of Theorems 1 and 1’ remain valid in case the 
two sequences AlA2 are independent, each governed by the 
same irreducible aperiodic Markov chain on a finite alphabet, with arbitrary 
initial distributions for each sequence. 

and BlB2 
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THEOREM 2”. The results of Theorems 2 and 2’ extend to the Markov 
situation in Theorem 1”. 

6. Repeats in a sequence. Biological sequences can evolve by duplicat- 
ing intervals of sequence. These duplications can appear adjacent to or 
distant from the original interval of sequence. This motivates us to consider 
our theorems for approximate repeats within a sequence. We will take these 
repeats to be nonoverlapping. 

First the definition of M ,  must be modified appropriately to MA: 

MA = MI( A,A,  A, )  = maxS( I ,  J )  
I ,  J 

where I = A g + ,  **-Ag+! and J = A h + ,  * * - A h + j  and l S g + l  I g + i  < h + l I  
h + j  I n. Other definitions such as that for r ( q )  remain the same, as the 
behavior of S(I ,  J )  is still the key for the proofs. 

First we hhd le  the logarithmic region. The lower bound is straightfor- 
ward. For all E > 0, 

M’(A1 e . .  An) 2 M(A1 ALn/21, ALn/2]+1 An) 
2 (1 - ~ ) b  log( n / 2 )  

with probability tending to 1. Since log(n/2) is asymptotic to log n, it follows 
that for all E > 0, 

P ( M ’ ( A ,  . * - A , )  > (1 - ~ ) b l o g n )  + 1. 

For the upper bound, the unions in (13) are over fewer events, namely, 
i o  < i o  + i I j o  < j o  + j and i + j I 2C log n (first union) or 2C log n < i + j 
(second union). The first union still involves at most n2(2C log n)’ events and 
the second union still involves at most n4 events. Since all other bounds hold 
without change, 

M‘(  A ,  - - -  A , )  I ( 2  + ~ ) b  log n 

with probability tending to 1, and Lemma 2 holds with MA replacing M,. 
When a( p, 8) > 0, we have the following convergence in probability: a 

which is the counterpart of Lemma 3 but with an extra factor of !j. To prove 
this, first note that 

MA 2 S(A1 Aln/21, ALn/2]+1 An)* 
Therefore, 

MA a 
n 2  

lim inf- 2 - , 
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and the lower bound is established. To check the upper bound note that the 
union following (17) is over 1 I i < i + k I j < j + 1 5 n, which is fewer than 
n4 events and here ( i  + j ) / 2  I n/2 .  

This generalization to repeats is summarized in the next theorem. 

THEOREM 1”. Consider iid letters A,, A,, . . . and the optimal alignment 
score MA = M‘(A,A, A,) with symmetric scoring s ( x ,  y )  = s (y ,  x )  and 
subadditive gap weights w ( k )  used in (1) and (20). Let a = lim ES,/k be the 
limiting score per letter. If a > 0, then MA grows linearly with coefficient a /2 ,  
and if a < 0, then M, grows logarithmically with coefficient in [b,2bl  in the 

. 
- 

- sense of (9). 

7. Examples. This paper was motivated by the application of sequence 
matching algorithms to the study of DNA sequences with a 4-letter alphabet 
and protein sequences with a 20-letter alphabet. In Fall 1993 there were 
about 150 x lo6 letters of DNA sequence in the international databases, 
which were contained in about 100,000 sequence entries that average around 
1000 letters each. The longest contiguous sequence of DNA is the complete 
sequence of a yeast chromosome, 315,357 letters in length. The Human 
Genome Project promises to accelerate the rate of DNA sequencing. Currently 
the databases increase in size by about 50% per year. 

To determine relationships between sequences, the Smith-Waterman algo- 
rithm computes M = M, = M( p, S), the optimal score S ( I ,  J) over all possi- 
ble contiguous regions where I is from A,A, B,. 
As earlier in this paper, p is the mismatch penalty and S is the single letter 
deletion penalty. Our theorems show that there is a phase transition between 
linear growth in n, when the penalty parameters are small, and logarithmic 
growth in n, when the penalties are large. Not much is known theoretically 
about the location of the phase transition curve in ( p ,  6) E [0,co12. If p = 
P ( A ,  = Bj), then the point ( p / ( l  - p ) ,  m) lies on the curve since p = p / ( l  - 
p )  solves 1 - p  - p(1 - p )  = 0. Similarly, if c is the Chvhtal-Sankoff con- 
stant, (00, c/(2(1 - c))) lies on the curve. Noting that whenever p > 26, 
M( p, 6 )  = M(2 6 ,  a), we have ( p, c/(2(1 - c))) on the curve when p > ( c / ( l  
- c)). 

To obtain more information about the shape of the phase transition curve, 
i we studied 

A, and J is from B,B, 

for simulated DNA sequences of length 5000 and p = H A ,  = B j )  = 1/4. The 
study is motivated by the definition of the phase transition curve, {( p, 6): 
lim, ~~ ES,/k = 0). The simulated curve appears as Figure 1. To check the 
simulation, note that p / ( l  - p )  = 1 / 3  when p = 1/4. For-a uniform four- 
letter alphabet, it is known that c E (0.45,0.77) so that c/(2(1 - c)) E 
(0.41,1.67). These values are consistent with the results of our simulation. 
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c 

0 8 

FIG. 1. 
length-400 DNA sequences. 

The approximate phase-transition curve for p = 1/4; phase-transition boundury for two 

The phase transition curve in [0,wl2 does not tell the whole story. It is 
instructive to look at a line through the parameter space and study the 
behavior of optimal alignments along the line. We chose the line p = 6. For 
the simulated length-64 sequences 

A =  GTCTGACAAAGGCAACTCAAGGTAGGACTGGCG~CCAATAGCCAATCAGCATATCTTTTTTATC, 
B =  CGTCGGGTGTACTCAATCCTTGAGTTCGCTTAGCTATCTGGCCAGCCGCATCTCGAGACGT~C, 

there are nine regions of optimal alignments, that is, [0, wl = U := I1i, where 

[0.9,1.0], I7 = [1.0,1.25], I, = [ 1.25,3.0] and I ,  = [3, a]. On the interior of 
each I i ,  the set of optimal alignments is constant. It should be pointed out 
that optimal alignments are not always unique. For these sequences, letting 
ni = number of optimal alignments for interval I i ,  n, = 302,400, n2 = 14,688, 
n3 = 1632, n4 = 1440, n5 = 1440, n6 = 6, n7 = 6, n, = 1 and n, = 1. In 
Figure 2 we have taken a representative alignment from each interval. Note 
that Figure 1 suggests the phase transition should occur around ( p, 6 )  = 
(l , l) ,  the region in Figure 2 where the alignment lengths and scores are 
dramatically changing. 

- 

1, = [o, 0.21, 1 2  = [0.2,0.5], 1 3  = [0.5,0.7], I4 = [0.7,0.8], 1 5  = [0.8,0.9], 16 = 
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